
March 11, 2013 [CS3211 TUTORIAL ON DEADLOCKS]

CS3211 Week 8 Tutorial Page 1

 CS3211 Parallel and Concurrent Programming – Week 8 tutorial

Sample Exercises:
[Please conduct these as an interactive discussion, rather than an evaluation. Please also
make it clear to the students that they are not being evaluated for their performance in
these exercises, so that they are not afraid to make mistakes while answering.]

1. Following a maze, similar to what we discussed in class. Write process equations, such that using
deadlock analysis (path to a state with no outgoing action) we can find the shortest path out of the
maze.

0 1 2

3 4 5

6 7 8

STOP

north

south

west east

March 11, 2013 [CS3211 TUTORIAL ON DEADLOCKS]

CS3211 Week 8 Tutorial Page 2

Answer:

MAZE(Start) = P[Start],

P[0] = (north->STOP|east->P[1]),

P[1] = (east ->P[2]|south->P[4]|west->P[0]),

P[2] = (south->P[5]|west ->P[1]),

P[3] = (east ->P[4]|south->P[6]),

P[4] = (north->P[1]|west ->P[3]),

P[5] = (north->P[2]|south->P[8]),

P[6] = (north->P[3]),

P[7] = (east ->P[8]),

P[8] = (north->P[5]|west->P[7]).

GETOUT = MAZE(7).

March 11, 2013 [CS3211 TUTORIAL ON DEADLOCKS]

CS3211 Week 8 Tutorial Page 3

2. It is possible for the following system to deadlock. Explain how this deadlock occurs.

Alice = (call.bob -> wait.chris -> Alice).

Bob = (call.chris -> wait.alice -> Bob).

Chris = (call.alice -> wait.bob -> Chris).

System = (Alice || Bob || Chris) / {call/wait}

March 11, 2013 [CS3211 TUTORIAL ON DEADLOCKS]

CS3211 Week 8 Tutorial Page 4

Answer: Show the wait-for-cycle among Alice, Chris and Bob. The key is to identify what

are the shared actions.

3. Following is an attempt to “fix” the system of Question 2.

AliceT = (call.bob -> wait.chris -> AliceT

 |timeout.alice -> wait.chris -> AliceT).

BobT = (call.chris -> wait.alice -> BobT

 |timeout.bob -> wait.alice -> BobT).

ChrisT = (call.alice -> wait.bob -> ChrisT

 |timeout.chris -> wait.bob -> ChrisT).

System-fixed = (AliceT || BobT || ChrisT) /{call/wait}.

Is System-fixed really fixed? Are there any deadlocks?

March 11, 2013 [CS3211 TUTORIAL ON DEADLOCKS]

CS3211 Week 8 Tutorial Page 5

Answer: Trace to DEADLOCK:
 timeout.alice

 timeout.bob

 timeout.chris

4. A single-slot buffer may be modeled by

 ONEBUF = (put -> get -> ONEBUF)

 In an earlier tutorial we had programmed a Java class, OneBuf, that implements this
one-slot buffer as a monitor. Replace the condition synchronization above by using two semaphore to

control access to the one slot buffer.

/* This was the monitor based encoding */

public class OneBuf {

 private int buf;

 private boolean empty = true;

 public synchronized void put(int x) throws InterruptedException{

 while(!empty) wait();

 buf = x;

 empty = false;

 notifyAll();

 }

 public synchronized int get() throws InterruptedException{

 while(empty) wait();

 empty = true;

 notifyAll();

 return buf;

 }

}

March 11, 2013 [CS3211 TUTORIAL ON DEADLOCKS]

CS3211 Week 8 Tutorial Page 6

Answer:

/* ONEBUF = (put -> get -> ONEBUF). */

/* java Implementation using Semaphores

public class OneBuf {

 int slot = 0; /* use slot == 0 to denote unassigned */

 Semaphore empty = new Semaphore(1);

 Semaphore full = new Semaphore(0);

 public void put(int x) throws InterruptedException {

 empty.down();

 synchronized(this){

 slot = x;}

 full.up();

 }

 public Object get () throws InterruptedException {

 full.down();

 synchronized(this){

 int x = slot;

 slot = 0; }

 empty.up();

 return x;

 }

}

Instead of using integer slot above, we could have defined it as an object. In that case, it should have

been initialized to null (to denote that the slot is initially empty).

