
1

Processes and Threads

Abhik Roychoudhury
CS 3211

National University of Singapore

Reading material: Chapter 2 of Textbook.

1 CS3211 2012-13

Concurrent processes
We structure complex systems as sets of simpler
activities, each represented as a sequential
process. Processes can be concurrent, so as to
reflect the concurrency inherent in the physical
world, or to offload time-consuming tasks, or to
manage communications or other devices.

Designing concurrent software can be complex Model processes as finite

Concept of a process as a
sequence of actions.

g g p
and error prone. A rigorous engineering approach
is essential.

Model processes as finite
state machines.

Program processes as threads
in Java.

2 CS3211 2012-13

Warm-up exercises at beginning
of Lecture 3

Abhik Roychoudhury
National University of Singapore

A question asked by your friend
Thread 0 Thread 1
1. lock0 = 1; A. lock1 = 1;
2. turn = 1; B. turn = 0;
3. while(1){ C. while(1) {
4. if (lock1!=1)||(turn==0) D. if
(lock0!=1)||(turn==1)
5. break; } E. break;}
6. counter++; F. counter++;
7. lock0 = 0; G. lock1 = 0;

Question: You said in class if we mark all
shared variables as volatile in Peterson’s
mutual exclusion algorithm – still mutual
exclusion may be violated – due to volatile
write -> volatile read re-orderings. How
does the situation change – if I did not
mark the shared variables as volatile?

Answer: If the shared variables are not marked volatile and not protected by lock –
clearly there is no expectation of not having data races in the program.

However, if the shared variables are marked as volatile – one may have a misplaced
expectation that the program will work “correctly”. This is because you treat the Java
volatile variables as a substitute for locks.

This expectation is wrong. Locks ensure (i) atomicity of the code protected by lock (ii)
mutual exclusion, and (iii) visibility of the updates made in critical section once you
release lock. Note that volatile variables only ensure atomicity, and not mutual
exclusion.

4 1/25/2013

My question for you
Do the volatile variables in Java ensure state visibility? If I
make a volatile variable operation, after the operation is
the state change visible to all threads?

What do you think? If we follow the main property of
volatile variables – we can get to the answer! See next
slide and decide!!

5 1/25/2013

Volatile Variables
Consider any simple Java stmt, e.g., x=0

Translates to a sequence of bytecodes, not atomically executed.
One way of ensuring atomic execution in Java –

Mark variables as volatile.
reads/writes of volatile variables are atomic (directly update
global memory).

CS3211 2012-136

S
T
A
C
K

Thread
A

Heap (Global
Memory)

Thread
B

S
T
A
C
K

Normal var.
accesses

2

A quick teaser

Consider an atomic instruction flip --- always executed atomically. It flips a 0
to 1 and a 1 to 0. Suppose 2 processes are each executing the following code.
Initially lock == 0

/* Lock acquisition*/
while (flip(lock) != 1)

while (lock != 0)
{};{};
CRITICAL SECTION
/* Lock release */
lock = 0;

Is there any possible violation of mutual exclusion? Why or why not?

Answer to the teaser
/* Lock acquisition*/
while (flip(lock) != 1)

while (lock != 0)
{};
CRITICAL SECTION
/* Lock release */
lock = 0;

Process X Process Y
--
flip(lock) != 1
Outer loop exit (lock == 1)

flip(lock) != 1 (lock == 0)
lock ! = 0 (false)

Inner loop exit
flip(lock) != 1 (lock == 1)
Outer loop exit

CRITICAL SECTION CRITICAL SECTION

End of Warm-up exercises
Discussed in class, and posted after class as lecture
follow-up in IVLE.

CS3211 2012-139

What are we doing today?

Concepts: processes - units of sequential execution.

Models: finite state processes (FSP)
to model processes as sequences of actions.

labelled transition systems (LTS)

In this lecture, we are tie-ing up the following.

abe ed t a s t o syste s (S)
to analyse, display and animate behavior.

[Promela models we saw in the first lecture correspond
to finite state processes.]

Practice: Java threads [discussed in second lecture.]

10 CS3211 2012-13

Conceptually what is a process, is implemented as a Java thread.

Going back to Concurrency

Sequential program
(also use the term process)

Fundamental Constructs:

-> Prefixing of an action

Concurrent program
(Concurrent composition of
processes)

Parallel Composition

R l b li f ti

Fundamental Constructs:

11

| Choice

Iterative repetition

[These are the ones used in a
modeling language like
Promela or programming
language like Java]

Relabeling of action names
(while connecting processes,
connect the disparate set of
action names)

Hiding of actions
(internal to a process, not
visible to the concurrent
composition)

CS3211 2012-13

Modelling Processes

Models are described using state machines, known as
Labelled Transition Systems LTS. These are described
textually as finite state processes (FSP) and displayed
and analysed by the LTSA analysis tool.

♦ LTS - graphical form (state machines)

♦ FSP – textual form close to state machines

♦Promela – imperative textual form (closer to programming)

♦Java - programming language supporting multi-threading

12 CS3211 2012-13

Level of
details

3

Modeling Processes

A process is the execution of a sequential program. It is modeled as a
finite state machine which transits from state to state by executing a
sequence of atomic actions.

a light switch LTS

on

a light switch LTS

on off on off on off ……….
a sequence of actions
or trace

off

0 1

13 CS3211 2012-13

FSP - action prefix & recursion

SWITCH = OFF,
OFF = (on -> ON),
ON = (off-> OFF).

Repetitive behaviour uses recursion: on

off

0 1

Substituting to get a more succinct definition:

SWITCH = OFF,
OFF = (on ->(off->OFF)).

And again:

SWITCH = (on->off->SWITCH).

off

14 CS3211 2012-13

Concise equational
description of non-
terminating behavior.

In Promela (discussed earlier)
proctype switch()
{

bit on;

do
:: on =1; // equivalent to the action “on’’;

on = 0; // equivalent to the action “off”;
dod

}

Reasonably close to implementation.
Yet supported by formal analysis !!

15 CS3211 2012-13

FSP - action prefix

TRAFFICLIGHT = (red->orange->green->orange
-> TRAFFICLIGHT).

LTS generated :

FSP model of a traffic light :

Trace:

red orange green orange red orange green …

red orange green

orange

0 1 2 3

16 CS3211 2012-13

FSP - choice

If x and y are actions then (x-> P | y-> Q) describes a process
which initially engages in either of the actions x or y. After the first
action has occurred, the subsequent behavior is described by P if the
first action was x and Q if the first action was y.

Who makes the choice?

Is there a difference between input and output actions?

17 CS3211 2012-13

FSP - choice

DRINKS = (red->coffee->DRINKS
|blue->tea->DRINKS
).

LTS generated :

FSP model of a drinks machine :

blue

Input actions: red, blue
Output actions: coffee, tea

g

Possible traces?

red

coffee

tea

0 1 2

18 CS3211 2012-13

4

Spot Exercise

blue

19

red

coffee

tea

0 1 2
Traces??

CS3211 2012-13

Input and output
Input actions: red, blue
Output actions: coffee, tea

DRINKS = (red->coffee->DRINKS
|blue->tea->DRINKS
).

proctype DRINKS()
{

do
::ch_in? color;

if
:: color == red -> ch_out!coffee;
:: color == blue -> ch_out!tea;
fi

od
}

Promela description

20 CS3211 2012-13

Input and output are marked.

Non-deterministic choice
Process (x-> P | x -> Q) describes a process which engages in x and
then behaves as either P or Q.

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

toss

Tossing a
coin.

toss

heads

tails

0 1 2

Possible traces?

21 CS3211 2012-13

Another encoding
COIN = (toss->OUTCOME).
OUTCOME = (heads->COIN | tails->COIN).

t

heads
Possible traces ?

(as sequence of action labels)

0
toss

1

tails

22 CS3211 2012-13

Modeling failure in environment
How do we model an unreliable communication channel which accepts in
actions and if a failure occurs it produces no output, otherwise performs an out
action?

Use non-determinism...

in

CHAN = (in->CHAN
|in->out->CHAN
).

in

out

0 1

23

Non-determinism in the physical world modeled by non-
determinism in process description.

CS3211 2012-13

Single slot buffer that inputs a value in the range 0 to 3 and then outputs
that value. Value passing – brings in variables.

FSP - indexed processes and actions

BUFF = (in[i:0..3]->out[i]-> BUFF).

equivalent to

BUFF = (in[0]->out[0]->BUFF
|in[1]->out[1]->BUFF

or using a process parameter with default value:

|in[1]->out[1]->BUFF
|in[2]->out[2]->BUFF
|in[3]->out[3]->BUFF
).

BUFF(N=3) = (in[i:0..N]->out[i]-> BUFF).

24

Input and output actions are clarified at the initiative of the programmer.

CS3211 2012-13

5

FSP - constant & range declaration

index expressions to model
calculation:

in.0.0

in.0.1
in.1.0

in.1.1

0 1 2 3

const N = 1
range T = 0..N
range R = 0..2*N

SUM = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

out.0

out.1

out.2

25

Computation is described, apart from control flow!

CS3211 2012-13

FSP - guarded actions
The choice (when B x -> P | y -> Q) means that when the guard B
is true then the actions x and y are both eligible to be chosen,
otherwise if B is false then the action x cannot be chosen.

COUNT (N=3) = COUNT[0],COUNT (N 3) COUNT[0],
COUNT[i:0..N] = (when(i<N) inc->COUNT[i+1]

|when(i>0) dec->COUNT[i-1]
).

inc inc

dec

inc

dec dec

0 1 2 3

26 CS3211 2012-13

FSP - guarded actions

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

(when(i>0) tick->COUNTDOWN[i-1]
|when(i==0)beep->STOP
|stop->STOP
).

A countdown timer which beeps after N ticks, or can be stopped.

stop

start

p

tick

stop

tick

stop

tick beep
stop

0 1 2 3 4 5

27 CS3211 2012-13

Traces of COUNTDOWN
We will discuss the Java implementation later!!

stop

View it as a parameterized process, which will be implemented as a
Java class.

28

start

p

tick

stop

tick

stop

tick beep
stop

0 1 2 3 4 5

CS3211 2012-13

FSP - guarded actions

What is the following FSP process equivalent to?

const False = 0
P = (when (False) doanything->P).

29 CS3211 2012-13

FSP - process alphabets

The alphabet of a process is the set of actions in which it can engage.

Alphabet extension can be used to extend the implicit alphabet of a p p p
process:

Alphabet of WRITER is the set {write[0..3]}

WRITER = (write[1]->write[3]->WRITER)
+{write[0..3]}.

30 CS3211 2012-13

6

Exercise
In FSP, model a process FILTER, that exhibits the
following repetitive behavior:

inputs a value v between 0 and 5, but only outputs it if
v <= 2, otherwise it discards it.

31

FILTER = (in[v:0..5] -> DECIDE[v]),

DECIDE[v:0..5] = (?).

CS3211 2012-13

Organization

Modeling Processes (so far)

Implementing Processes in Java (now)

32 CS3211 2012-13

Implementing processes

Modeling processes as finite
state machines using FSP/LTS.

Implementing threads in
Java.

33 CS3211 2012-13

Implementing processes - the OS view

Data Code

OS Process

Stack Stack Stack

Descriptor

A (heavyweight) process in an operating system is represented by its
code, data and the state of the machine registers, given in a descriptor.
In order to support multiple (lightweight) threads of control, it has
multiple stacks, one for each thread.

Descriptor

Thread 1 Thread 2 Thread n

Stack Stack

Descriptor Descriptor

34 CS3211 2012-13

Threads and Processes
A Java Virtual Machine (JVM) usually runs as an OS
process.

The JVM runs a multi-threaded Java program which has
several threads. The thread scheduling may or may not be
done by the JVM.

A th d i t d b th k d ne h t i il t

35

A thread is created by the keyword new, somewhat similar to
the creation of other Java objects.

We have seen Java thread creation and starting in the lecture
of week 2 (last week’s lecture)

CS3211 2012-13

threads in Java
A Thread class manages a single sequential thread of control. Threads may be
created and deleted dynamically.

Thread

run()

The Thread class executes instructions from its
method run(). The actual code executed depends on
the implementation provided for run() in a derived
class.

run()

MyThread

run()

class MyThread extends Thread {
public void run() {

//......
}

}

36

Creating a thread object:
Thread a = new MyThread();

CS3211 2012-13

7

threads in Java
We often implement the run() method in a class not derived from Thread but from
the interface Runnable.

Runnable

run() public interfaceRunnable {
public abstractvoid run();

Thread
target

MyRun

run()

}

class MyRun implements Runnable{
public void run() {

//.....
}

}

37

Creating a thread object:
Thread b = new Thread(new MyRun());

Starting: b.start();
CS3211 2012-13

thread life-cycle in Java
An overview of the life-cycle of a thread as state transitions:

Created Alive

new Thread()

start()

start() causes the thread to call
its run() method.

Terminated

stop(), or
run() returns

The predicate isAlive() can be
used to test if a thread has been started
but not terminated. Once terminated, it
cannot be restarted.

38 CS3211 2012-13

thread alive states in Java
Once started, an alive thread has a number of substates :

yield()

Running

dispatch

start()

Runnable Non-Runnable
suspend()

resume()

stop(), or
run() returns

wait() also makes a Thread Non-Runnable, and
notify() Runnable

39 CS3211 2012-13

REVISIT: Previous week’s discussion on wait(), notify(), notifyAll()

Java thread lifecycle - an FSP
specification
THREAD = CREATED,
CREATED = (start ->RUNNING

|stop ->TERMINATED),
RUNNING = ({suspend,sleep}->NON_RUNNABLE

|yield ->RUNNABLE
|{stop,end} ->TERMINATED
|run ->RUNNING),

RUNNABLE = (suspend ->NON RUNNABLERUNNABLE = (suspend >NON_RUNNABLE
|dispatch ->RUNNING
|stop ->TERMINATED),

NON_RUNNABLE = (resume ->RUNNABLE
|stop ->TERMINATED),

TERMINATED = STOP.

40 CS3211 2012-13

Java thread lifecycle - an FSP
specification

start

stop suspend
sleep

yield

run

resume

0 1 2 3 4

end, run,
dispatch are not
methods of class
Thread.

States 0 to 4 correspond to CREATED, TERMINATED,
RUNNING, NON-RUNNABLE, and RUNNABLE respectively.

stop
end

stop

stop

suspend

dispatch

41 CS3211 2012-13

CountDown timer example

COUNTDOWN (N=3) = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] =

(when(i>0) tick->COUNTDOWN[i-1]
|when(i==0)beep->STOP
|stop->STOP
).

Implementation in Java?

42 CS3211 2012-13

8

CountDown timer - class diagram

Applet

init()

Runnable

CountDown

Threadcounter target

The class
NumberCanvas provides
the display canvas.

The class CountDown derives from Applet and contains the implementation of
the run() method which is required by Thread.

start()
stop()
run()
tick()
beep()

NumberCanvas

setvalue()

Thread

display

43 CS3211 2012-13

Countdown timer Implementation

Countdown is a class

The counter is itself a Thread within the Countdown class.

The numberCanvas is another class to make the implementation
more realistic – as if it is a canvas on which the counter value will

44

be displayed.
--- an instance of numberCanvas is modified inside the

methods of Countdown class.

CS3211 2012-13

CountDown class
public class CountDown extends Applet

implements Runnable {
Thread counter; int i;
final static int N = 10;
AudioClip beepSound, tickSound;
NumberCanvas display;

public void init() { }public void init() {...}
public void start() {...}
public void stop() {...}
public void run() {...}
private void tick() {...}
private void beep() {...}

}

45 CS3211 2012-13

CountDown class - start(), stop() and
run()

public void start() {
counter = new Thread(this);
i = N; counter.start();

}

public void stop() {
counter = null;

}

COUNTDOWN Model

start ->

stop ->

}

public void run() {
while(true) {
if (counter == null) return;
if (i>0) { tick(); --i; }
if (i==0) { beep(); return;}

}
}

COUNTDOWN[i] process
recursion as a while loop

when(i>0) tick -> CD[i-1]
when(i==0)beep -> STOP

STOP when run() returns

46 CS3211 2012-13

CountDown

counter threadnew Thread(this)

target run()

createdcounter.start()

init()

CountDown execution

47

target.run()

alive

terminated

tick()

beep()

CS3211 2012-13

CountDown

counter threadnew Thread(this)

createdcounter.start()

CountDown execution

start()
init()

48

stop() target.run()

counter=null

alive

terminated

tick()

tick()

CS3211 2012-13

9

Summary
Concepts

process - unit of concurrency, execution of a program

Models

LTS to model processes as state machines - sequences
of atomic actions

FSP t if iFSP to specify processes using

prefix “->”

choice ” | ”

recursion.

Practice

Java threads to implement processes.

Thread lifecycle - created, running, runnable, ….
49 CS3211 2012-13

Quick Follow-up Exercises
Describe the following as FSP processes, or in Promela or as Java threads.

0 1 2 3
hello converse

goodbye

0 1 2
arrive work

50

0 1 2

leave

0 1
2

weekday sleep

work

3
4

weekend
sleep

shop

CS3211 2012-13

Next week …

I am away.

Tutorial (Monday 4th Feb) as usual
Dr. Jooyong Lee will take my group, for next week only.

Lecture (Thursday 7th Feb) cancelled in next week.

CS3211 2012-1351

Concurrent Execution of
Processes and Threads

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2012-13

Reading material: Chapter 3 of Textbook.

52

So Far …

How to model individual processes?

Implementing such processes as Java threads.

Now

CS3211 2012-1353

Modeling composition of processes and their
interaction/communication.

Implementing such a composition as a multi-threaded Java program.

Definitions
Concurrency

Logically simultaneous processing.
Does not imply multiple processing
elements (PEs). Requires
interleaved execution on a single PE.

Parallelism

A

Time

B

C

Physically simultaneous processing.
Involves multiple PEs and/or
independent device operations.

Both concurrency and parallelism require controlled access to shared
resources . We use the terms parallel and concurrent interchangeably and
generally do not distinguish between real and pseudo-concurrent execution.

Time
C

B

A

54 CS3211 2012-13

10

3.1 Modeling Concurrency
How should we model process execution speed?

arbitrary speed

(we abstract away time)

How do we model concurrency?
arbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

What is the result?
provides a general model independent of scheduling (asynchronous
model of execution)

55 CS3211 2012-13

parallel composition - action
interleaving

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is the
parallel composition operator.

ITCH = (scratch->STOP).

think talk scratch
think scratch talk
scratch think talk

Possible traces as a
result of action
interleaving.

ITCH (scratch >STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

56 CS3211 2012-13

parallel composition - action
interleaving

2 states
3 states

ITCH

scratch

0 1
CONVERSE

think talk

0 1 2
scratch

scratch

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH 2 x 3 states

CONVERSE_ITCH
think

scratch

talk scratch

talk think

0 1 2 3 4 5

57 CS3211 2012-13

parallel composition - algebraic laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)

= (P||Q||R).

Clock radio example:
CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

LTS? Traces? Number of states?

58 CS3211 2012-13

Class Exercise
CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

LTS? Traces? Number of states?

CS3211 2012-1359

LTS? Traces? Number of states?

The components CLOCK and RADIO run
independently i.e. no communication.

modeling interaction - shared actions
If processes in a composition have actions in common, these
actions are said to be shared. Shared actions are the way
that process communication is modelled. While unshared
actions may be arbitrarily interleaved, a shared action must
be executed at the same time by all processes that
participate in the shared action

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

MAKER
synchronizes
with USER
when ready.

participate in the shared action.

LTS? Traces? Number of states?
60 CS3211 2012-13

11

Class Exercise
MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

LTS? Traces? Number of states?

CS3211 2012-1361

LTS? Traces? Number of states?

Need to consider the communication
via shared actions.

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use->used ->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

modeling interaction - handshake
A handshake is an action acknowledged by another:

3 states

3 states

3 x 3
?

Interaction
constrains
the overall
behaviour.

states?

4 states
make ready use

used

0 1 2 3

62 CS3211 2012-13

modeling interaction - multiple
processes

MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Multi-party synchronization:

makeA

makeB makeA ready assemble

used
makeB

0 1 2 3 4 5

63 CS3211 2012-13

composite processes
A composite process is a parallel composition of primitive
processes. These composite processes can be used in the
definition of further compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

Substituting the definition for MAKERS in FACTORY and applying the
commutative and associative laws for parallel composition results in the
original definition for FACTORY in terms of primitive processes.

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

64 CS3211 2012-13

process labeling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).
||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

An array of instances of the switch process:

a:SWITCH
a.on

a.off

0 1
b:SWITCH

b.on

b.off

0 1

65 CS3211 2012-13

process labeling by a set of prefix labels

{a1,..,ax}::P replaces every action label n in the alphabet of
P with the labels a1.n,…,ax.n. Further, every transition
(n->X) in the definition of P is replaced with the
transitions ({a1.n,…,ax.n} ->X).

Process prefixing is useful for modeling shared resources:
RESOURCE = (acquire->release->RESOURCE).
USER = (acquire->use->release->USER).

RESOURCE_SHARE = (a:USER || b:USER
|| {a,b}::RESOURCE).

66 CS3211 2012-13

12

process prefix labels for shared
resources

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE
a.acquire
b.acquire

Does the Resource ensure
that the user that acquires
the resource is the one to
release it?

a.release
b.release

0 1

67 CS3211 2012-13

process prefix labels for shared
resources

Does the model ensure that
the user that acquires the

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE
a.acquire
b.acquire

resource is the one to
release it?

a.release
b.release

0 1

RESOURCE_SHARE

a.acquire

b.acquire b.use

b.release

a.use

a.release

0 1 2 3 4

68 CS3211 2012-13

action relabeling

Relabeling functions are applied to processes to change the
names of action labels. The general form of the relabeling
function is:

/{newlabel_1/oldlabel_1,… newlabel_n/oldlabel_n}.

Relabeling to ensure that composed
processes synchronize on particular actions.

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

69 CS3211 2012-13

Client – Server (Port View)

Cli t S

call requestcall

CS3211 2012-1370

Client Server
wait reply

These “connections” hint at action relabeling.

Actions not mentioned in this diagram are internal to a process! While
they are not shared actions, they are still visible without explicit hiding.

reply

Action relabeling
CLIENT_SERVER = (CLIENT || SERVER)

/{call/request, reply/wait}.

CLIENT
call reply

0 1 2
SERVER

call service

0 1 2

requestwait

continue reply

CLIENT_SERVER call service reply

continue

0 1 2 3

71 CS3211 2012-13

Action relabeling - prefix labels

SERVERv2 = (accept.request
->service->accept.reply->SERVERv2).

CLIENTv2 = (call request

An alternative formulation of the client server system is
described below using qualified or prefixed labels:

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

72 CS3211 2012-13

13

action hiding - abstraction to reduce
complexity

When applied to a process P, the hiding operator \{a1…ax}
removes the action names a1…ax from the alphabet of P and
makes these concealed actions "silent". These silent actions
are labelled tau. Silent actions in different processes are not
shared.

When applied to a process P, the interface
operator @{a1…ax} hides all actions in the
alphabet of P not labelled in the set a1…ax.

Sometimes it is more convenient to specify the set of
labels to be exposed....

73 CS3211 2012-13

action hiding

USER = (acquire->use->release->USER)
\{use}.

USER = (acquire->use->release->USER)
@{acquire,release}.

The following definitions are equivalent:

{ q , }

acquire tau

release

0 1 2

Minimization removes
hidden tau actions to
produce an LTS with
equivalent observable
behavior. acquire

release

0 1

74 CS3211 2012-13

Class Exercise

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

CLIENT_SERVERv3 = ((CLIENT || SERVER)
/{ ll/ l / i }

CS3211 2012-1375

/{call/request, reply/wait}
)\{call, reply}

Construct the LTS for CLIENT_SERVERv3

structure diagrams

P a

b
Process P with
alphabet {a,b}.

P a b Qm
Parallel Composition

dc p
(P||Q) / {m/a,m/b,c/d}

P Qa

c dc

x xx

S

yx
Composite process
||S = (P||Q) @ {x,y}

76 CS3211 2012-13

structure diagrams
We use structure diagrams to capture the structure of a
model expressed by the fundamental operations:
parallel composition, relabeling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

||TWOBUF = ?

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

77 CS3211 2012-13

Do it in class

structure diagrams
Structure diagram for CLIENT_SERVER ?

CLIENT call request SERVERcall

replywait reply servicecontinue

Structure diagram for CLIENT_SERVERv2??

78 CS3211 2012-13

CLIENT_SERVER = (CLIENT || SERVER)
/{call/request, reply/wait}.

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

14

SERVERv2 = (accept.request
->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

CS3211 2012-1379

Structure diagram for CLIENT_SERVERv2 ?

CLIENTv2 call accept SERVERv2call

servicecontinue

Structure diagram for CLIENT_SERVERv3??

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

CLIENT_SERVERv3 = ((CLIENT || SERVER)
/{ ll/ l / i }

CS3211 2012-1380

/{call/request, reply/wait}
)\{call, reply}

Exercise: Can you now construct the Structure
diagram for CLIENT_SERVERv3??

Exercise
RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use

->printer.release->USER).

||PRINTER_SHARE
= (a:USER||b:USER||{a,b}::printer:RESOURCE).

Draw the state machine of the composed process defined above.

CS3211 2012-1381

p p

What do we gain from such diagrams?
A “port” view of a concurrent system.

It clearly marks the following information.

- the processes inside the system.

- the ports or input/output channels for each process.

CS3211 2012-1382

- the connections among the ports
[who talks to whom and exchanges what information?]

- the “external environment” for each process
[the other processes, consider the physical environment too!]

- visibility of actions to the external environment.

Multi-threaded Programs in Java
Concurrency in Java occurs when more than one thread is
alive. ThreadDemo has two threads which rotate displays.

83 CS3211 2012-13

ThreadDemo Example
Two threads in the program A, B

--- (do not forget the main thread of course)

Lifecycle of thread A, B
Running – display associated with it rotates (background = green)
Paused – Rotation stops (background = red)

Communication

CS3211 2012-1384

Thread A with main thread.
Thread B with main thread.

pause run,
rotate

pause

interrupt
interruptrun

0 1 2

15

The two descriptions
ROTATOR = PAUSED,
PAUSED = (run->RUN | pause->PAUSED

|interrupt->STOP),
RUN = (pause->PAUSED |{run,rotate}->RUN

|interrupt->STOP).

||THREAD_DEMO = (a:ROTATOR || b:ROTATOR)

/{stop/{a b} interrupt}

CS3211 2012-1385

pause run,
rotate

pause

interrupt
interruptrun

0 1 2

/{stop/{a,b}.interrupt}.

ThreadDemo – Structure Diagram

b:ROTATOR

a.run

a.pause

a.rotate

b.run

b.pause

b.rotate

THREAD_DEMO

a:ROTATOR
stop

Interpret
run, pause,
interrupt
as inputs,
rotate as
an output.

ROTATOR = PAUSED,
PAUSED = (run->RUN | pause->PAUSED

|interrupt->STOP),
RUN = (pause->PAUSED |{run,rotate}->RUN

|interrupt->STOP).

||THREAD_DEMO = (a:ROTATOR || b:ROTATOR)

/{stop/{a,b}.interrupt}.

86 CS3211 2012-13

Rotator class

class Rotator implements Runnable {

public void run() {
try {

while(true) ThreadPanel.rotate();
} catch(InterruptedException e) {}

}
}}

Rotator implements the runnable interface, calling
ThreadPanel.rotate() to move the display.

run()finishes if an exception is raised by Thread.interrupt().

87 CS3211 2012-13

ThreadPanel class
public class ThreadPanel extends Panel {

// construct display with title and segment color c
public ThreadPanel(String title, Color c) {…}

// rotate display of currently running thread 6 degrees
// return value not used in this example
public static boolean rotate()

throws InterruptedException {…}

ThreadPanel
manages the display
and control buttons for
a thread.

Calls to rotate()
are delegated to
DisplayThreadp p

// create a new thread with target r and start it running
public void start(Runnable r) {

thread = new DisplayThread(canvas,r,…);
thread.start();

}

// stop the thread using Thread.interrupt()
public void stop() {thread.interrupt();}

}

DisplayThread.

Threads are created by
the start() method,
and terminated by the
stop() method.

88 CS3211 2012-13

ThreadDemo class
public class ThreadDemo extends Applet {
ThreadPanel A; ThreadPanel B;

public void init() {
A = new ThreadPanel("Thread A",Color.blue);
B = new ThreadPanel("Thread B",Color.blue);
add(A); add(B);

}
ThreadDemo creates two

public void start() {
A.start(new Rotator());
B.start(new Rotator());

}

public void stop() {
A.stop();
B.stop();

}
}

ThreadPanel displays
when initialized and two
threads when started.

ThreadPanel is used
extensively in later
demonstration programs.

89 CS3211 2012-13

Summary
Concepts

concurrent processes and process interaction

Models

Asynchronous (arbitrary speed) & interleaving (arbitrary order).

Parallel composition as a finite state process with action p p
interleaving.

Process interaction by shared actions.

Process labeling and action relabeling and hiding.

Structure diagrams

Practice
Multiple threads in Java.

90 CS3211 2012-13

16

Question asked after Lecture 3 of
CS 3211

Abhik Roychoudhury
National University of Singapore

Q. From post-it note
If JVM is running inside one OS process, are the threads
of a Java program truly parallel?
Answer

The threads will be time-shared. At any point, you can assume
that one thread is scheduled to run. There might be other
th d hi h h d l bl b t l i i Thi threads which are schedulable – but only one is running. This
corresponds to the sub-states of the Alive state in the thread
life cycle discussed in today’s lecture.

Q. Concurrency and parallelism

Why interleaved execution simulates the parallel behavior
irrespective of processor speeds?
Answer: Consider two processes

A = a -> A
B = b -> B
If they are running in two processors a could finish before b,
and vice-versa.
This captured by two interleavings (global traces)

a -> b -> …
b -> a -> …

Q. Reasoning from per-process code

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE
a.acquire
b.acquire

a.release
b.release

0 1

1. From the RESOURCE process, we can see that after an acquire action, a
release action must be executed, before another acquire action can happen.

2. We can also see that a.acquire cannot be immediately followed by b.release
in the RESOURCE process --- since b.release is a shared action and for it to
take place in the b::USER --- there should have been b.acquire prior to it

This is an example discussed in
today’s class.

Important note
While doing multi-threaded programming

We are often resorting to such per-process reasoning.
It would be nice to have a global state machine and perform
verification – but realistically this is often not done.
For this reason, it is important for the programmer to at least
do such per-process reasoning (or some limited reasoning
about communication) while writing the code.

Q. Atomic actions
You said

RADIO = on -> off -> RADIO
Here on, off are atomic actions. How do you know?

Answer:
It is the other way round. Whatever is atomic, I show as an action in
the process equations.
Now in reality, the on action could be a method call in Java, say on(), y, J , y (),
which is atomically executed because it is written as a synchronized
method.

synchronized on(){ …
This also shows some of the linkage between process equations and
multi-threaded Java code.

