
1

Concurrent Programming in Java

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2012-131

Recapitulation of basics
Concurrency concepts

Threads / Processes – structuring mechanism
Different from procedures – multiple active control flow.

Communication
Shared variables – Java

Like read / write to a piece of paper all can access, roughly.

Message passing – MPI
Like sending email to processes with own INBOX, roughly.

Problems in concurrent programming
Data races

Remedied by Locks

Deadlock, Livelock, Starvation.

CS3211 2012-132

Java Threads

Multithreaded execution is an essential feature of the Java platform. Every
application has at least one thread — or several, if you count "system" threads that
do things like memory management and signal handling.

From the application programmer's point of view, you start with just one thread,
called the main thread. This thread has the ability to create additional threads.

CS3211 2012-133

A

Time

B

C

Parallelism is not
necessary, but
possible.

The threads can
time-share on a
processor.

Threads

Managing Thread objects
Each application thread is an instance of the class Thread.

In the programming style I describe here:

the application directly controls thread creation and management
by instantiating the Thread class whenever necessary.

A li i h i f Th d id h d h ill

CS3211 2012-134

An application that creates an instance of Thread must provide the code that will
run in that thread. There are two ways to do this:

- use the Runnable interface
- create a subclass of the Thread class.

(see the next few slides for description of these two approaches).

Concurrent Thread Execution
Each thread has a priority

Initial priority: inherited from its parent thread

setPriority(int newPriority)
When multiple threads running on the same processor

Ready thread with highest priority get executed

CS3211 2012-135

Ready thread with highest priority get executed
“Randomly” select among threads with same priority

Starting a Thread (1)
public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}

CS3211 2012-136

}
}

Runnable interface contains a single method run()
--- containing code to be executed.

Re-define the run() method and pass it to the thread constructor.

2

Starting a Thread (2)

public class HelloThread extends Thread {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {

CS3211 2012-137

public static void main(String args[]) {
(new HelloThread()).start();

}
}

Notice that both of them use start, along with the constructor.
You can use either approach in 3211 , but the first approach is generally
recommended since

- separates Runnable object from the thread object that executes run
- higher level features become available (not relevant for 3211).

Common programming mistakes

Thread myThread = new Thread(MyRunnable());
myThread.run();

Calling thread will execute the run() method
• Treated as normal function call
• No new thread is started
• Not desirable in most situations

CS3211 2012-138

• Not desirable in most situations

Thread myThread = new Thread(MyRunnable());
myThread.start();

A new thread is created (run() is executed
in this new thread)

Stopping Threads
Thread normally terminates by returning from its run()
method
Deprecated methods: stop(), suspend(), destroy() etc.

Unsafe, don’t use
Use (shared) variables to control thread termination if

CS3211 2012-139

necessary
The join method allows one thread to wait for the completion
of another

t.join();
causes the current thread to pause execution until t's thread
terminates.

A sleeping thread

public class SleepMessages {
public static void main(String args[]) throws InterruptedException {

String importantInfo[] = { "Mares eat oats",
"Does eat oats",
"Little lambs eat ivy",
"A kid will eat ivy too"

};
for (int i = 0; i < importantInfo.length; i++) { //Pause for 4

seconds

CS3211 2012-1310

seconds
Thread.sleep(4000); //Print a message
System.out.println(importantInfo[i]);

}
}

}

Thread.sleep causes the current thread to suspend execution for a specified period.
This is an efficient means of making processor time available to the other threads of an
application or other applications that might be running on a computer system.

Can be interrupted by other threads during sleep!

On Interrupts
The interrupted thread should support its own interruption.

for (int i = 0; i < importantInfo.length; i++) {
// Pause for 4 seconds

try {
Thread.sleep(4000);

} catch (InterruptedException e) {
// We've been interrupted: no more messages.

return;

CS3211 2012-1311

;
}
// Print a message
System.out.println(importantInfo[i]);

}

If a thread is blocked on sleep/wait/join ---
it receives an exception, an InterruptedException

Otherwise …

More on interrupts

for (int i = 0; i < inputs.length; i++) {
heavyCrunch(inputs[i]);

if (Thread.interrupted()) { //Checking if interrupted …
// We've been interrupted: no more crunching.

return;
}

}

CS3211 2012-1312

The thread needs to check from time to time whether it has been interrupted.

3

An Example
public class ThreadExample {

public static void main(String[] args){
System.out.println(Thread.currentThread().getName());
for(int i=0; i<10; i++){

new Thread("" + i){
public void run(){

System.out.println("Thread: " + getName() + " running");
}

}.start();

CS3211 2012-1313

}
}

}

1. What does the above example do?
2. How many threads will be created ?
3. What will be the exact printout?

Thread Communication
Two common modes of thread communication in
parallel / concurrent programming

Shared memory
Message passing

In this course we study the Java shared memory

CS3211 2012-1314

In this course, we study the Java shared memory
communication style where threads read and write
shared objects. This requires synchronization
mechanisms to ensure safe and “correct” accesses to
the objects.
Message passing can be implemented on top of Java

Refer to Textbook, Chapter 10

Two problems in Concurrent Programming

Race conditions
Two or more threads access the shared data
simultaneously
Solution: lock the data to ensure mutual exclusion
of critical sections

CS3211 2012-1315

of critical sections
Deadlock

Two threads are waiting for each other to release
a lock, or more than two processes are waiting for
each other in a circular chain.

Interference between threads
class Counter {

private int c = 0;
public void increment() {

c++;
}
public void decrement() {

c--;
}
public int value() {

Different from Promela:
Java statements are not

atomic!!!

CS3211 2012-1316

p
return c;

}
}

Counter c = new Counter();
public class ThreadA extends Thread{

public void run() { c.increment(); }
}

public class ThreadB extends Thread{
public void run() { c.decrement(); }

}

Thread Interference
Shared Memory
Init: c == 0Thread A Thread B

Read c
== 0 Read c == 0

Incr, Get 1

CS3211 2012-1317

Decr., get -1

Write c = -1

Write c = 1
Executing the
Statement c++;

Executing the
Statement c--;

Avoiding thread interference – (1)
Java programming provides two basic synchronization idioms:
synchronized methods and synchronized statements

public class SynchronizedCounter {
private int c = 0;
public synchronized void increment() {

c++;
}
public synchronized void decrement() {

CS3211 2012-1318

public synchronized void decrement() {
c--;

}
public synchronized int value() {

return c;
}

}

4

Why synchronized methods?
It is not possible for two invocations of synchronized methods
on the same object to overlap.
When a synchronized method exits, it makes the object state
visible to all threads accessing the object subsequently via
synchronized methods.

CS3211 2012-1319

Minor point: Constructors cannot be synchronized, try it ! Why??

Synchronized statements
public void addName(String name) {

synchronized(this) {
lastName = name; nameCount++;

}
nameList.add(name);

}

CS3211 2012-1320

Synchronized statements refer to an object --- this refers to the object
whose method is being executed.

Needed to avoid generating redundant methods – see example above.

Invoking other object’s methods from synch. code can be problematic?

Synchronized Method and Statements
Synchronized methods lock this object
Synchronized statements can lock any object
(including this)

public synchronized void foo() {

CS3211 2012-1321

public synchronized void foo() {
…

}
is equivalent to

public void foo() {
synchronized(this){ … }

}

Finer-grained concurrency

public class not_together {
private long c1 = 0;
private long c2 = 0;
private Object lock1 = new Object();
private Object lock2 = new Object();

public void inc1() {
synchronized(lock1){

Different from using

synchronized(this)

c1 and c2 are
independent, never

CS3211 2012-1322

y (){
c1++;

}
}

public void inc2() {
synchronized(lock2) {

c2++;
}

}
}

independent, never
used together.

=>
Updates can be
interleaved.

Fine grained locks
class FineGrainLock {

MyMemberClass x, y;
Object xlock = new Object(),

ylock = new Object();
public void foo() {

synchronized(xlock) { //access x here
}
//do something - but don't use shared resources
synchronized(ylock) { //access y here

CS3211 2012-1323

y y y
}

}
public void bar() {

synchronized(xlock) {
synchronized(ylock) {

//access both x and y here
}

}
//do something - but don't use shared resources

}
}

Re-emphasizing Locks
Consider a bank with 10,000 accounts, each with $1000.
Bank’s asset = $10 million.

Simulate the bank’s activity with two threads.

ATM thread: picks two accounts at random and moves a random
amount of money from one account to another.

CS3211 2012-1324

Audit thread: Periodically wakes up, and adds all the money in
all the accounts.

We should always have $10 million in the bank (Invariant)

5

ATM Class

class ATM extends Bank implements Runnable{
public void run(){

int fromAcc, toAcc, amount;
while (true){

fromAcc = (int) random(numAcc);

toAcc = (int) random(numAcc);
amt = 1+ (int)random(savings[fromAcc].balance);
savings[fromAcc].balance -= amt;
savings[toAcc].balance += amt;

}
}

}

CS3211 2012-1325

Auditor Class
class Auditor extends Bank implements Runnable{

public void run(){
int total;
while (true){

nap(1000); total = 0;

f (i i 0 i < A i++)for (int i =0; i < numAcc; i++)
total += savings[i].balance;

… // print the total
}

}

CS3211 2012-1326

Total is 10000000
Total is 10001090
Total is 9994800

Printout

Fixing the ATM
class ATM{

…
synchronized (lock) {

savings[fromAcc]-=amt; savings[toAcc] += amt;
}

}}

class Auditor{
…
synchronized (lock) {

for (i=0; i < numAcc; i++) total += savings[i];

}
}

CS3211 2012-1327

Thread safety without Synchronization
Local Variables – stored in each thread’s local stack.
Accessed only by one thread, no synchronization needed.

public void someMethod(){

long threadSafeInt = 0;

CS3211 2012-1328

threadSafeInt++;
}

Volatile Variables
Consider any simple Java stmt, e.g., x=0

Translates to a sequence of bytecodes, not atomically executed.
One way of ensuring atomic execution in Java –

Mark variables as volatile.
reads/writes of volatile variables are atomic (directly update
global memory).

CS3211 2012-1329

S
T
A
C
K

Thread
A

Heap (Global
Memory)

Thread
B

S
T
A
C
K

Normal var.
accesses

Volatile Variables

S
T
A
C
K

Heap (Global
Memory)

S
T
A
C
K

CS3211 2012-1330

Thread
A

Thread
B

Conceptual view of volatile variable accesses – atomic reads/writes.
Ensures state visibility, not mutual exclusion.

Marking a variable as volatile tells the compiler to load/store the variable
on each use, rather than optimizing away the loads and stores.

6

A common bug with volatile
class Counter {

private volatile int c = 0;
public void increment() {

c++;
}
public void decrement() {

c--;
}

CS3211 2012-1331

}
public int value() {

return c;
}

}

Meaning of volatile variables change from Java 5 or later.

Detour - A personal experience with
volatiles

Thread 0 Thread 1
1. lock0 = 1; A. lock1 = 1;
2. turn = 1; B. turn = 0;
3. while(1){ C. while(1) {
4. if (lock1!=1)||(turn==0) D. if (lock0!=1)||(turn==1)
5. break; } E. break;}
6. counter++; F. counter++;
7 lock0 = 0; G lock1 = 0;

CS3211 2012-1332

7. lock0 = 0; G. lock1 = 0;

Put all shared variables as volatile --- lock0, lock1, turn, counter

Run through the loop 1 million times.

What should be the value of counter at the end?
What did I observe?

Peterson’s mutual exclusion algorithm

Violation of Mutual exclusion
Thread 0 Thread 1

(lock1 != 1)
exit loop
read counter (reads 0)

lock1 = 1
(l k0)

Volatile write -> volatile read

Reorderings of independent vars.
may be allowed in semantics of C#,
Java

CS3211 2012-1333

(lock0 != 1)
exit loop

lock0 = 1
turn = 1

turn = 0
counter++
lock1 = 0

increment counter (set 1)
lock0 = 0

Thread 0 Thread 1
1. lock0 = 1; A. lock1 = 1;
2. turn = 1; B. turn = 0;
3. while(1){ C. while(1) {
4. if (lock1!=1)||(turn==0) D. if (lock0!=1)||(turn==1)
5. break; } E. break;}
6. counter++; F. counter++;
7. lock0 = 0; G. lock1 = 0;

End of detour – personal experience

The semantics of multi-threaded Java (and other languages like C#)
allows such re-orderings. It goes by the name Java memory model (or
C# memory model).

This is advanced material – not covered in the course. However, you will
be affected if you resort to indiscriminate use of volatiles – so it is

CS3211 2012-1334

be affected if you resort to indiscriminate use of volatiles so it is
important for us to know why volatiles may be problemmatic.

If you are interested in the topic – you can read several papers I have
authored on this topic ☺

e.g. Memory Model Sensitive Bytecode Verification
Thuan Quang Huynh and Abhik Roychoudhury
Formal Methods in System Design, Volume 31(3), December 2007.
http://www.comp.nus.edu.sg/~abhik/pdf/fmsd07.pdf

Volatile Vs. Synchronized
Summarize on volatile variables

Value of volatile variable will never be cached
Access (read/write/get-and-set) to the variable is atomic

Pros
Light-weight synchronization mechanism

CS3211 2012-1335

A primitive variable may be declared volatile
Access to a volatile variable never block (deadlock)

Cons
Correct use of volatile relies on the understanding of Java
memory model (e.g., get-update-set of a volatile variable is
not atomic).

Deadlock
Example
threadA: threadB:
synchronized(lock1) { synchronized(lock2) {

synchronized(lock2) { synchronized(lock1) {
…. ….

} }} }
} }
The Java programming language does not prevent deadlock
conditions

Programmer has to take care of possible deadlock situation (use
conventional techniques/programming patterns for deadlock
avoidance)
Formal verification (e.g., Promela&Spin)

3636 CS3211 2012-13

7

Transfer of Thread Control
Sometimes, a thread needs certain conditions (on shared
objects) to hold before it can proceed
Method 1: polling/spinning

repeatedly locking and unlocking an object to see whether
some internal state has changed
Inefficient, possible cause of deadlock

Method 2: wait/notify
a thread can suspend itself using wait until such time as
another thread awakens it using notify

37 CS3211 2012-13

Wait and notify

wait()
Waits for a condition to occur. This is a method of the Object class and must be

called from within a synchronized method or block.

notify()
Notifies a thread that is waiting for a condition that the condition has

occurred. This a method of the Object class and must be called from within a

CS3211 2012-1338

synchronized method or block.

Every object inherits from the Object class, hence support wait /notify.

Acquiring and releasing locks
wait() releases lock prior to waiting.
Lock is re-acquired prior to returning from wait().

Producer and Consumer Example (1)

class Q { //queue of size 1
int n;
synchronized int get() {

System.out.println("Got: " + n);
return n;

}
synchronized void put(int n) {

this.n = n;
System.out.println("Put: " + n);

}
}

39 CS3211 2012-13

Producer and Consumer Example (1)
class Producer implements Runnable {

Q q;
Producer(Q q) {

this.q = q;
new Thread(this, "Producer").start();

}}
public void run() {

int i = 0;
while(true) {

q.put(i++);
}

}
}

40 CS3211 2012-13

Producer and Consumer Example (1)
class Consumer implements Runnable {

Q q;
Consumer(Q q) {

this.q = q;
new Thread(this, "Consumer").start();

}}
public void run() {

while(true) {
q.get();

}
}

}

41 CS3211 2012-13

Producer and Consumer Example (1)
Possible output:

Put: 1
Got: 1
Got: 1
Got: 1
G 1 Got: 1
Put: 2
Put: 3
Put: 4
Got: 4

42 CS3211 2012-13

8

Producer and Consumer Example (2)

class Q {
int n;
boolean valueSet = false;
synchronized int get() {
while(!valueSet) {

try {
wait();

} catch(InterruptedException e) {}
}
System.out.println("Got: " + n);
valueSet = false;
notify(); //notify the producer
return n;

}

43 CS3211 2012-13

Producer and Consumer Example (2)
synchronized void put(int n) {
while(valueSet) {

try {
wait();

} catch(InterruptedException e) {
}

}}
this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();

}
}

44 CS3211 2012-13

Modified Output

Put: 1
Got: 1
Put: 2
Got: 2
Put: 3

CS3211 2012-1345

Got: 3
Put: 4
Got: 4
Put: 5
Got: 5

notifyAll()
Notifies all waiting threads on a condition that the condition has occurred.

All threads wake up, but they must still re-acquire the lock.

Thus, one of the awakened threads executes after waking up.

CS3211 2012-1346

public class ResourceThrottle {
private int resourcecount = 0;
private int resourcemax = 1;

public ResourceThrottle (int max) {
resourcecount = 0;
resourcemax = max;

}

notifyAll()
public synchronized void getResource (int number) {

while (1) {
if (resourcecount + number < =

resourcemax){
resourcecount += number; break;

}
try { wait();
} catch (Exception e) {}

CS3211 2012-1347

} catch (Exception e) {}
}

}

public synchronized void freeResource (int number) {
resourcecount -= number; notifyAll();

}

What purpose does notifyAll() serve here?

Beyond Locks
Locks ensure mutually exclusive access.

If there are n resources to be picked up by m > n
contenders.

We need a semaphore with a count

48

We need a semaphore with a count
Initialize count to n (# of resources)
As each resource is acquired, decrement count
As each resource is released, increment count.

Semaphores are not directly supported by Java. But, they can
be easily implemented on top of Java’s synchronization.

48 CS3211 2012-13

9

Counting Semaphores

class Semaphore {
private int count;
public Semaphore(int n) {this.count = n; }
public synchronized void acquire(){ … }
public synchronized void release(){ … }

}

49

public synchronized void acquire(){
while(count == 0) {
try { wait(); }
catch (InterruptedException e){

//keep trying
}

}
count--;

}

public synchronized void release(){
count++;
notify(); //alert a thread

//that's blocking on
// this semaphore

}

49 CS3211 2012-13

More on Counting Semaphores

Could we use notifyAll in release()?

What would be the advantage of using notifyAll(), if any?

CS3211 2012-1350

References

Online Tutorials – sample …

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

Optional Reading:

•Java Threads by Oaks and Wong, O’Reilly.

CS3211 2012-1351

•Concurrent Programming: The Java Programming Language by Hartley.

•Java Concurrency in Practice by Goetz, Addison Wesley. (advanced)
Few extra slides for Lecture 2 of

CS 3211
Abhik Roychoudhury

National University of Singapore

Detour - A personal experience with
volatiles

Thread 0 Thread 1
1. lock0 = 1; A. lock1 = 1;
2. turn = 1; B. turn = 0;
3. while(1){ C. while(1) {
4. if (lock1!=1)||(turn==0) D. if (lock0!=1)||(turn==1)
5. break; } E. break;}
6. counter++; F. counter++;
7 lock0 = 0; G lock1 = 0;

CS3211 2012-1353

7. lock0 = 0; G. lock1 = 0;

Put all shared variables as volatile --- lock0, lock1, turn, counter

Run through the loop 1 million times.

What should be the value of counter at the end?
What did I observe?

Peterson’s mutual exclusion algorithm

Violation of Mutual exclusion
Thread 0 Thread 1

(lock1 != 1)
exit loop
read counter (reads 0)

lock1 = 1
(l k0)

Volatile write -> volatile read

Reorderings of independent vars.
may be allowed in semantics of C#,
Java

CS3211 2012-1354

(lock0 != 1)
exit loop

lock0 = 1
turn = 1

turn = 0
counter++
lock1 = 0

increment counter (set 1)
lock0 = 0

Thread 0 Thread 1
1. lock0 = 1; A. lock1 = 1;
2. turn = 1; B. turn = 0;
3. while(1){ C. while(1) {
4. if (lock1!=1)||(turn==0) D. if (lock0!=1)||(turn==1)
5. break; } E. break;}
6. counter++; F. counter++;
7. lock0 = 0; G. lock1 = 0;

10

End of detour – personal experience

The semantics of multi-threaded Java (and other languages like C#)
allows such re-orderings. It goes by the name Java memory model (or
C# memory model).

This is advanced material – not covered in the course. However, you will
be affected if you resort to indiscriminate use of volatiles – so it is

CS3211 2012-1355

be affected if you resort to indiscriminate use of volatiles so it is
important for us to know why volatiles may be problemmatic.

If you are interested in the topic – you can read several papers I have
authored on this topic ☺

e.g. Memory Model Sensitive Bytecode Verification
Thuan Quang Huynh and Abhik Roychoudhury
Formal Methods in System Design, Volume 31(3), December 2007.
http://www.comp.nus.edu.sg/~abhik/pdf/fmsd07.pdf

Some questions asked by
CS3211 students after Lec. 2

Abhik Roychoudhury
CS 3211

56 1/25/2013

Background
• Here I am posting the answers to some questions that

were asked by your fellow students after the Lecture 2
on 24th January.

• Purpose of posting this
– Share the answers with all students

• Several students may have same doubts.

– Encourage more of such questions – I was heartened to see so
many questions – indicating the students’ high interest in the
topic.

57 1/25/2013

Q1. Is there any deadlock here?
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);
wantP = true;
do
:: !wantQ ‐> break;

active proctype Q() {
do
:: printf(“noncritical section\n”);
wantQ = true;
do
:: !wantP ‐> break;:: !wantQ > break;

:: else ‐> skip
od;
printf(“Crit. Section P\n”);
wantP = false

od
}

:: else ‐> skip
od;
printf(“Crit. Section Q\n”);
wantQ = false

od
}

It is possible for the two processes to set wantP = true and wantQ=true.
After that, the two processes can only keep on executing skip. But strictly speaking,
there is no deadlock – since “deadlock” requires the processes to be unable to
execute any action (not even skip) due to a circular wait scenario.58 1/25/2013

Q2 notify() and notifyAll()
• The key difference is that all waiting threads will be

woken up on notifyAll()
• Think of each thread in either of 3 states
– Scheduled and Executing
– Schedulable, but blocked
– Not schedulable and sleeping

• notifyAll simply moves all waiting threads from non-
schedulable state to schedulable state.

59 1/25/2013

Q2 notify() and notifyAll()

public synchronized void getResource (int number) {

while (1) {

if (resourcecount + number < =

resourcemax){

resourcecount += number; break;

}

try { wait();

} catch (Exception e) {}

}

}

public synchronized void freeResource (int number) {

resourcecount -= number; notifyAll();

}

Note that the wait() occurs inside a loop. After notifyAll() executes waiting threads
are schedulable. However, only one of them re‐acquires the lock. In the process it
may reset the condition for waiting. If this happens, the other woken up threads will
be forced to execute wait() again. This is why the wait() occurs inside a loop!

60 1/25/2013

11

Q3. On volatile Variables
Thread 0 Thread 1
1. lock0 = 1; A. lock1 = 1;
2. turn = 1; B. turn = 0;
3. while(1){ C. while(1) {
4. if (lock1!=1)||(turn==0) D. if
(lock0!=1)||(turn==1)
5. break; } E. break;}
6. counter++; F. counter++;
7. lock0 = 0; G. lock1 = 0;

Question: you said in class if we mark all shared
variables as volatile in Peterson’s mutual exclusion
algorithm – still mutual exclusion may be violated –
due to volatile write ‐> volatile read re‐orderings.
How does the situation change – if I did not mark the
shared variables as volatile.

Answer: If the shared variables are not marked volatile and not protected by lock –
clearly there is no expectation of not having data races in the program.

However, if the shared variables are marked as volatile – one may have a misplaced
expectation that the program will work “correctly”. This is because you treat the Java
volatile variables as a substitute for locks.

This is wrong. Locks ensure (i) atomicity of the code protected by lock (ii) mutual
exclusion, and (iii) visibility of the updates made in critical section once you release
lock. Note that volatile variables only ensure atomicity, and not mutual exclusion.

61 1/25/2013

My question for you
Do the volatile variables in Java ensure state visibility? If I
make a volatile variable operation, after the operation is
the state change visible to all threads?

What do you think? If we follow the main property of
volatile variables – we can get to the answer!

62 1/25/2013

Job interview questions
http://javarevisited.blogspot.sg/2011/07/java-multi-threading-

interview.html

This is blog on top 15 job interview questions asked by
investment banks on concurrent programming.

You will notice that we have covered most of the topics
already ☺

63 1/25/2013

