
February 18, 2013 [CS3211 WEEK 6 TUTORIAL – WITH ANSWERS]

CS3211 Week 6 Tutorial – with answers Page 1

Content: Lecture 5 (shared objects and mutual exclusion)

Sample Exercises:

[Please conduct these as an interactive discussion, rather than an evaluation. Please

also make it clear to the students that they are not being evaluated for their performance

in these exercises, so that they are not afraid to make mistakes while answering.]

1. Consider a one cell buffer

BUFF = in(x) -> out(x) -> BUFF

Suppose we want to put the two cells together in the above fashion. What will be the

process equation describing the TWOBUFF process.

Answer:

TWOBUFF = (a:BUFF/{in/a.in} || b:BUFF /{a.out/b.in, out/b.out})@{in,out}

Another solution is

TWOBUFF = (BUFF/{x/out} || BUFF/{x/in})@{in,out}

February 18, 2013 [CS3211 WEEK 6 TUTORIAL – WITH ANSWERS]

CS3211 Week 6 Tutorial – with answers Page 2

2. Consider the following process equations from lecture slides

RESOURCE = acquire -> release -> RESOURCE.

USER = printer.acquire -> use -> printer.release -> USER.

PRINTER_SHARE = (a:USER || b:USER || {a,b}:PRINTER:RESOURCE).

Describe all behaviors of the composed process.

Answer: The state model compositions are shown below.

February 18, 2013 [CS3211 WEEK 6 TUTORIAL – WITH ANSWERS]

CS3211 Week 6 Tutorial – with answers Page 3

3. In class we discussed two methods of lock – to embed the lock inside the object, or to

make every “user” of a shared object impose a locking discipline.

Choice 1 :

class SynchronizedCounter extends Counter {

 …

 synchronized void increment() {

 Counter.increment();

 }

}

 Choice 2: synchronized(counter) {counter.increment();}

Comment on the use of the choices in presence of the recursive locking scheme of Java.

Answer: Choice 2 is less safe, since it requires all user threads of shared objects to remember

to impose a locking discipline. However, it is less dependent on the recursive locking scheme

since the top level method call is locked. So, even if the increment method is recursive, the code

from choice 2 can execute without running into a deadlock.

February 18, 2013 [CS3211 WEEK 6 TUTORIAL – WITH ANSWERS]

CS3211 Week 6 Tutorial – with answers Page 4

4. Let x be a shared integer variable. Consider two threads executing the following code

while (x< 1){ while (x >= 1){

 x++; x--;

} }

Initially x is 1. What can you say about the termination of the left hand side loop? What are the

possible number of times it can execute? Assume each line of code is executed atomically.

Also, comment on the possible termination / non-termination of the program as a whole.

February 18, 2013 [CS3211 WEEK 6 TUTORIAL – WITH ANSWERS]

CS3211 Week 6 Tutorial – with answers Page 5

Answer: Executing 0 times is possible, if the left thread executes at the very beginning and the

loop is exited.

Executing once is also possible, if the right thread executes one iteration of its loop, exits the

loop, and the then the left thread executes as follows

 while(x >= 1) // x is now 1

 x-- // x is now 0

 while (x >= 1) // exits

while (x < 1) // x is now 0

 x++ // x is now 1

while (x < 1) // exits

So, in this scenario both loops terminate.

We could construct a scenario where both loops go on forever by alternating one iteration of

each loop.

 while (x >= 1) // x is now 1

 x-- // x is now 0

while (x < 1) // x is now 0

 x++ // x is now 1

 while (x >= 1) // x is now 1

 x-- // x is now 0

while (x < 1) // x is now 0

 x++ // x is now 1

…….

February 18, 2013 [CS3211 WEEK 6 TUTORIAL – WITH ANSWERS]

CS3211 Week 6 Tutorial – with answers Page 6

5. Consider the following multi-threaded program. flag is a boolean variable initialized to

false. x is an integer variable initialized to zero. Assume that all condition evaluations

and assignments are executed atomically.

Thread 1 | Thread 2
--
while (!flag){ | while (x == 0){
 x = 1 - x;} | x = x; }
 | flag = true;

(i) Construct an interleaving where the program does not terminate.
(ii) Construct an interleaving where the program terminates.
(iii) What are the possible values of x when the program terminates? Justify your answer.

(i) If the first thread is not scheduled at all, only the second thread is scheduled and the

program does not terminate.

(ii) The following interleaving leads to termination.

while (!flag){
x = 1 - x // x == 1
 while (x == 0) // exits loop
 flag = true
while (!flag) // exits loop

(iii) In the above interleaving we have x == 1 when the program terminates.

We can also have x == 0 as follows.

while (!flag){
x = 1 - x // x == 1
 while (x == 0) // exits loop
while (!flag){
x = 1 - x // x == 0
 flag = true;
while (!flag) // exits loop

