
4/22/2013

1

Message Passing

Reading: Chapter 10 of Magee and Kramer

CS3211 2012-13 by Abhik1

The big picture
Concurrency and Parallelism

Requires communication between threads / processes
Common modes of communication

Shared memory
Message passing

CS3211 2012-13 by Abhik2

In this module
Concurrent programming using Java

Shared memory communication across threads

Parallel programming using MPI
Message passing communication across processes

The lingering question
Does this mean?

Concurrent programming necessarily involves shared memory
communication across threads?

In this lecture
Bridge between concurrent and parallel programming

CS3211 2012-13 by Abhik3

Bridge between concurrent and parallel programming
Showing the possible programming of message passing
abstractions on top of Java’s shared memory concurrency.

Remaining question
Shared memory parallel programming is also possible e.g. just
do a Google search on OpenMP.

The big difference

Shared Memory Message Passing

Shared variables accessed
by diff. threads /
processes.

Clean separation of
address space between
threads / processes.

CS3211 2012-13 by Abhik4

Synchronization
mechanisms (locks)
needed for safe access of
the shared address space.

No such mechanisms are
needed per –se

The passing of messages
can be to a shared message
buffer. However, there exist
other mechanisms to
ensure safe access.

The different styles of message passing

SenderReceiver

Called synchronous message passing, studied in Promela modeling e.g.

CS3211 2012-13 by Abhik5

Sender and receiver processes are fixed.
Point – to – point communication.

No message buffer is needed.

Sender must block if receiver is not ready.

Question for class: Are the sender and receiver symmetric in this case?

The different styles of message passing

When x < 0

Sender 1

Each point-to-point communication
can still be synchronous.

Easily modeled e.g. in Promela – we
saw guarded if statements before

Selective Message Passing

CS3211 2012-13 by Abhik6

Receiver

When x >= 0

Sender 2

saw guarded if statements before.

How to achieve this in a
programming language e.g. in Java?

Involves a selective synchronization
which may not be easy to implement
- Guards can after all be empty !!

Guard

4/22/2013

2

The different styles of message passing

Receiver
process

Sender 1

Sender 2

CS3211 2012-13 by Abhik7

Asynchronous message passing - common in real-life.

Sends are non-blocking (as long as there is space in the buffer!)

Each process maintains such a buffer to which messages sent from all other
processes can be stored.

Question for class: Any idea for a selective style receive in asynchronous comm. ?

The different styles of message passing

Receiver
process

Sender 1

Sender 2

1

call

call

Accept

reply

CS3211 2012-13 by Abhik8

call

Called Rendezvous.

Senders send requests which get stored, meanwhile sender blocks.

These are eventually accepted at receiver end.

Once processing of request is completed – receiver sends a reply to sender in question.

Message Passing

Concepts: synchronous message passing - channel
asynchronous message passing - port

- send and receive / selective receive
rendezvous bidirectional comms - entry

- call and accept ... reply

CS3211 2012-13 by Abhik

Models: channel : relabelling, choice & guards
port : message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

9

1. Synchronous message passing

SenderReceiver

Called synchronous message passing, studied in Promela modeling e.g.

CS3211 2012-13 by Abhik10

Sender and receiver processes are fixed.
Point – to – point communication.

No message buffer is needed.

Sender must block if receiver is not ready.

Question for class: Are the sender and receiver symmetric in this case?

Synchronous message passing - channel

Channel c
Sender
send(e,c)

Receiver
v=receive(c)

one-to-one

CS3211 2012-13 by Abhik

♦ send(e,c) - send the
value of the expression e
to channel c. The process
calling the send operation
is blocked until the
message is received from
the channel.

♦ v = receive(c) - receive
a value into local variable v
from channel c. The
process calling the receive
operation is blocked
waiting until a message is
sent to the channel.

cf. distributed assignment v = e
11

Basic Idea
Implement a separate channel object

Simulates a buffer of zero capacity between sender and
receiver.
If we simply implement the channel simply as a monitor – it
will not work!

Send and receive will not happen in one step

CS3211 2012-13 by Abhik12

Send and receive will not happen in one step.
Need to make the sender and receiver handshake, even while calling
channel.send and channel.receive methods.

How to do so?

4/22/2013

3

Synchronous message passing - applet
A sender
communicates with a
receiver using a single
channel.

The sender sends a
sequence of integer
values from 0 to 9 and

CS3211 2012-13 by Abhik13

then restarts at 0
again.

Channel<Integer> chan = new Channel<Integer>();
tx.start(new Sender(chan,senddisp));
rx.start(new Receiver(chan,recvdisp));

Instances of SlotCanvasInstances of ThreadPanel

Java implementation - channel

The implementation
of Channel is a
monitor that has
synchronized
access methods for
send and receive.

public class Channel<T> extends Selectable {
T chan_ = null;

public synchronized void send(T v)
throws InterruptedException {

chan_ = v;
notify();
while (chan_ != null) wait();

}

CS3211 2012-13 by Abhik14

}

public synchronized T receive()
throws InterruptedException {

block(); clearReady(); //part of Selectable
T tmp = chan_; chan_ = null;
notify();
return(tmp);

}
} Selectable is

described later.
This is a simplification of the actual code.

Java implementation - sender
class Sender implements Runnable {
private Channel<Integer> chan;
private SlotCanvas display;
Sender(Channel<Integer> c, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { int ei = 0;

while(true) {

CS3211 2012-13 by Abhik15

while(true) {
display.enter(String.valueOf(ei));
ThreadPanel.rotate(12);
chan.send(new Integer(ei));
display.leave(String.valueOf(ei));
ei=(ei+1)%10; ThreadPanel.rotate(348);

}
} catch (InterruptedException e){}

}
}

Java implementation - receiver
class Receiver implements Runnable {
private Channel<Integer> chan;
private SlotCanvas display;
Receiver(Channel<Integer> c, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { Integer v=null;

while(true) {

CS3211 2012-13 by Abhik16

while(true) {
ThreadPanel.rotate(180);
if (v!=null) display.leave(v.toString());
v = chan.receive();
display.enter(v.toString());
ThreadPanel.rotate(180);

}
} catch (InterruptedException e){}

}
}

Important issue in message passing
Message passing assumes that the memory space of the
different processes are disjoint.

If channels become shared objects accessed by sender and
receiver – there still exists the possibility of two processes
modifying a shared memory location – data races etc !

CS3211 2012-13 by Abhik17

To avoid data races ---
Adopt the practice that the receivers never modify a shared channel
object received – they only read from them.

Q. to class: How is the read-write data race avoided here?

Sender should either not access the sent object, or if it needs it,
create a copy of the object before sending it.

A Model
range M = 0..9 // messages with values up to 9

SENDER = SENDER[0], // shared channel chan
SENDER[e:M] = (chan.send[e]-> SENDER[(e+1)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER).

// relabeling to model synchronization

CS3211 2012-13 by Abhik18

g y
||SyncMsg = (SENDER || RECEIVER)

/{chan/chan.{send,receive}}. LTS?

How can this be
modeled directly
without the need for
relabeling?

message operation Process Equation

send(e,chan) ?

v = receive(chan) ?

chan.[e]

chan.[v:M]

4/22/2013

4

A slightly different Model
range M = 0..9 // messages with values up to 9

SENDER = SENDER[0], // shared channel chan
SENDER[e:M] = (chan.[e]-> SENDER[(e+1)%10]).

RECEIVER = (chan.[v:M]-> RECEIVER).

// relabeling to model synchronization

CS3211 2012-13 by Abhik19

g y
||SyncMsg = (SENDER || RECEIVER)

The send-receive is being captured through shared actions.

The sender and the receiver are still not fully symmetric – value passing dictates this
aymmetry.

2. Selective Message Passing

When x < 0

Sender 1

Each point-to-point communication
can still be synchronous.

Easily modeled e.g. in Promela – we
saw guarded if statements before

Selective Message Passing

CS3211 2012-13 by Abhik20

Receiver

When x >= 0

Sender 2

saw guarded if statements before.

How to achieve this in a
programming language e.g. in Java?

Involves a selective synchronization
which may not be easy to implement
- Guards can after all be empty !!

Guard

Selectively receiving messages

Channels
c
1c
2c
n

How
should we deal
with multiple

channels?

Sender
send(e,c)Sender
send(e,c)Sender[n]
send(en,cn)

CS3211 2012-13 by Abhik21

select
when G1 and v1=receive(chan1) => S1;

or
when G2 and v2=receive(chan2) => S2;

or
…

or
when Gn and vn=receive(chann) => Sn;

end

Select
statement...

How would we model
this using

Process equations?

Selective Receive

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CARPARK

CARPARKCONTROL(N=4) = SPACES[N],

CS3211 2012-13 by Abhik22

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]

).

ARRIVALS = (arrive->ARRIVALS).

DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)
||DEPARTURES).

Implementation
using message
passing?

Interpret as
channels

Implementation
Previously viewed Carparkcontrol as a Monitor.
For message passing implementations

View it as a separate thread/process
It receives messages from arrival and departure processes.

CS3211 2012-13 by Abhik23

Schematic code
MsgCarPark

While (1){
select

when spaces>0 && receive(arrive) -> spaces++;
when spaces < N && receive (depart) -> spaces--;

end
}

Behaviors of the implementation

Arrivals
CarparkControl Departures

CS3211 2012-13 by Abhik24

How to select among the incoming messages?

Suppose there is no message buffer to store the incoming messages.

4/22/2013

5

Java implementation – selective receive
class MsgCarPark implements Runnable {
private Channel<Signal> arrive,depart;
private int spaces,N;
private StringCanvas disp;

public MsgCarPark(Channel<Signal> a,
Channel<Signal> l,

StringCanvas d int capacity) {

CS3211 2012-13 by Abhik25

StringCanvas d,int capacity) {
depart=l; arrive=a; N=spaces=capacity; disp=d;

}
…
public void run() {…}

}
Implement
CARPARKCONTROL as a
thread MsgCarPark which
receives signals from
channels arrive and depart.

Java implementation – selective receive
public void run() {

try {
Select sel = new Select();
sel.add(depart);
sel.add(arrive);
while(true) {
ThreadPanel.rotate(12);
arrive.guard(spaces>0);
d d(<N)

CS3211 2012-13 by Abhik26

depart.guard(spaces<N);
switch (sel.choose()) {
case 1:depart.receive();display(++spaces);

break;
case 2:arrive.receive();display(--spaces);

break;
}

}
} catch InterrruptedException{}

}

Selective receive

switch (sel.choose()) {
case 1:depart.receive();display(++spaces);

break;
case 2:arrive.receive();display(--spaces);

break;
}

sel.add(depart);
sel.add(arrive);

Depart and arrive are
selectable channel objects

CS3211 2012-13 by Abhik27

A selectable channel object is ready when a send has been performed.

When the receive on the chosen selectable object is executed – it must go ahead since
send has already been performed.

If no send operations have been performed (among the choices) --- the entire choose
operation will block, until a matching send has been performed on either the depart or the
arrive channels (the two selectable objects in the preceding code).

3. Asynchronous message passing

Receiver
process

Sender 1

Sender 2 Also called
a Port

CS3211 2012-13 by Abhik28

Many to one communication - common in real-life.

Sends are non-blocking (as long as there is space in the buffer!)

Each process maintains such a buffer to which messages sent from all other
processes can be stored.

Question for class: Any idea for a selective style receive in asynchronous comm. ?

a Port

Asynchronous Message passing - ports

Port p
Receiver
v=receive(p)

Sender
send(e,c)

Sender
send(e,c)

Sender[n]
send(en,p)

many-to-one

CS3211 2012-13 by Abhik29

♦ send(e,p) - send the
value of the expression e to
port p. The process calling
the send operation is not
blocked. The message is
queued at the port if the
receiver is not waiting.

♦ v = receive(p) -
receive a value into local
variable v from port p.
The process calling the
receive operation is
blocked if there are no
messages queued to the
port.

Asynchronous message passing - applet
Two senders communicate
with a receiver via an
“unbounded” port.

Each sender sends a
sequence of integer values
from 0 to 9 and then
restarts at 0 again.

CS3211 2012-13 by Abhik30

Instances of ThreadPanel

Port<Integer> port = new Port<Integer> ();
tx1.start(new Asender(port,send1disp));
tx2.start(new Asender(port,send2disp));
rx.start(new Areceiver(port,recvdisp));

Receiver gets a
merger of the 2
data streams.

4/22/2013

6

Java implementation - port

The implementation
of Port is a monitor
that has
synchronized
access methods for
send and receive.

class Port<T> extends Selectable {

Queue<T> queue = new LinkedList<T>();

public synchronized void send(T v){
queue.add(v);

signal();
}

CS3211 2012-13 by Abhik31

}
public synchronized T receive()

throws InterruptedException {
block(); clearReady();
return queue.remove();

}
}

port.send(new integer(ei)); v = port.receive();

class Asender class Areceiver

Model for Ports
range M = 0..9 // messages with values up to 9
set S = {[M],[M][M]} // queue of up to three messages

PORT //empty state, only send permitted
= (send[x:M]->PORT[x]),

PORT[h:M] //one message queued to port
= (send[x:M]->PORT[x][h]
|receive[h]->PORT

CS3211 2012-13 by Abhik32

| []
),

PORT[t:S][h:M] //two or more messages queued to port
= (send[x:M]->PORT[x][t][h]
|receive[h]->PORT[t]
).

// minimise to see result of abstracting from data values
||APORT = PORT/{send/send[M],receive/receive[M]}.

LTS?
What happens if
send 4 values?

(Simplified) State machine for Port

0 1 2 3-1

send send send

receivereceivereceive

CS3211 2012-13 by Abhik33

send

Values 0..9 being stored in the Port are abstracted away to
reduce the number of states in the state machine.

Model for Applets

ASENDER = ASENDER[0],

S[1..2]:
ASENDER

port:PORT ARECEIVER

AsynchMsg

port.receiveS[1..2].port.send

CS3211 2012-13 by Abhik34

[]
ASENDER[e:M] = (port.send[e]->ASENDER[(e+1)%10]).

ARECEIVER = (port.receive[v:M]->ARECEIVER).

||AsyncMsg = (s[1..2]:ASENDER || ARECEIVER||port:PORT)
/{s[1..2].port.send/port.send}.

4. Rendezvous

Receiver
process

Sender 1

Sender 2

1

call

call

Accept

reply

CS3211 2012-13 by Abhik35

call

Called Rendezvous, popularized by Ada programming language.

Senders send requests which get stored, meanwhile sender blocks.

These are eventually accepted at receiver end.

Once processing of request is completed – receiver sends a reply to sender in question.

Rendezvous - entry

Client Server

Rendezvous is a form of request-reply to support client
server communication. Many clients may request service,
but only one is serviced at a time.

CS3211 2012-13 by Abhik36

req=accept(entry)

res=call(entry,req)

reply(entry,res)

Request
message

Reply
message

suspended perform service

4/22/2013

7

Rendezvous
♦ res=call(e,req) - send
the value req as a request
message which is queued to
the entry e.

♦ req=accept(e) - receive
the value of the request
message from the entry e
into local variable req. The
calling process is blocked
if there are no messages
queued to the entry

CS3211 2012-13 by Abhik37

♦The calling process is
blocked until a reply
message is received into the
local variable req.

queued to the entry.

♦ reply(e,res) - send the
value res as a reply
message to entry e.

The model and implementation use a port for one direction
and a channel for the other. Which is which?

Rendezvous - applet
Two clients call a server
which services a request at
a time.

CS3211 2012-13 by Abhik38

Entry<String,String> entry = new Entry<String,String> ();
clA.start(new Client(entry,clientAdisp,"A"));
clB.start(new Client(entry,clientBdisp,"B"));
sv.start(new Server(entry,serverdisp));

Instances of SlotCanvasInstances of ThreadPanel

Java implementation - entry
Selectable

guard()

listSelect
add()
choose()

Channel
send()
receive()

Port
send()
receive()

The call method creates a

Entries are implemented as
extensions of ports, thereby
supporting queuing and
selective receipt.

CS3211 2012-13 by Abhik39

Entry
call()
accept()
reply()

clientChan

channel object on which to
receive the reply message. It
constructs and sends to the
entry a message consisting of a
reference to this channel and a
reference to the req object. It
then awaits the reply on the
channel.

The accept method keeps a copy of the
channel reference; the reply method sends
the reply message to this channel.

Java implementation - entry
class Entry<R,P> extends Port<R> {
private CallMsg<R,P> cm;
private Port<CallMsg<R,P>> cp = new Port<CallMsg<R,P>>();

public P call(R req) throws InterruptedException {
Channel<P> clientChan = new Channel<P>();
cp.send(new CallMsg<R,P>(req,clientChan));
return clientChan.receive();

}

blic R acce t() thr s Interr tedE ce ti n {

CS3211 2012-13 by Abhik40

public R accept() throws InterruptedException {
cm = cp.receive();
return cm.request;

}

public void reply(P res) throws InterruptedException {
cm.replychan.send(res);

}

private class CallMsg<R,P> {
R request;
Channel<P> replychan;
CallMsg(R m, Channel<P> c)

{request=m; replychan=c;}
} }

Do call, accept and reply need
to be synchronized
methods?

Answer
call, accept and reply are not synchronized methods.

Client and Server do not share any variables in Entry.
cm is only accessed by server for example.

Communication among client and server via Port and Channel
These communication are thread safe, because

Accesses by different processes are time separated inherently by the

CS3211 2012-13 by Abhik41

Accesses by different processes are time separated, inherently by the
rendezvous communication scheme.

Model of entry and applet

CLIENT() entry:ENTRY SERVER

EntryDemo

entry.acceptentry.call[M]

We reuse the models for ports and channels …

CS3211 2012-13 by Abhik42

set M = {replyA,replyB} // reply channels

||ENTRY = PORT/{call/send, accept/receive}.

CLIENT(CH='reply) = (entry.call[CH]->[CH]->CLIENT).

SERVER = (entry.accept[ch:M]->[ch]->SERVER).

||EntryDemo = (CLIENT('replyA)||CLIENT('replyB)
|| entry:ENTRY || SERVER).

Action labels
used in
expressions or
as parameter
values are
prefixed with
a single quote.

4/22/2013

8

Reflections: Rendezvous

Receiver
process

Sender 1

Sender 2

1

call

call

Accept

reply

CS3211 2012-13 by Abhik43

call

Essentially seeking service from a single server process, which manages the shared
data structure. Any problem encoded as monitor could be modeled this way too.

Producer Consumer Problem
Monitor implementation

Processes: Producer, Consumer Monitor: Buffer
Rendezvous implementation

Senders/Clients: Producer, Consumer
Receiver: The server process which encapsulates buffer state.

Rendezvous vs. Invoking Monitor Method

What is the difference?
… from the point of view of the client?

… from the point of view of the server?

… mutual exclusion?

CS3211 2012-13 by Abhik44

Which implementation is more efficient?
… in a local context (client and server in same computer)?

… in a distributed context (in different computers)?

Rendezvous vs. Monitor method call
Bounded buffer was earlier implemented as Monitor.
As Rendezvous – see pseudocode

BoundedBuffer
entry put, get;
int count = 0;

h l (1){

CS3211 2012-13 by Abhik45

while (1){
select

when (count<N) && obj = accept(put)
-> count++; // insert obj here

reply(put, …)
when (count > 0) && accept(get)

-> count --; // retrieve obj here
reply(get, …)

end
}

Rendezvous vs. Monitor : Correctness
Server code is shown in previous slide.

Issue of mutual exclusion is neatly avoided.
Producers and consumer send their requests to server.
Buffer state is encapsulated inside server, and modified by
server process only!

CS3211 2012-13 by Abhik46

Buffer
(monitor)

Producer
process

Consumer
process

Call put()

Call get()

requests

Producer
process

Consumer
process

Server
(buffer)

Put req

Get req

Rendezvous vs. Monitor: Performance
Client and server in same computer

Rendezvous involves 2 context switches.
Monitor may involve no context switch [can be more efficient]

e.g. get from non-empty buffer

Cli d i diff [di ib d]

CS3211 2012-13 by Abhik47

Client and server in different computers [distributed]
Rendezvous may be more efficient.
Implementing monitors then involves

Transfer client’s monitor method invocation via Remote Method
Invocation.
Create new thread in the server computer to call the monitor
method on behalf of the client [inefficient].

Summary of the discussions
Concepts

synchronous message passing – channel
asynchronous message passing – port

- send and receive / selective receive
rendezvous bidirectional comms - entry

- call and accept reply

CS3211 2012-13 by Abhik48

call and accept ... reply
Models

channel : relabelling, choice & guards
port : message queue, choice & guards
entry : port & channel

Practice
distributed computing (disjoint memory)
threads and monitors (shared memory)

