
4/29/2011

1

Rhapsody in C – an overview

Sudipta Chattopadhyay (TA)
School of Computing
National University of Singapore

Rhapsody so far (basic)

Creating class and object
Creating state-charts
Accessing attributes of an objectg j
Calling an operation of a class
Accessing parameters sent by an event
Creating conditional states
Accessing Rhapsody in built timer
Create configuration and run model

Rhapsody (more)

Create multiple class, association
Create multiple objects of same class
Communication among different objectsg j
Creating animated sequence diagram

Creating class and objects

X : int
Y : intY : int

Message() : void
Attributes

Operations

Creating attributes and operations inside a class

Creating statecharts

X : int
Y : int

Message() : void Objects

Statecharts0 1
Trigger / action

Trigger = some event
Action = valid C code

Accessing attributes

X : int
Y : int

Message() : void Objects

Statecharts0 1

Trigger /
printf (“%d\n”, me->X);

Trigger / me->X++;

4/29/2011

2

Calling operation

X : int
Y : int Objects

Processor class

Message() : void

Statecharts0 1

Trigger /
Processor_Message(me)

Trigger / me->X++;

Processor class

Calling operation

X : int
Y : int Objects

Processor class

Message() : void

Processor class

Operation call = <class name>_<operation_name>(me, <operation args>)

Ex: Processor_Message(me)

Calling operation

X : int
Y : int Objects

Processor class

Message(x) : void

Statecharts0 1

Trigger /
Processor_Message(me, 0)

Trigger / me->X++;

Processor class

Implementation of operation

Any valid C code
Implementation resembles the
body/definition of the function in C
programming language

Passing parameters through event

Statecharts0 1

Trigger(x) / printf(“%d\n”, params->x);

Statecharts0
Trigger / me->X++;

Trigger has a parameter “x”.

All parameters are stored in a structure type variable “params”

To access “x” from statechart, access params->x (NOT JUST “x”)

Passing parameters through event

Statecharts0 1

Trigger(x, y) /
printf(“%d %d\n”, params->x,

params->y);

Statecharts0
Trigger / me->X++;

Can have multiple parameters

Access them as “params->x” , “params->y” and so on…..

4/29/2011

3

Conditional states

0

C

Trigger

If this

Do this

If that

Do that

Condition provided in the “guard” field of transition

Condition : Any valid condition in C language
e.g. x == 0, x >= 0, x!= 0 and so on

Conditional states

0

C

Trigger

Guard => params->x == 0

Do this Do that

Guard => params->x != 0

Trigger has a parameter called “x”

Accessing Rhapsody timer

Statecharts0 1

tm(10000) /
printf(“%d %d\n”, params->x,

params->y);

Statecharts0
Trigger / me->X++;

Rhapsody in built timer is called “tm”

It takes argument in milliseconds

In the above example, state 0 to state 1 transition will take place after 10
sec

Communication between objects

X : int
Y : int

data : int

Message() : void Message() : void

Processor Memory

Association

Communication between objects

X : int
Y : int

data : int

Message() : void Message() : void

Processor Memory
Say object name : itsProcessor Say object name : itsMemory

Use RiCGEN(&itsMemory, read()) if you want to send read() event to
Memory object

Communication between objects

Processor

tm(10000) / RiCGEN(&itsMemory, read())

Processor
statechart0 1

Trigger / me->X++;

After 1 sec, processor sends read() signal to the “itsMemory”
object, which is of type Memory.

itsMemory must change its state from 0 to 1 at that point.

Memory
statechart0 1

Trigger / me->X++;

read

4/29/2011

4

Communication between objects

Processor

tm(10000) / RiCGEN(&itsMemory, read())

Processor
statechart0 1

Trigger / me->X++;

Note that read() is not generated by the external environment

Memory
statechart0 1

Trigger / me->X++;

read

Dealing multiple objects of same
class

X : int
Y : int

data : int3

Message() : void Message() : void

Processor Memory

3

Change the multiplicity field of “object “
and “association”

Dealing multiple objects of same
class

X : int
Y : int

data : int3

Message() : void Message() : void

Processor Memory

3

Object name : itsProcessor Object name :
itsMemory[0]
itsMemory[1]
itsMemory[2]

Dealing with multiple objects of
same class

Processor

tm(10000) / RiCGEN(&itsMemory[1], read())

Processor
statechart0 1

Trigger / me->X++;

Now read() will be received only by “itsMemory[1]” object.

Therefore, the instance statechart of “itsMemory[1]” will change state

Instance statecharts corresponding to “itsMemory[0]” and
“itsMemory[2]” will have no effect

Memory
statechart0 1

Trigger / me->X++;

read

Broadcasting

Processor

tm(10000) / int i; for (i = 0; i < 3; i++) RiCGEN(&itsMemory[i], read())

Processor
statechart0 1

Trigger / me->X++;

Memory
statechart0 1

Trigger / me->X++;

read

All of itsMemory[0], itsMemory[1] and itsMemory[2] will change state
from state 0 to state 1

A sample trick

Want to
talk?

Yes

Want to
talk?

No

Hi

4/29/2011

5

A sample trick

Processor

tm(10000) / RiCGEN(&itsMemory[1], read())

Processor
statechart0 1

Memory
statechart0 1

Trigger / me->X++;

read / RiCGEN(&itsProcessor,
ack(me));

Sending the object as an argument to “ack” back to the “Processor”

A sample trick

Memory
0 1

read / RiCGEN(&itsProcessor,
ack(me));

statechart0 1
Trigger / me->X++;

Processor
statechart

1 2

ack /
RiCGEN((Memory *) params->x, write())

“x” is the parameter of “ack” of type “void *”

Creating animated sequence
diagrams

Packages -> Default -> add new -> sequence
diagram
Drag the instances not the classes
– Why ?

A class may have multiple objects at runtime

Keep the setting in “Design” mode

THANK YOU

