
1

Safety and Liveness

Abhik Roychoudhury
CS 3211

National University of Singapore

Reading material: Chapter 7 of Textbook.

CS3211 2012-13 by Abhik1

safety & liveness properties

Concepts: properties: true for every possible
execution

safety: nothing bad happens
liveness: something good eventually happens

Models: safety h bl ERROR/STOP st tModels: safety: no reachable ERROR/STOP state
progress: an action is eventually executed

fair choice and action priority

Practice: threads and monitors

Aim: property satisfaction.

CS3211 2012-13 by Abhik2

Programs, Properties

Program Property Program
(Processes)

Property
(process)

CS3211 2012-13 by Abhik3

Model Checker
(SPIN)

Yes No

Witness violation of property –
violating excution.

A desired property is supposed to
hold true for all the concurrent
program executions.

So, what is a property?
An attribute of the program that is true for every possible
execution of the program.
Have we seen any properties yet, in our discussion?

Yes, deadlocks – discussed last week
The property you want your concurrent program to preserve is the
b f d dl k !absence of deadlocks!

Mutual exclusion – discussed all through the lectures!

Both no-deadlock and mutual exclusion are special cases
of safety properties – something “bad” will not happen!

No deadlock will ever happen.
No two processes will ever be in the critical section.

CS3211 2012-13 by Abhik4

Liveness properties
Something “good” will eventually happen.
The most common liveness property in seq. programs

The program will eventually terminate!

For concurrent programs, liveness properties can be of
the form

Request for shared resources are eventually granted.

So, what is new in today’s lecture’s discussion?
We have been discussing properties like mutual exclusion all
along. Today’s discussion makes it more systematic and shows
mutual excl. as a special case of a larger class of properties!

CS3211 2012-13 by Abhik5

♦ STOP or deadlocked state (no outgoing transitions)

♦ ERROR process (-1) to detect erroneous behaviour

7.1 Safety

ACTUATOR

A safety property asserts that nothing bad happens.

command
ACTUATOR

=(command->ACTION),
ACTION

=(respond->ACTUATOR
|command->ERROR).

Trace to ERROR:
command
command

command

respond

-1 0 1

CS3211 2012-13 by Abhik6

2

Safety Property Specification
Either, mark the violation of the safety property as
“Error” states in the concurrent system S

Checking the safety property then amounts to checking that
the “error” states are never reached.

Instead, the safety property itself could be described as a
 P (i i)process P (using our process equations).

Checking for property violation amounts to finding a trace of S
that does not satisfy P.

CS3211 2012-13 by Abhik7

Safety - property specification
♦ERROR conditions state what is not required (cf. exceptions).

♦ in complex systems, it is usually better to specify safety properties
by stating directly what is required.

property SAFE_ACTUATOR
(d

command

= (command
-> respond
-> SAFE_ACTUATOR
).respond

command

respond

-1 0 1

A violation of this property is a trace which will lead to -1. We have to check
whether such a trace is possible in the concurrent system being checked.

CS3211 2012-13 by Abhik8

Safety properties

property POLITE
=

Property that it is polite to knock before entering a room.

Traces: knock enter enter

knock knock

(knock->enter->POLITE) knock= (knock >enter >POLITE).

In all states, all
the actions in the
alphabet of a
property are
eligible choices.

enter

knock

enter

-1 0 1

CS3211 2012-13 by Abhik9

Safety properties

Safety property P defines a deterministic
process that asserts that any trace including
actions in the alphabet of P, is accepted by P.

Thus, if P is composed with S, then traces of
actions in the alphabet of S ∩ alphabet of Pactions in the alphabet of S ∩ alphabet of P
must also be valid traces of P, otherwise ERROR
is reachable.

Transparency of safety properties:
Since all actions in the alphabet of a property are eligible choices,
composing a property with a set of processes does not affect their
correct behavior. However, if a behavior can occur which violates
the safety property, then ERROR is reachable. Properties must
be deterministic to be transparent.

CS3211 2012-13 by Abhik10

Safety properties
♦ How can we specify that some action, disaster,
never occurs?

disaster

-1 0

disaster

A safety property must be specified so as to
include all the acceptable, valid behaviors in its
alphabet.

CS3211 2012-13 by Abhik11

Safety - mutual exclusion
LOOP = (mutex.down -> enter -> exit

-> mutex.up -> LOOP).
SEMADEMO = (p[1..3]:LOOP

||{p[1..3]}::mutex:SEMA(1)).

SEMA(v) = (up -> SEMA[v+1]

| h (0) d SEMA[1]| when (v > 0) down ->SEMA[v-1]

)

property MUTEX =(p[i:1..3].enter
-> p[i].exit
-> MUTEX).

CHECK = (SEMADEMO || MUTEX).

CS3211 2012-13 by Abhik12

3

Safety - mutual exclusion
LOOP = (mutex.down -> enter -> exit

-> mutex.up -> LOOP).
SEMADEMO = (p[1..3]:LOOP

||{p[1..3]}::mutex:SEMA(1)).

How do we property MUTEX =(p[i:1 3] enterHow do we
check that this
does indeed
ensure mutual
exclusion in
the critical
section?

property MUTEX =(p[i:1..3].enter
-> p[i].exit
-> MUTEX).

CHECK = (SEMADEMO || MUTEX).

What happens if semaphore is initialized to 2?

CS3211 2012-13 by Abhik13

Semphore - continued
Semaphore initialized to 2.

LOOP = (mutex.down -> enter -> exit
-> mutex.up -> LOOP).

SEMADEMO = (p[1..3]:LOOP
||{p[1..3]}::mutex:SEMA(1)).

Violation of MUTEX
p.1.mutex.down,p.1.enter, p.2.mutex.down, p.2.enter

SEMA(v) = (up -> SEMA[v+1]

| when (v > 0) down ->SEMA[v-1]

)

CS3211 2012-13 by Abhik14

7.2 Single Lane Bridge problem

A bridge over a river is only wide enough to permit a single lane of
traffic. Consequently, cars can only move concurrently if they are
moving in the same direction. A safety violation occurs if two cars
moving in different directions enter the bridge at the same time.

CS3211 2012-13 by Abhik15

Single Lane Bridge - model
♦ Events or actions of interest?

enter and exit
♦ Identify processes.

cars and bridge
♦ Identify properties.

property
ONEWAY

CARS

oneway
♦Define each process

and interactions
(structure).

red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

Single
Lane
Bridge

CS3211 2012-13 by Abhik16

Single Lane Bridge - CARS model

const N = 3 // number of each type of car
range T = 0..N // type of car count
range ID= 1..N // car identities

CAR = (enter->exit->CAR).

To model the fact that cars cannot pass each
other on the bridge, we model a CONVOY of cars
in the same direction. We will have a red and a blue
convoy of up to N cars for each direction:

||CARS = (red:CONVOY || blue:CONVOY).

CS3211 2012-13 by Abhik17

Single Lane Bridge - CONVOY model
NOPASS1 = X[1], //preserves entry order
X[i:ID] = ([i].enter-> X[i%N+1]).
NOPASS2 = Y[1], //preserves exit order
Y[i:ID] = ([i].exit-> Y[i%N+1]).

CONVOY = ([ID]:CAR||NOPASS1||NOPASS2).

Permits 1.enter 2.enter 1.exit 2.exit
but not 1.enter 2.enter 2.exit 1.exit

ie. no overtaking.

1.enter 2.enter

3.enter

0 1 2

1.exit 2.exit

3.exit

0 1 2

CS3211 2012-13 by Abhik18

4

Single Lane Bridge - BRIDGE model

BRIDGE = BRIDGE[0][0], // initially empty
BRIDGE[nr:T][nb:T] = //nr is the red count, nb the blue

(when(nb==0)

Cars can move concurrently on the bridge only if in the same direction. The
bridge maintains counts of blue and red cars on the bridge. Red cars are
only allowed to enter when the blue count is zero and vice-versa.

(()
red[ID].enter -> BRIDGE[nr+1][nb] //nb==0
| red[ID].exit -> BRIDGE[nr-1][nb]

|when (nr==0)
blue[ID].enter-> BRIDGE[nr][nb+1] //nr==0

| blue[ID].exit -> BRIDGE[nr][nb-1]
).

Even when 0, exit actions permit the
car counts to be decremented.

CS3211 2012-13 by Abhik19

Single Lane Bridge - safety property
ONEWAY

property ONEWAY =(red[ID].enter -> RED[1]
|blue.[ID].enter -> BLUE[1]
),

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly for blue
cars. When the bridge is empty, either a red or a blue car may enter.

),
RED[i:ID] = (red[ID].enter -> RED[i+1]

|when(i==1)red[ID].exit -> ONEWAY
|when(i>1) red[ID].exit -> RED[i-1]
), //i is a count of red cars on the bridge

BLUE[i:ID]= (blue[ID].enter-> BLUE[i+1]
|when(i==1)blue[ID].exit -> ONEWAY
|when(i>1)blue[ID].exit -> BLUE[i-1]
). //i is a count of blue cars on the bridge

CS3211 2012-13 by Abhik20

Single Lane Bridge - model analysis

Is the safety
property ONEWAY
violated?

SingleLaneBridge = (CARS|| BRIDGE||ONEWAY).

No deadlocks/errors

Trace to property violation in ONEWAY:
red.1.enter
blue.1.enter

Without the
BRIDGE
contraints, is the
safety property
ONEWAY violated?

SingleLaneBridge1 = (CARS||ONEWAY).

CS3211 2012-13 by Abhik21

Single Lane Bridge - implementation in
Java

Runnable

RedCar BlueCar

controlcontrol
Bridge

displaydisplay

ThreadApplet

Single
Lane
Bridge

blue,
red

Active entities (cars) are
implemented as threads.

Passive entity (bridge) is
implemented as a monitor.

BridgeCanvas enforces no
overtaking.

BridgeCanvas

Safe
Bridge

CS3211 2012-13 by Abhik22

Single Lane Bridge - BridgeCanvas
An instance of BridgeCanvas class is created by SingleLaneBridge applet -
ref is passed to each newly created RedCar and BlueCar object.

class BridgeCanvas extends Canvas {

public void init(int ncars) {…} //set number of cars

//move red car with the identity i a step
//returns true for the period on bridge, from just before until just after
public boolean moveRed(int i)public boolean moveRed(int i)

throws InterruptedException{…}

//move blue car with the identity i a step
//returns true for the period on bridge, from just before until just after
public boolean moveBlue(int i)

throws InterruptedException{…}

public synchronized void freeze(){…}// freeze display
public synchronized void thaw(){…} //unfreeze display

}

CS3211 2012-13 by Abhik23

Single Lane Bridge - RedCar
class RedCar implements Runnable {

BridgeCanvas display; Bridge control; int id;

RedCar(Bridge b, BridgeCanvas d, int id) {
display = d; this.id = id; control = b;

}

public void run() {
try {

while(true) {
while (!display.moveRed(id)); // not on bridge
control.redEnter(); // request access to bridge
while (display.moveRed(id)); // move over bridge
control.redExit(); // release access to bridge

}
} catch (InterruptedException e) {}

}
}

Similarly for the BlueCar

CS3211 2012-13 by Abhik24

5

Single Lane Bridge - class Bridge

class Bridge {
synchronized void redEnter()

throws InterruptedException {}
synchronized void redExit() {}
synchronized void blueEnter()

throws InterruptedException {}
synchronized void blueExit() {}

}}

Class Bridge provides a null implementation of the
access methods i.e. no constraints on the access to
the bridge.

Result………… ?

CS3211 2012-13 by Abhik25

Single Lane Bridge

This bridge code is not safe.
We now present the SafeBridge implementation.

CS3211 2012-13 by Abhik26

Single Lane Bridge - SafeBridge
class SafeBridge extends Bridge {

private int nred = 0; //number of red cars on bridge
private int nblue = 0; //number of blue cars on bridge

// Monitor Invariant: nred≥0 and nblue≥0 and
// not (nred>0 and nblue>0)

synchronized void redEnter()
throws InterruptedException {throws InterruptedException {

while (nblue>0) wait();
++nred;

}

synchronized void redExit(){
--nred;

if (nred==0)notifyAll();
}

This is a direct
translation from
the BRIDGE
model.

CS3211 2012-13 by Abhik27

synchronized void blueEnter()
throws InterruptedException {

while (nred>0) wait();
++nblue;

}

synchronized void blueExit(){
--nblue;
if (nblue==0)notifyAll();

Single Lane Bridge - SafeBridge

() y ();
}

}

To avoid unnecessary thread switches, we use conditional notification
to wake up waiting threads only when the number of cars on the bridge
is zero i.e. when the last car leaves the bridge.

But does every car eventually get an opportunity to
cross the bridge? This is a liveness property.

CS3211 2012-13 by Abhik28

7.3 Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good
eventually happens.

Single Lane Bridge: Does every car eventuallySingle Lane Bridge: Does every car eventually
get an opportunity to cross the bridge?

ie. make PROGRESS?

A progress property asserts that it is always the case
that a specific action is eventually executed. Progress
is the opposite of starvation, the name given to a
concurrent programming situation in which a specific
action is never executed.

CS3211 2012-13 by Abhik29

Progress properties - fair choice

COIN =(toss->heads->COIN
| il COIN)

If a coin were tossed an
infinite number of times

Fair Choice: If a choice over a set of transitions is
executed infinitely often, then every transition in
the set will be executed infinitely often.

|toss->tails->COIN).infinite number of times,
we would expect that
heads would be chosen
infinitely often and that
tails would be chosen
infinitely often.

This requires Fair Choice

toss

toss

heads

tails

0 1 2

CS3211 2012-13 by Abhik30

6

Progress properties

progress P = {a1,a2..an} defines a progress
property P which asserts that in an infinite
execution of a target system, at least one of the
actions a1,a2..an will be executed infinitely often.

COIN system: progress HEADS = {heads} ?

progress TAILS = {tails} ?

No progress violations detected
(assuming fair choice).

CS3211 2012-13 by Abhik31

pick

pick toss

heads

toss
toss

tails

0 1 2 3 4 5

Progress properties
Suppose that there were two possible coins that
could be picked up:
a trick coin
and a regular
coin……

heads tails
heads

TWOCOIN = (pick->COIN|pick->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN|toss->tails->COIN).

TWOCOIN: progress HEADS = {heads} ?

progress TAILS = {tails} ?

CS3211 2012-13 by Abhik32

Further explanation
TWOCOIN: progress HEADS = {heads} YES

progress TAILS = {tails} ? NO

progress {heads}
case 1: if the trick coin is picked, only heads is executed
case 2: if the normal coin is picked heads is still executed infinitely often

CS3211 2012-13 by Abhik33

case 2: if the normal coin is picked, heads is still executed infinitely often
assuming fair choice being exerted on the coin toss.

progress {tails}
case 1: if trick coin is picked, tails is never executed, violation of progress.

Note that we consider both possibilities of trick coin or normal coin being
picked --- this is a choice which is made only once, not infinitely many times.

Progress properties

progress HEADS = {heads}

progress TAILS {tails}

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

progress HEADS or TAILS = {heads,tails} ?

progress TAILS = {tails}

Violation of progress
Progress violation: TAILS
Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads}

CS3211 2012-13 by Abhik34

Progress analysis
A terminal set of states is one in which every state is reachable from
every other state in the set via one or more transitions, and there is no
transition from within the set to any state outside the set.

pick

pick toss
toss

toss

Terminal sets
for TWOCOIN:

{1 2} and {3 4 5}

heads tails
heads

0 1 2 3 4 5
{1,2} and {3,4,5}

Given fair choice, each terminal set represents an execution in which each
action used in a transition in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is not
used in the set cannot occur infinitely often in all executions of the
system - and hence represents a potential progress violation!

CS3211 2012-13 by Abhik35

Progress analysis
A progress property is violated if analysis finds a
terminal set of states in which none of the
progress set actions appear.

progress TAILS = {tails} in {1,2}

Default: given fair choice for every action in the alphabet of the target

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

Default
analysis for
TWOCOIN?

CS3211 2012-13 by Abhik36

Default: given fair choice, for every action in the alphabet of the target
system, that action will be executed infinitely often. This is equivalent to
specifying a separate progress property for every action.

7

Progress analysis
Progress violation for actions:
{pick}
Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads, tails}

Progress violation for actions:

Default analysis for
TWOCOIN: separate
progress property for
every action.

and
g

{tails}
Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads}

If the default holds, then every other progress property holds i.e.
every action is executed infinitely often and system consists of a
single terminal set of states.

pick

pick toss

heads

toss
toss

tails
heads

0 1 2 3 4 5

CS3211 2012-13 by Abhik37

Progress - single lane bridge
The Single Lane Bridge
implementation can
permit progress
violations.
However, if default
progress analysis is
applied to the model
then no violations are

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}
No progress violations detected.

then no violations are
detected!

Why not?

3838 CS3211 2012-13 by Abhik

Why no progress violation is detected?
Fair choice means that eventually every possible execution occurs,
including those in which cars do not starve. To detect progress
problems we must check under adverse conditions. We superimpose
some scheduling policy for actions, which models the situation in
which the bridge is congested.

CS3211 2012-13 by Abhik39

So, for every execution trace, there does not exist a progress violation.

However, under certain scenarios, such as for a heavily congested bridge,
there exists a violation of progress.

So, we need some mechanism to model “heavily congested bridge”
--- prioritize car entry over car exit
--- need some mechanism for prioritizing outgoing actions from a state.

Progress - action priority
Action priority expressions describe scheduling properties:

C = (P||Q)<<{a1,…,an} specifies a composition in
which the actions a1,..,an have higher priority than any
other action in the alphabet of P||Q including the
silent action tau. In any choice in this system which
has one or more of the actions a1,..,an labeling a
transition, the transitions labeled with lower priority

i di d d

High
Priority
(“<<”)

actions are discarded.

C = (P||Q)>>{a1,…,an} specifies a composition in
which the actions a1,..,an have lower priority than any
other action in the alphabet of P||Q including the
silent action tau. In any choice in this system which
has one or more transitions not labeled by a1,..,an, the
transitions labeled by a1,..,an are discarded.

Low
Priority
(“>>”)

CS3211 2012-13 by Abhik40

Progress - action priority

NORMAL =(work->play->NORMAL
|sleep->play->NORMAL).

work

sleep

play

play

0 1 2

work

Action priority simplifies the resulting LTS by
discarding lower priority actions from choices.

HIGH =(NORMAL)<<{work}.

LOW =(NORMAL)>>{work}.

work

play

0 1

sleep

play

0 1

CS3211 2012-13 by Abhik41

7.4 Congested single lane bridge
progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

BLUECROSS - eventually one of the blue cars will be able to enter
REDCROSS - eventually one of the red cars will be able to enter

Congestion using action priority?
Could give red cars priority over blue (or vice versa) ? In
practice neither has priority over the other.
Instead we merely encourage congestion by lowering the
priority of the exit actions of both cars from the bridge.

CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

Progress Analysis ? LTS?
CS3211 2012-13 by Abhik42

8

Congested bridge model

0 1 2
blue.1.enter

blue.1.exit

red.1.enter

red.1.exit

1 red car
1 blue car

2 red cars
2 bl

CS3211 2012-13 by Abhik43

0 1
blue.1.enter

2
blue.2.enter

3
blue.1.exit

4
blue.1.enterblue.2.exit

1 2
red.2.enter

3
red.1.exit

4
red.1.enter

red.2.exit

red.1.enter 2 blue cars

congested single lane bridge model
Progress violation: BLUECROSS
Path to terminal set of states:

red.1.enter
red.2.enter

Actions in terminal set:
{red.1.enter, red.1.exit, red.2.enter, red.2.exit,
red.3.enter, red.3.exit}

This corresponds
with the
observation that,
with more than
one car, it is
possible that
whichever color
car enters the Progress violation: REDCROSS

Path to terminal set of states:
blue.1.enter
blue.2.enter

Actions in terminal set:
{blue.1.enter, blue.1.exit, blue.2.enter, blue.2.exit,
blue.3.enter, blue.3.exit}

car enters the
bridge first will
continuously
occupy the bridge
preventing the
other color from
ever crossing.

CS3211 2012-13 by Abhik44

congested single lane bridge model

red.1.enter

blue.1.enterblue.2.enterblue.1.exitblue.1.enter red.2.enter red.1.exit red.1.enter

CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

blue.2.exit red.2.exit

0 1 2 3 4 5 6 7 8

Will the results be the same if we model congestion by giving car entry
to the bridge high priority?

Can congestion occur if there is only one car moving in each direction?

CS3211 2012-13 by Abhik45

Progress - revised single lane bridge
model

The bridge needs to know whether or not cars are
waiting to cross.

Modify CAR:
CAR = (request->enter->exit->CAR).

Modify BRIDGE:Modify BRIDGE:

Red cars are only allowed to enter the bridge if
there are no blue cars on the bridge and there
are no blue cars waiting to enter the bridge.

Blue cars are only allowed to enter the bridge if
there are no red cars on the bridge and there are
no red cars waiting to enter the bridge.

CS3211 2012-13 by Abhik46

Progress - revised single lane bridge
model

/* nr– number of red cars on the bridge wr – number of red cars waiting to enter
nb– number of blue cars on the bridge wb – number of blue cars waiting to enter

*/
BRIDGE = BRIDGE[0][0][0][0],
BRIDGE[nr:T][nb:T][wr:T][wb:T] =
(red[ID].request -> BRIDGE[nr][nb][wr+1][wb]
|when (nb==0 && wb==0)

d[ID] BRIDGE[1][b][1][b]red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb]
|red[ID].exit -> BRIDGE[nr-1][nb][wr][wb]
|blue[ID].request -> BRIDGE[nr][nb][wr][wb+1]
|when (nr==0 && wr==0)

blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1]
|blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb]
).

OK now?

CS3211 2012-13 by Abhik47

Progress - analysis of revised single lane
bridge model

Trace to DEADLOCK:
red.1.request
red.2.request
red.3.request
blue.1.request
blue.2.request
blue.3.request

The trace is the scenario in
which there are cars
waiting at both ends, and
consequently, the bridge
does not allow either red or
blue cars to enter.

S luti n?Solution?

Introduce some asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable (bt) which breaks the
deadlock by indicating whether it is the turn of blue cars or red cars
to enter the bridge.

Arbitrarily set bt to true initially giving blue initial precedence.

CS3211 2012-13 by Abhik48

9

Progress - 2 nd revision of single lane
bridge model

const True = 1
const False = 0
range B = False..True
/* bt - true indicates blue turn, false indicates red turn */
BRIDGE = BRIDGE[0][0][0][0][True],
BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] =
(red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]

Analysis ?

|when (nb==0 && (wb==0||!bt))
red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]

|red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]
|blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]
|when (nr==0 && (wr==0||bt))

blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]
|blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb][False]
).

CS3211 2012-13 by Abhik49

Revised single lane bridge
implementation - FairBridge

class FairBridge extends Bridge {
private int nred = 0; //count of red cars on the bridge
private int nblue = 0; //count of blue cars on the bridge
private int waitblue = 0; //count of waiting blue cars
private int waitred = 0; //count of waiting red cars
private boolean blueturn = true;

synchronized void redEnter()
throws InterruptedException {

++waitred;
while (nblue>0||(waitblue>0 && blueturn)) wait();
--waitred;
++nred;

}

synchronized void redExit(){
--nred;
blueturn = true;
if (nred==0)notifyAll();

}

This is a direct
translation from
the model.

CS3211 2012-13 by Abhik50

Revised single lane bridge
implementation - FairBridge

synchronized void blueEnter(){
throws InterruptedException {

++waitblue;
while (nred>0||(waitred>0 && !blueturn)) wait();
--waitblue;
++nblue;

}
synchronized void blueExit(){

nblue;--nblue;
blueturn = false;
if (nblue==0) notifyAll();

}
}

Note that we did not need to introduce a new request method inside the
monitor representing the bridge. The existing enter methods can be
modified to increment a ``waiting count” before testing whether or not
the caller can access the bridge.

CS3211 2012-13 by Abhik51

Results from 2nd Revision of Bridge
No deadlocks.
Progress requirements met in presence of congestion

Both red and blue cars waiting to enter the single lane bridge.

CS3211 2012-13 by Abhik52

7.5 Readers and Writers

A shared database is accessed by two kinds of processes. Readers
execute transactions that examine the database while Writers both
examine and update the database. A Writer must have exclusive access
to the database; any number of Readers may concurrently access it.

CS3211 2012-13 by Abhik53

readers/writers model
♦ Events or actions of interest?

acquireRead, releaseRead, acquireWrite,
releaseWrite

♦ Identify processes.
Readers, Writers & the RW_Lock

♦ Identify properties.
RW_Safe
RW_Progress

♦Define each process
and interactions
(structure).

writer[1..Nwrite]:
WRITER

reader[1..Nread]:
READER

READERS
_WRITERS acquireRead acquireWrite

READWRITELOCK

releaseRead releaseWrite

CS3211 2012-13 by Abhik54

10

readers/writers model - READER &
WRITER

set Actions =
{acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)
+ Actions
\ {examine}.

WRITER = (acquireWrite->modify->releaseWrite->WRITER)
+ Actions+ Actions
\ {modify}.

Alphabet extension is used to ensure that the other access actions
are known to the process.

Action hiding is used as actions examine and modify are not
relevant for access synchronisation.

CS3211 2012-13 by Abhik55

readers/writers model - RW_LOCK

const False = 0 const True = 1
range Bool = False..True
const Nread = 2 // Maximum readers
const Nwrite= 2 // Maximum writers

RW_LOCK = RW[0][False],
RW[readers:0..Nread][writing:Bool] =

The lock
maintains a
count of the
number of
readers, and a
Boolean for
the writers.RW[readers:0..Nread][writing:Bool]

(when (!writing)
acquireRead -> RW[readers+1][writing]

|releaseRead -> RW[readers-1][writing]
|when (readers==0 && !writing)

acquireWrite -> RW[readers][True]
|releaseWrite -> RW[readers][False]
).

.

CS3211 2012-13 by Abhik56

readers/writers model - safety
property SAFE_RW
= (acquireRead -> READING[1]

|acquireWrite -> WRITING
),

READING[i:1..Nread]
= (acquireRead -> READING[i+1]

|when(i>1) releaseRead -> READING[i-1]
|when(i==1) releaseRead -> SAFE RW| () _
),

WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the safety property……

READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ? LTS?
CS3211 2012-13 by Abhik57

readers/writers model
An ERROR occurs if a
reader or writer is badly
behaved (release before
acquire or more than two
readers).

We can now compose the
READWRITELOCK with
READER and WRITER

acquireRead

releaseRead

acquireWrite

releaseWrite

releaseRead

releaseWrite

acquireRead

releaseRead

releaseRead

-1 0 1 2 3

READER and WRITER
processes according to our
structure… …

READERS_WRITERS
= (reader[1..Nread] :READER

|| writer[1..Nwrite]:WRITER
||{reader[1..Nread],

writer[1..Nwrite]}::READWRITELOCK).

Safety
and
Progress
Analysis ?

releaseWrite

acquireRead
releaseWrite

CS3211 2012-13 by Abhik58

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

readers/writers - progress

WRITE - eventually one of the writers will acquireWrite
READ - eventually one of the readers will acquireRead

Adverse conditions using action priority?

RW_PROGRESS = READERS_WRITERS
>>{reader[1..Nread].releaseRead,

writer[1..Nwrite].releaseWrite}.

Progress Analysis ? LTS?

g p y
we lower the priority of the release actions for both
readers and writers.

CS3211 2012-13 by Abhik59

RECAP: Progress - action priority
Action priority expressions describe scheduling properties:

C = (P||Q)<<{a1,…,an} specifies a composition in
which the actions a1,..,an have higher priority than any
other action in the alphabet of P||Q including the
silent action tau. In any choice in this system which
has one or more of the actions a1,..,an labeling a
transition, the transitions labeled with lower priority

i di d d

High
Priority
(“<<”)

actions are discarded.

C = (P||Q)>>{a1,…,an} specifies a composition in
which the actions a1,..,an have lower priority than any
other action in the alphabet of P||Q including the
silent action tau. In any choice in this system which
has one or more transitions not labeled by a1,..,an, the
transitions labeled by a1,..,an are discarded.

Low
Priority
(“>>”)

CS3211 2012-13 by Abhik60

11

readers/writers model - progress
Progress violation: WRITE
Path to terminal set of states:

reader.1.acquireRead
Actions in terminal set:
{reader.1.acquireRead, reader.1.releaseRead,
reader.2.acquireRead, reader.2.releaseRead}

Writer
starvation:
The number
of readers
never drops
to zero.

reader.1.acquireRead

reader.2.acquireRead

writer.1.acquireWrite

writer.2.acquireWrite

writer.2.releaseWrite

writer.1.releaseWrite

reader.1.acquireRead

reader.1.releaseRead

reader.2.releaseRead

reader.2.acquireRead

0 1 2 3 4 5

CS3211 2012-13 by Abhik61

Progress violation detected
When release actions have low priority

Readers/writers are always hungry

What is the exact scenario
Readers access database and # of readers remains non-zero
Writers are starved out

Do we have a progress violation where readers starve?
No, under fair choice!!

Either reader or writer accesses database (state 0 in previous slide)
If writer chosen, it must release after it acquires, and we come back to
state 0.
Readers cannot be permanently starved out at state 0, if we have fair
choice for outgoing actions.

CS3211 2012-13 by Abhik62

readers/writers implementation -
monitor interface

interface ReadWrite {
public void acquireRead()

throws InterruptedException;
public void releaseRead();
public void acquireWrite()

throws InterruptedException;
public void releaseWrite();

We concentrate on the monitor implementation:

public void releaseWrite();
}

We define an interface that identifies the monitor
methods that must be implemented, and develop a
number of alternative implementations of this
interface.

Firstly, the safe READWRITELOCK.
CS3211 2012-13 by Abhik63

readers/writers implementation -
ReadWriteSafe

class ReadWriteSafe implements ReadWrite {
private int readers =0;
private boolean writing = false;

public synchronized void acquireRead()
throws InterruptedException {

while (writing) wait();
++readers;

}

public synchronized void releaseRead() {
--readers;
if(readers==0) notify();

}

Unblock to a single writer when there are no more readers.

CS3211 2012-13 by Abhik64

readers/writers implementation -
ReadWriteSafe

public synchronized void acquireWrite()
throws InterruptedException {

while (readers>0 || writing) wait();
writing = true;

}

public synchronized void releaseWrite() {
writing = false;

tif All()notifyAll();
}

}

Unblock all readers
However, this monitor implementation suffers from the WRITE
progress problem: possible writer starvation if the number of
readers never drops to zero.

Solution?
CS3211 2012-13 by Abhik65

readers/writers - writer priority

Strategy: Block readers if there is a writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,
releaseWrite,requestWrite}

WRITER =(requestWrite->acquireWrite->modify
->releaseWrite->WRITER

)+Actions\{modify}.

CS3211 2012-13 by Abhik66

12

readers/writers model - writer priority
RW_LOCK = RW[0][False][0],
RW[readers:0..Nread][writing:Bool][waitingW:0..Nwrite] =
(when (!writing && waitingW==0)

acquireRead -> RW[readers+1][writing][waitingW]
|releaseRead -> RW[readers-1][writing][waitingW]
|when (readers==0 && !writing)

acquireWrite-> RW[readers][True][waitingW-1]
|releaseWrite-> RW[readers][False][waitingW]| [][][g]
|requestWrite-> RW[readers][writing][waitingW+1]
).

Safety and Progress Analysis ?

CS3211 2012-13 by Abhik67

readers/writers model - writer priority

Progress violation: READ
Path to terminal set of states:

Reader
starvation:

No deadlocks/errors

property RW_SAFE:

progress READ and WRITE:

writer.1.requestWrite
writer.2.requestWrite

Actions in terminal set:
{writer.1.requestWrite, writer.1.acquireWrite,
writer.1.releaseWrite, writer.2.requestWrite,
writer.2.acquireWrite, writer.2.releaseWrite}

starvation:
if always a
writer
waiting.

In practice, this may be satisfactory as is usually more read access than
write, and readers generally want the most up to date information.

CS3211 2012-13 by Abhik68

readers/writers implementation -
ReadWritePriority

class ReadWritePriority implements ReadWrite{
private int readers =0;
private boolean writing = false;
private int waitingW = 0; // no of waiting Writers.

public synchronized void acquireRead()
throws InterruptedException {

while (writing || waitingW>0) wait();(g || g) ();
++readers;

}

public synchronized void releaseRead() {
--readers;
if (readers==0) notifyAll();

}

May also be readers waiting

CS3211 2012-13 by Abhik69

readers/writers implementation -
ReadWritePriority

synchronized public void acquireWrite()
throws InterruptedException {

++waitingW;
while (readers>0 || writing) wait();
--waitingW;
writing = true;

}

synchronized public void releaseWrite() {
writing = false;
notifyAll();

}
}

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as in the Single Lane Bridge.

CS3211 2012-13 by Abhik70

Summary
Concepts

properties: true for every possible execution
safety: nothing bad happens
liveness: something good eventually happens

Models
safety: no reachable ERROR/STOP statef y n r E /

compose safety properties at appropriate stages
progress: an action is eventually executed

fair choice and action priority
apply progress check on the final system model

Practice
threads and monitors

Aim: property satisfaction

CS3211 2012-13 by Abhik71

Follow-up questions

Abhik Roychoudhury

CS3211 2012-13 by Abhik72

13

1. Question from post-it note
Why do we need properties if existing modeling
techniques (those taught previously) can guarantee
mutual exclusion

CS3211 2012-13 by Abhik73

Answer
Mutual exclusion is only one class of safety property.
Deadlock is another popular class of safety properties.
Safety properties are a general class of properties which
state that certain "bad" events should never happen in the
concurrent system being designed. Now, what is bad, and

what is good - depends on the application in question.g p pp q
The no-deadlock property is a special kind of safety property
which is always "bad" - irrespective of the application.

However, we have already seen simple examples where a property
p may be a desired safety property in one application, but it

may not need to be enforced in another application.

CS3211 2012-13 by Abhik74

Answer
Consider the property --- no two processes should be accessing
a shared data object. This property is true for applications
where access to the critical section is controlled via a binary
semaphore. However, for the readers-writers example that we
discussed in class, it is possible for several reader processes

to be accessing the shared database. Our expectation here is weakerg p
-- we only demand the property that whenever a writer process is accessing
the database, no other process (reader or write) is accessing it.

CS3211 2012-13 by Abhik75

2. Question asked during lecture break
For the Promela modeling language is it possible for a

condition to be put anywhere in the program?
Answer:
The answer is yes. Promela allows for the program to have

statements like

x > 0; y > 0; z > 0;

So, when the control reaches the statement x > 0 -- the execution

will check whether x is greater than 0. If x is greater than 0, the

execution of this condition behaves like a skip statement. If x is

not greater than 0, the execution will be blocked (this may be

unblocked by another process modifying the value of x, if x is a

shared variable).

CS3211 2012-13 by Abhik76

3. Another question asked
You discussed about starvation properties today. What if
the scheduler for my concurrent program introduces
starvation?

CS3211 2012-13 by Abhik77

Answer
Once again, we must ensure that we do not confuse the levels of abstraction.
A concurrent program is running with the help of an underlying scheduler.
When we reason about progress/no-starvation properties the concurrent

program, we are assuming an underlying "fair" scheduler - at least fair to
the extent that it does not ignore one of the program threads forever.
Now, exactly how this "fairness" is implemented - that is upto to the
systems software writer who will write the scheduler As an application systems software writer who will write the scheduler. As an application
programmer, you want to be sure that your program will not run into
starvation scenarios even when the scheduler is guaranteed to have "fair
choice".

CS3211 2012-13 by Abhik78

