
1

CS3211 – Parallel & Concurrent Programming
Concurrency Concepts

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

CS3211 2012-13 by Abhik1

Additional optional Session on Sat, January 19.

Something to think about

Phil. 1

Phil. 5
Chopstick 0

Chopstick 1

Chopstick 4

CS3211 2012-13 by Abhik2

Rice Bowl

Phil. 2

Phil. 3

Phil. 4

Chopstick 1

Chopstick 2

Chopstick 3

The task – Exercise for you
Design the philosopher processes such that

A philosopher eats only when he has both chopsticks – left
and right
No two philosophers hold the same chopstick
simultaneously
N d dl k (i l it) d

CS3211 2012-13 by Abhik3

No deadlock (circular wait among processes) and
No starvation (literally so!)

How will the processes communicate?
Any of the mechanisms learnt so far

An approach that does not work
Modeling philosopher[i]
While (true){

wait for chopstick[i];
wait for chopstick[i+1];
eateat
release chopstick[i];
release chopstick[i+1];

}
Deadlock – each philosopher may pick up their left

chopstick first, and keep on waiting for the right
chopstick.

CS3211 2012-13 by Abhik4

Asymmetric solution
The first four philosophers execute the same code, but
the fifth philosopher executes the following.

Loop forever
think

it(h ti k[0])

CS3211 2012-13 by Abhik5

wait(chopstick[0])
wait(chopstick[4])
eat
release(chopstick[0])
release(chopstick[4])

End loop

Concurrent processes
Promela supports multiple communicating processes in a
description.

Default concurrency semantics: Asynchronous composition
At any point, only one process is active.
Also known as interleaving semantics.

CS3211 2012-13 by Abhik6

2

Interleavings

byte n = 0;

active proctype P(){

n = 1;

printf(“Process P, n =%d\n”, n)

Proc. n Stmt. n Output

P 0 n = 1 1
P 1 printf 1 n = 1 printed
Q 1 n = 2 2
Q 2 printf 2 n = 2 printed

}

active proctype Q(){

n = 2;

printf(“Process Q, n =%d\n”, n)

}

CS3211 2012-13 by Abhik7

Proc. n Stmt. n Output

P 0 n= 1 1
Q 1 n = 2 2
P 2 printf 2 n = 2 printed
Q 2 printf 2 n=2 printed

Sequential Consistency
What are all the allowed execs. of a concurrent program?

Each process must proceed in program order.
Statements from across different processes may be arbitrarily
interleaved.

All f h b k All executions satisfying the above two properties make
the exec. model called sequential consistency.

Intuitive understanding of concurrent program execution by
the programmer.
How many executions are there for the concurrent program
given in the previous slide?

CS3211 2012-13 by Abhik8

Atomicity
Statements in Promela are atomic.

if
:: a!= 0 -> c = b/a
:: a ==0 -> c = b
fi

a is global
(shared across processes,
including this one)

CS3211 2012-13 by Abhik9

Is division by zero impossible?

No, because another process may set
a= 0

between the evaluation of a !=0 and the execution of c = b/a

Concurrent Execution

chan data, ack = [1] of bit;

proctype node1() { proctype node2() {
do do
:: data!1; :: ack!1;
:: ack?1; :: data?1;
od od

data

ack

node1 node2

CS3211 2012-13 by Abhik10

od od
} }

init{ atomic{
run node1(); run node2();

}
} …..

ack

data

ack

Concurrent Execution

chan data, ack = [1] of bit;

proctype node1() { proctype node2() {
do do
:: data!1; :: ack!1;
:: ack?1; :: data?1;
od od

data ack

node1 node2

CS3211 2012-13 by Abhik11

od od
} }

init{ atomic{
run node1(); run node2();

}
}

data ack

….

Interference across processes
Main challenge in concurrent programming

Interleaving semantics across processes, and
Sharing of variables across processes.

Different interleavings modify shared variables differently
Causing various unpredictable interference across processes.

CS3211 2012-13 by Abhik12

3

A simple example to show interference

byte n = 0;

active proctype P() {
byte temp;
temp = n + 1;
n = temp;
printf(“P, %d”, n)

}

Proc. Stmt. n P:temp Q:temp Output

P temp=n+1 0 0 0
Q temp=n+1 0 1 0
P n=temp 0 1 1
Q n=temp 1 1 1
P printf(“P ”) 1 1 1 P1

CS3211 2012-13 by Abhik13

by
}

active proctype Q() {
byte temp;
temp = n + 1;
n = temp;
printf(“Q, %d”, n)

}

P printf(P..) 1 1 1 P,1
Q printf(“Q..”) 1 1 1 Q,1

Incrementing n twice we expect 2,
Yet the terminal values are 1.

More on interference

byte n = 0;

active proctype P() {
byte temp;
atomic{

temp = n + 1; n = temp;
}
printf(“P %d” n)

What are the possible pairs of
printed values in the two
processes?

CS3211 2012-13 by Abhik14

by
printf(P, %d , n)

}

active proctype Q() {
byte temp;
atomic{

temp = n + 1; n = temp;
}
printf(“Q, %d”, n)

}

Even more on interference
byte n;

proctype P(byte id;) {
byte temp;
atomic{ temp = n +1; n = temp;}
printf(“Process P%d, n = %d\n”, id, n)

}

CS3211 2012-13 by Abhik15

init{
n = 0;
atomic{ run P(1); run P(2) }
(_nr_pr ==1) -> printf(“final value of n=%d”, n)

}

What are the possible terminal values of n?

Synchronization
Processes implicitly communicate via shared variables.
However, for other reasons

Processes may need to explicitly synchronize.

What reasons?
e.g. Mutually exclusive access to shared variables.

How to synchronize?
Busy waiting
Acquiring and releasing locks.

CS3211 2012-13 by Abhik16

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
d

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
do

CS3211 2012-13 by Abhik17

do
:: !wantQ -> break;
:: else -> skip
od;
printf(“Crit. Section P\n”);
wantP = false

od
}

:: !wantP -> break;
:: else -> skip
od;
printf(“Crit. Section Q\n”);
wantQ = false

od
}

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
d

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
do

CS3211 2012-13 by Abhik18

do
:: !wantQ -> break;
od;
printf(“Crit. Section P\n”);
wantP = false

od
}

:: !wantP -> break;
od;
printf(“Crit. Section Q\n”);
wantP = false

od
}

What is the effect of removing the else choice ? Semantically equivalent?

4

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
! Q

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
!wantP;

CS3211 2012-13 by Abhik19

!wantQ;
printf(“Crit. Section P\n”);
wantP = false

od
}

;
printf(“Crit. Section Q\n”);
wantQ = false

od
}

No need to loop, the process blocks if condition is false

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
! Q

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
!wantP;

CS3211 2012-13 by Abhik20

!wantQ;
printf(“critical section\n”);
wantP = false

od
}

;
printf(“critical section\n”);
wantP = false

od
}

Mutual exclusion is preserved, what about deadlock and non-starvation?

Common “mistakes”
Non mutually exclusive access to shared variables.

“Unexpected” states due to certain sequences of statements
involving multiple processes.

Deadlock
Reach a state where no process can progress.

Starvation
A process wanting to access a shared variable (say entering a
critical section) should be able to do so “eventually”

In finite time
In bounded time.

CS3211 2012-13 by Abhik21

Deadlock scenario
bool wantP = false, wantQ = false;

active proctype P() {
do
:: wantP = true;

!wantQ;
P f l

active proctype Q() {
do
:: wantQ = true;

!wantP;
wantQ = false

CS3211 2012-13 by Abhik22

wantP = false
od

}

Q
od

}

wantP = true; wantQ = true;
Both processes are now blocked.

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

atomic{
!wantQ; wantP = true; }

active proctype Q() {
do
:: printf(“noncritical section\n”);

atomic{
!wantP; wantQ = true; }

CS3211 2012-13 by Abhik23

printf(“critical section\n”);
wantP = false

od
}

printf(“critical section\n”);
wantQ = false

od
}

Is starvation possible?

How Message Passing occurs in real-life
Interrupt-driven communication

An interrupt happens to the CPU, whenever data is ready to
be read.

To ensure mutually exclusive access of message buffers, disable
interrupts while servicing the current interrupt.
Not captured at the application level send-receive we are studying!p pp y g

Or, the CPU polls (via certain sensors) at regular intervals
to check whether data is available

Check whether data is available on the channel and then perform
receive action, popularly known as polling.

CS3211 2012-13 by Abhik24

