4/6/2011

Performance Validation — Systems
CS 4271 Lecture 10

Abhik Roychoudhury
http:/ /www.comp.nus.cdu.sg/~abhik

Ack: Slides 4-19 are modified and augmented from Peter Marwedel’s

slides
Copyright 2009 by Abhik Roychoudhury

So far in CS4271...

» Functionality analysis
» Modeling, Model Checking
» Timing Analysis
» Software level —~-WCET analysis
» System level — Scheduling methods —Today!

Copyright 2009 by Abhik Roychoudhury

Real-time Embedded Systems

» Embedded systems that monitor, respond to, or control
external environment under timing constraints

Examples:

v

Characteristics

» Timing constraints / deadline
» Functional and temporal correctness

» Hard deadline

> Vehicles (caraircraft, ..) » Must always meet deadline
» Traffic control (highway, air, railway, ...) . "
) » Air traffic controller
» Process control (power plant, chemical plant, ...))
» Medical systems (radiation therapy, ...) » Soft deadline
» Telephone, radio, satellite communication » Must frequently meet deadline
» Computer games » MPEG decoder
3 Ack: Peter Marwedels slides 4 Ack: Peter Marwedels slides
Tasks Why study scheduling?

» A task is a block of code executed in a CPU in a
sequential fashion.

» Several independent tasks may be executing on the same
CPU
» How to schedule them ?
» Today’s lecture

» There might also be dependences among tasks, captured
by a task graph
» Task mapping — which task on which CPU?
» Task scheduling — in what order to run the tasks mapped to

same CPU?
5 Ack: Peter Marwedel's slides

» Increase CPU utilization or other metrics

» For real-time systems requiring hard guarantees
» Study in advance whether all tasks can be scheduled without
missing any deadlines.
» Need computation time of each task
» Typically given as a worst-case bound, called the Worst-case Execution
Time (WCET)
» How to derive these WCET bounds ?
O Discussed in earlier 2 lectures.

6 4/6/2011

4/6/2011

Informally, scheduling is

»Assume that we are given a task graph G=(V,E).

»Def.: A schedule s of G is a mapping
VT
of a set of tasks V to start times from domain T.

G=(vE) ‘

t

7 Ack: Peter Marwedel’s slides

Informally, scheduling is

» Typically, schedules have to respect a number NY)
of constraints, incl. resource constraints, -
dependency constraints, deadlines. g
»Scheduling = finding such a mapping.

»Scheduling to be performed several times

during ES design (early rough scheduling as well o
as late precise scheduling).

8 Ack: Peter Marwedel's slides

More precisely,

» Schedule
» An assignment of tasks to the processor (assuming |
processor!) over time.
» Feasible schedule

» All tasks can be completed and all constraints (precedence,
resource, deadline) can be respected.

» Scheduling Algorithm
» A recipe for producing schedules
» Schedulability

» If at least one scheduling algorithm producing a feasible
schedule exists.

9 Ack: Peter Marwedel’s slides

Periodic and Aperiodic

»Def.: Tasks which must be executed once every p units of
time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

»All other tasks are called aperiodic.

»Def.: Tasks requesting the processor at unpredictable
times are called sporadic, if there is a minimum separation
between the times at which they request the processor.

10 Ack: Peter Marwedel’s slides

Periodic Task

» Activated on a regular basis between fixed interval
» scan the airspace every 3 sec
» P=(s,c,p,d)
» s = start time or arrival time
» ¢ = worst case execution time (WCET)
» p = period or cycle time
» d = deadline
»

c<=d<=P

I 4/6/2011

Periodic Task (Contd.)

=Period: interval between task activations.
sComputation time: Typically the WCET.

alnitiation time: time at which task becomes ready.
sDeadline: time at which process must finish.

aln most cases, d = p

[4/6/2011

4/6/2011

Preemptive and non-preemptive
scheduling

Non-preemptive schedulers:
Tasks are executed until they are done.

Response time for external events may be quite long.

Preemptive schedulers: To be used if
- some tasks have long execution times or
- if the response time for external events to be short.

Ack: Peter Marwedel's 13

Dynamic/online scheduling

= Dynamic/online scheduling:
Processor allocation decisions (scheduling)
at run-time; based on the information
about the tasks arrived so far.

roal-tema scheduling
hard doadbnes soft deacines

EEIDCE TP CIIDC

14 Ack: Peter Marwedel's slides

Static/offline scheduling

= Static/offline scheduling:
Scheduling taking a priori knowledge about arrival times,
execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by timer.
Timer controlled by a table generated at design time.

Time Action WCET

()] start 'I'l e

17 send M3 .

72 stap T

L1 s1zm T2 0

47 send M3

15 Ack: Peter Marwedel's slides

Schedulability

»Set of tasks is schedulable under a set of constraints, if
a schedule exists for that set of tasks & constraints.

»Exact tests cannot be efficiently computed in many
situations.

»Sufficient tests: sufficient conditions for schedule
checked. (Hopefully) small probability of indicating that no
schedule exists even though one exists.

»Necessary tests: checking necessary conditions. Used schedulable

to show no schedule exists. There may be cases in which
no schedule exists & we cannot prove it.

necessary ‘

16 Ack: Peter Marwedel’s slides

To summarize

» Input to Scheduling Algorithm
» One or more tasks
» Activation time, execution time, deadline for each process

» Scheduling algorithm: a policy to allocate tasks to the
processor(s)

» Feasible schedule if the scheduling algorithm can meet all
the constraints

» Optimal algorithm: A scheduling algorithm that produces
a feasible schedule if it exists

17 4/6/2011

To summarize

» How do we evaluate a scheduling policy:
» Ability to satisfy all deadlines.
» CPU utilization: percentage of time devoted to useful work.

» Scheduling overhead: time required to make scheduling
decision.

18 4/6/2011

4/6/2011

Organization of Scheduling slides

» Real-time Systems

» Basics of Scheduling

» Periodic Scheduling Methods
» RMS
» EDF

19 4/6/2011

Recap: Why study scheduling?

» Increase CPU utilization or other metrics
» For real-time systems requiring hard guarantees
» Study in advance whether all tasks can be scheduled without
missing any deadlines.
» Need computation time of each task
» Typically given as a worst-case bound, called the Worst-case Execution
Time (WCET)
» How to derive these bounds ? —
O We studied this just now (WCET analysis !)

Copyright 2009 by Abhik Roychoudhury

Recap: Periodic tasks

» Ataskisa program!

» Activated on a regular basis between fixed interval
» scan the airspace every 3 sec

P=(s,c,pd)

» s = start time or arrival time

-

» c = worst case execution time (WCET)
» p = period or cycle time

» d = deadline

» c<=d<=p

Copyright 2009 by Abhik Roychoudhury

Task Execution

Terminate

o Scheduling
activation .
‘ ‘ ‘ dis-
i patch

pre-emption

Dispatching from the ready queue will be based on the scheduling policy
which takes into account task priority.

Copyright 2009 by Abhik Roychoudhury

Priority driven scheduling

v

Each task has a priority.

v

CPU goes to highest-priority task that is ready.

-

Priorities determine scheduling policy:
» fixed priority;
» time-varying priorities.

v

Rules:
each task has a fixed priority (I highest);

v v

highest-priority ready task gets CPU

task continues until done (non pre-emptive) OR

Task can be pre-empted by a later arriving higher priority task.

Copyright 2009 by Abhik Roychoudhury

,,,,,,, Example (premptive)

» Pl:priority |, execution time 10
» P2:priority 2, execution time 30
» P3:priority 3, execution time 20

P3 ready t=18
P2 ready t=0 P1 repdy t=15

o

‘ P2 ‘ P1 ‘ P2 P3

0 10 20 30 40 50 tjime 60

Copyright 2009 by Abhik Roychoudhury

4/6/2011

Rate-monotonic scheduling Assumptions in RMS
» RMS (Liu and Layland 1973) » All tasks run on single CPU.
» widely-used, analyzable scheduling policy. » Zero context switch time.
» Analysis is known as Rate Monotonic Analysis » If not, the context switch time needs to be added in response
» RMS is an optimal fixed priority assignment method time computation.
» If there exists a schedule that meets all the deadlines with fixed priority, » No data dependencies between tasks.

then RMS will produce a feasible schedule. . . .
» Task execution time is constant.

» If not, we take the WCET.
» Deadline is at end of period (p = d)

» Fixed-priority, pre-emptive scheduling.

» Highest-priority ready task runs.

Copyright 2009 by Abhik Roychoudhury Copyright 2009 by Abhik Roychoudhury
Priority assignment in RMS. RMS Example
» Optimal (fixed) priority assignment: :; Sffl) CTT‘Pidii
» shortest-period task gets highest priority; P32;2 2;2 E;d;ZO
» priority inversely proportional to period;
priovty °Y prop P 0 5 10 15 20
» break ties arbitrarily.
» Intuition: Tasks requiring frequent attention (smaller PIW H m m h H
period) should receive higher priority
| 5 9 3 17 21
cTI I
2
il Il
Copyright 2009 by Abhik Roychoudhury Copyright 2009 by Abhik Roychoudhury
Rate monotonic analysis Critical Instant

» Response time: time required to finish task.

s . . interfering processes
» Critical instant: scheduling state that gives worst response

time.

L
» Ciritical instant occurs when all higher-priority tasks are
ready to execute.
)

» Worst case response time

» Solved by iterative computation

I

1

L. 1

»wi= o+ T wip] critical 1
instant !

] '

1

Ce ht-2009-by-Abhik ! !

Copyright 2009 by Abhik Roychoudhury

4/6/2011

Informal argument about optimality

Pl = (cl,pl,dl) with pl =dI

P2 = (2, p2, d2) with p2 = d2

pl <p2

Suppose PI and P2 can be scheduled with non-RM priority
assignment, i.e., P2 has highest priority

At critical instant, with non-RM priorities

» cl+c2<=pl; [I]

With RM priority

» Lp2/piteel + c2 <=p2;[2]

If [1] is satisfied, then [2] is also satisfied

v v v v v

v

v

Copyright 2009 by Abhik Roychoudhury

RMS optimality

RM priorities

P2 period
P1 period
P

P2 period

P1 period
P

P1
[

P

Non RM priorities Copyright 2009 by Abhik Roychoudhury

RMS CPU utilization

» Utilization for n processes is
»ru=x% (Gl p
» U <l is a necessary condition for feasibility regardless of
scheduling policy
» Scheduling with fixed priorities is feasible if
usn@2'm-1)
= The bound is sufficient but not necessary.

» As number of tasks approaches infinity, maximum utilization
approaches 69%.

» RMS cannot use 100% of CPU, even with zero context switch overhead.

» Must keep idle cycles available to handle worst-case scenario.

Copyright 2009 by Abhik Roychoudhury

Earliest-Deadline-First

v

EDF: dynamic priority scheduling scheme.

v

Task closest to its deadline has highest priority.

v

Requires recalculating tasks at every timer interrupt.
EDF can use 100% of CPU.
Implementation

v v

» On each timer interrupt:
» compute time to deadline;
» choose task closest to deadline.

» Generally considered too expensive to use in practice.

Copyright 2009 by Abhik Roychoudhury

EDF Example

Pl =(2,4,4) P2=(5,10,10)
P1 period

P2 period

0 2 4 6 8 |10 12 14 16 18 20
time

\L Pl delayed

Copyright 2009 by Abhik Roychoudhury

EDF Properties

» EDF is optimal

» If a feasible schedule exists using dynamic priorities, then EDF
will produce a feasible schedule

» EDF can always produce a feasible schedule if U < |

» Scheduling with dynamic priority is feasible if and
only ifU<1

Copyright 2009 by Abhik Roychoudhury

4/6/2011

Fixing scheduling problems ...

» ... in practice.

» What if your set of tasks is not schedulable?
» Change deadlines in requirements.

» Reduce execution times of processes.

» Get a faster CPU.

Organization of Timing Analysis

Copyright 2009 by Abhik Roychoudhury

» Software timing analysis - Completed!
» WCET analysis

» System level analysis — Completed!
» Scheduling methods

» Design issues to improve timing predictability
» Scratchpad memories

Copyright 2009 by Abhik Roychoudhury

Scratchpad Memory

» Compiler controlled memory.

» Unlike cache, compiler has control over its contents.
» We can statically decide what to put in the scratchpad

and lock it in.

» So, is it simply a statically locked cache?

» No, it is a bit more!

Cache locking and scratchpad

Copyright 2009 by Abhik Roychoudhury

]

2

3 .

;

6 Locked Cache Scratchpad

7

8 Locked, fully associative
Memory cache.

Copyright 2009 by Abhik Roychoudhury

How scratchpad memory works?

Predictable -1 cycle

coo

Predictable — N cycles

Scratchpad
On-chip

Main Mem.
(Off-chip)

Mem.
Address

Space

Combination with cache is also possible.

Copyright 2009 by Abhik Roychoudhury

Predictable -1 cycle Scratchpad
On-chip
g Mem.
U Main Mem. Address
’—[(Off-chip) space
Cache

1 cycle _ Necycles

Copyright 2009 by Abhik Roychoudhury

4/6/2011

Scratchpad allocation strategy

» Assume a scratchpad memory for data variables.
» We need to statically decide which variables to allocate in
scratchpad memory.
» Variables = {v,,...,v,}
» Say n; = # of times v, is executed in a given execution path.
» n; is constant.
» Define gain, = n, * (N - 1)
» gain, = gain from allocating v; to scratchpad.
» N = number of cycles needed to access main memory.
» gain, is constant

Copyright 2009 by Abhik Roychoudhury

Scratchpad allocation strategy

» Maximize
» 2 <i<n choice, * gain,
» Subject to
» 2 <i<n choice, * w, < Capacity
» KNAPSACK Problem
» w, is the area occupied by variable v;
» Capacity is the total area in scratchpad
» choice;is 0 or |

» 0ifv; is not allocated

» |ifv,is allocated.

Copyright 2009 by Abhik Roychoudhury

The gain is not constant
» Define gain, = n, * (N - I)

» gain, = gain from allocating v; to scratchpad.

» N = number of cycles needed to access main memory.

» Say n; = # of times v, is executed in a given execution path.
» n; is constant.

» Which execution path?

» What if we want to allocate to scratchpad memory for reducing the

Knapsack problem

» Given n objects and a knapsack
» Capacity of knapsack W
» Object i has weight w; and value gain,
» Fill up the knapsack so as to maximize value

-

Perfect fit for our allocation problem if the gain by
allocating a variable to scratchpad memory is a constant
» Holds for ACET based allocation

program’s WCET? » Not true for WCET based allocation
» Knapsack problem can be easily solved by dynamic
programming.
Copyright 2009 by Abhik Roychoudhury Copyright 2009 by Abhik Roychoudhury
Knapsack ACET vs WCET based

» Array V[0..n,0.W]

> V[i,i] = maximum value if we are restricted to objects |..i,and the weight

limit is j

» Define
» V[i,j] = max(V[i-1,jl,V[i-1,j-w] + v)) fori>0
» V[0,j]=0

» Final Answer V[n,W]

» This solution is useful only for ACET based allocation.

Copyright 2009 by Abhik Roychoudhury

WCET (Worst-case) = Maximum exec. time of a pgm. for all possible inputs

In this simple example assume

> Uand V have same size

> Only one of them can be
allocated.

> ACET savings depends on the
execution counts of Pathl and
PathZ (whichever is the more
frequent path forms our profile
say)

> WCET savings depend on which
path is longer.

Copyright 2009 by Abhik Roychoudhury

4/6/2011

Pathl Path2

Allocate V
B 90 100
efore
After [90 80

Contribution of V to WCET path = 20
Reduction in WCET by allocating V = 10

Pathl is now the WCET path which has
different var. access frequencies from Path2

Copyright 2009 by Abhik Roychoudhury

Sub-optimal allocation

V.U both appear in WCET path. Suppose #V > # U

WCET path based allocation = {V}
Pathl Path2

Before| 90 100
After [90 80

Path2

Optimal allocation = {U}
Pathl Path2

Before 90 100
After |75 85

Copyright 2009 by Abhik Roychoudhury

WCET based allocation

x gain in WCET reduction due to a variable v
* not a constant, depends on
= current WCET path
= Diff in exec. Times of WCET path and other paths
= # Occurrence of v in WCET path and other paths

bl

WCET - - _I. -

[optimize > "1 wee

Copyright 2009 by Abhik Roychoudhury

WCET-based allocation

% gain in WCET reduction due to a variable allocation:
* not a constant
* not cumulative
* gainy,,, <gain, + gain,.

WCET

Wosimie > "

Copyright 2009 by Abhik Roychoudhury

,,,,,,,,, Summary: WCET-based allocation

» Optimal WCET based allocation
» Must not be profile-guided (WCET path).
» Cannot take WCET contribution of variables as constant.
» Rules out Knapsack like solutions.
» ACET-based solution (where gain; is constant) is a well-
known knapsack problem with known algorithmic
solutions via dynamic programming.

Copyright 2009 by Abhik Roychoudhury

Overall Summary of Timing Issues

» Correctness of many embedded systems depend on their
timing behavior.
» Analysis / Validation Methods
» Software level
» WCET analysis — fine-grained
» System level
» Scheduling methods — use WCET estimates.
» Make the system more time predictable and easier to
analyze
» Scratchpad memories are one such solution.

Copyright 2009 by Abhik Roychoudhury

