
4/6/2011

1

Performance Validation – Systems
CS 4271 Lecture 10

Abhik Roychoudhury
http://www.comp.nus.edu.sg/~abhik

Copyright 2009 by Abhik Roychoudhury

Ack: Slides 4-19 are modified and augmented from Peter Marwedel’s
slides

So far in CS4271…
Functionality analysis

Modeling, Model Checking

Timing Analysis
Software level – WCET analysis
System level – Scheduling methods – Today!

Copyright 2009 by Abhik Roychoudhury

Real-time Embedded Systems
Embedded systems that monitor, respond to, or control
external environment under timing constraints
Examples:

Vehicles (car, aircraft, …)
Traffic control (highway, air, railway, …)
Process control (power plant, chemical plant, …)

Ack: Peter Marwedel’s slides3

Medical systems (radiation therapy, …)
Telephone, radio, satellite communication
Computer games

Characteristics
Timing constraints / deadline

Functional and temporal correctness
Hard deadline

Must always meet deadline
Air traffic controller

Soft deadline

Ack: Peter Marwedel’s slides4

Soft deadline
Must frequently meet deadline
MPEG decoder

Tasks
A task is a block of code executed in a CPU in a
sequential fashion.
Several independent tasks may be executing on the same
CPU

How to schedule them ?

Ack: Peter Marwedel’s slides5

Today’s lecture

There might also be dependences among tasks, captured
by a task graph

Task mapping – which task on which CPU?
Task scheduling – in what order to run the tasks mapped to
same CPU?

Why study scheduling?
Increase CPU utilization or other metrics
For real-time systems requiring hard guarantees

Study in advance whether all tasks can be scheduled without
missing any deadlines.
Need computation time of each task

4/6/20116

Typically given as a worst-case bound, called the Worst-case Execution
Time (WCET)
How to derive these WCET bounds ?

Discussed in earlier 2 lectures.

4/6/2011

2

Informally, scheduling is

Assume that we are given a task graph G=(V,E).

Def.: A schedule s of G is a mapping
V →T

of a set of tasks V to start times from domain T.

Ack: Peter Marwedel’s slides7

V1 V2 V4V3

t

G=(V,E)

T

s

Informally, scheduling is

Typically, schedules have to respect a number
of constraints, incl. resource constraints,
dependency constraints, deadlines.

S h d li fi di h i

Ack: Peter Marwedel’s slides8

Scheduling = finding such a mapping.

Scheduling to be performed several times
during ES design (early rough scheduling as well
as late precise scheduling).

More precisely,
Schedule

An assignment of tasks to the processor (assuming 1
processor!) over time.

Feasible schedule
All tasks can be completed and all constraints (precedence,
resource, deadline) can be respected.

Ack: Peter Marwedel’s slides9

) p
Scheduling Algorithm

A recipe for producing schedules
Schedulability

If at least one scheduling algorithm producing a feasible
schedule exists.

Periodic and Aperiodic
Def.: Tasks which must be executed once every p units of

time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.
All other tasks are called aperiodic.
Def.: Tasks requesting the processor at unpredictable

Ack: Peter Marwedel’s slides10

times are called sporadic, if there is a minimum separation
between the times at which they request the processor.

Periodic Task
Activated on a regular basis between fixed interval

scan the airspace every 3 sec

P = (s, c, p, d)
s = start time or arrival time
c = worst case execution time (WCET)
p = period or cycle time

4/6/201111

p = period or cycle time
d = deadline
c <= d <= p

Periodic Task (Contd.)

d

cp

4/6/201112

Period: interval between task activations.

Computation time: Typically the WCET.

Initiation time: time at which task becomes ready.

Deadline: time at which process must finish.

In most cases, d = p

4/6/2011

3

Preemptive and non-preemptive
scheduling

Non-preemptive schedulers:
Tasks are executed until they are done.
Response time for external events may be quite long.
Preemptive schedulers: To be used if

- some tasks have long execution times org
- if the response time for external events to be short.

Ack: Peter Marwedel’s
slides

13

Dynamic/online scheduling

Dynamic/online scheduling:
Processor allocation decisions (scheduling)
at run-time; based on the information
about the tasks arrived so far.

Ack: Peter Marwedel’s slides14

Static/offline scheduling
Static/offline scheduling:
Scheduling taking a priori knowledge about arrival times,
execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by timer.
Timer controlled by a table generated at design time.

Ack: Peter Marwedel’s slides15

Schedulability
Set of tasks is schedulable under a set of constraints, if

a schedule exists for that set of tasks & constraints.

Exact tests cannot be efficiently computed in many
situations.

Sufficient tests: sufficient conditions for schedule
checked. (Hopefully) small probability of indicating that no

Ack: Peter Marwedel’s slides16

(p y) p y g
schedule exists even though one exists.

Necessary tests: checking necessary conditions. Used
to show no schedule exists. There may be cases in which
no schedule exists & we cannot prove it. necessary

schedulable
sufficient

To summarize
Input to Scheduling Algorithm

One or more tasks
Activation time, execution time, deadline for each process

Scheduling algorithm: a policy to allocate tasks to the
processor(s)

4/6/201117

Feasible schedule if the scheduling algorithm can meet all
the constraints
Optimal algorithm: A scheduling algorithm that produces
a feasible schedule if it exists

To summarize
How do we evaluate a scheduling policy:

Ability to satisfy all deadlines.
CPU utilization: percentage of time devoted to useful work.
Scheduling overhead: time required to make scheduling
decision.

4/6/201118

4/6/2011

4

Organization of Scheduling slides
Real-time Systems
Basics of Scheduling
Periodic Scheduling Methods

RMS
EDF

4/6/201119

Recap: Why study scheduling?
Increase CPU utilization or other metrics
For real-time systems requiring hard guarantees

Study in advance whether all tasks can be scheduled without
missing any deadlines.
Need computation time of each task

Copyright 2009 by Abhik Roychoudhury

Typically given as a worst-case bound, called the Worst-case Execution
Time (WCET)
How to derive these bounds ? –

We studied this just now (WCET analysis !)

Recap: Periodic tasks
A task is a program!
Activated on a regular basis between fixed interval

scan the airspace every 3 sec

P = (s, c, p, d)
s = start time or arrival time

Copyright 2009 by Abhik Roychoudhury

c = worst case execution time (WCET)
p = period or cycle time
d = deadline
c <= d <= p

Task Execution

Terminate

….

activation
Scheduling

dis-

patch
Execution

Copyright 2009 by Abhik Roychoudhury

pre-emption

Dispatching from the ready queue will be based on the scheduling policy
which takes into account task priority.

Priority driven scheduling

Each task has a priority.
CPU goes to highest-priority task that is ready.
Priorities determine scheduling policy:

fixed priority;
time varying priorities

Copyright 2009 by Abhik Roychoudhury

time-varying priorities.

Rules:
each task has a fixed priority (1 highest);
highest-priority ready task gets CPU
task continues until done (non pre-emptive) OR
Task can be pre-empted by a later arriving higher priority task.

Example (premptive)
P1: priority 1, execution time 10
P2: priority 2, execution time 30
P3: priority 3, execution time 20

P2 ready t=0 P1 ready t=15
P3 ready t=18

Copyright 2009 by Abhik Roychoudhury

time0 3010 20 6040 50

P2 P2P1 P3

4/6/2011

5

Rate-monotonic scheduling
RMS (Liu and Layland 1973)

widely-used, analyzable scheduling policy.

Analysis is known as Rate Monotonic Analysis
RMS is an optimal fixed priority assignment method

If there exists a schedule that meets all the deadlines with fixed priority,
h RMS ill d f ibl h d l

Copyright 2009 by Abhik Roychoudhury

then RMS will produce a feasible schedule.

Fixed-priority, pre-emptive scheduling.

Assumptions in RMS
All tasks run on single CPU.
Zero context switch time.

If not, the context switch time needs to be added in response
time computation.

No data dependencies between tasks.

Copyright 2009 by Abhik Roychoudhury

p
Task execution time is constant.

If not, we take the WCET.

Deadline is at end of period (p = d)
Highest-priority ready task runs.

Priority assignment in RMS.

Optimal (fixed) priority assignment:
shortest-period task gets highest priority;
priority inversely proportional to period;
break ties arbitrarily.

Intuition: Tasks requiring frequent attention (smaller

Copyright 2009 by Abhik Roychoudhury

Intuition: Tasks requiring frequent attention (smaller
period) should receive higher priority

RMS Example

P1

P1: s=0, c=2, p=d=5
P2: s=1, c=1, p=d=4
P3: s=2, c=2, p=d=20

5 10 15 200

Copyright 2009 by Abhik Roychoudhury

P1

P2

P3

1 5 9 13 17 21

2 22

Rate monotonic analysis
Response time: time required to finish task.
Critical instant: scheduling state that gives worst response
time.
Critical instant occurs when all higher-priority tasks are
ready to execute.

Copyright 2009 by Abhik Roychoudhury

y

Worst case response time
Solved by iterative computation
wi = ci + ∑j<i cj *⎡wi/pj⎤

Critical Instant

P1 P1 P1 P1 P1

interfering processes

Copyright 2009 by Abhik Roychoudhury

P4

P3

P2

critical
instant

P2 P2

P3

4/6/2011

6

Informal argument about optimality
P1 = (c1, p1, d1) with p1 = d1
P2 = (c2, p2, d2) with p2 = d2
p1 < p2
Suppose P1 and P2 can be scheduled with non-RM priority
assignment, i.e., P2 has highest priority
At critical instant with non RM priorities

Copyright 2009 by Abhik Roychoudhury

At critical instant, with non-RM priorities
c1 + c2 <= p1; [1]

With RM priority
⎣p2/p1⎦*c1 + c2 <= p2; [2]

If [1] is satisfied, then [2] is also satisfied

RMS optimality

P2 period

P1 period
P1

P2

P1 P1

RM priorities

Copyright 2009 by Abhik Roychoudhury

P1 P1 P1

P2 period

P1 period
P1 P1

P1

P2

Non RM priorities

RMS CPU utilization
Utilization for n processes is

U = Σ i ci / pi

U ≤1 is a necessary condition for feasibility regardless of
scheduling policy
Scheduling with fixed priorities is feasible if

U ≤ n (2 1/n – 1)

Copyright 2009 by Abhik Roychoudhury

()
The bound is sufficient but not necessary.
As number of tasks approaches infinity, maximum utilization
approaches 69%.

RMS cannot use 100% of CPU, even with zero context switch overhead.
Must keep idle cycles available to handle worst-case scenario.

Earliest-Deadline-First
EDF: dynamic priority scheduling scheme.
Task closest to its deadline has highest priority.
Requires recalculating tasks at every timer interrupt.
EDF can use 100% of CPU.
Implementation

Copyright 2009 by Abhik Roychoudhury

p
On each timer interrupt:

compute time to deadline;
choose task closest to deadline.

Generally considered too expensive to use in practice.

EDF Example

P1 period
P1 = (2, 4, 4) P2 = (5, 10, 10)

Copyright 2009 by Abhik Roychoudhury

time
0 2 4 6 8 10 12 14 16 18 20

P2 period

P2 P2 P2 P2

P1 P1 P1 P1 P1

P1 delayed

EDF Properties
EDF is optimal

If a feasible schedule exists using dynamic priorities, then EDF
will produce a feasible schedule

EDF can always produce a feasible schedule if U ≤ 1
Scheduling with dynamic priority is feasible if and

Copyright 2009 by Abhik Roychoudhury

g y p y
only if U ≤ 1

4/6/2011

7

Fixing scheduling problems …

… in practice.
What if your set of tasks is not schedulable?

Change deadlines in requirements.
Reduce execution times of processes.
Get a faster CPU

Copyright 2009 by Abhik Roychoudhury

Get a faster CPU.

Organization of Timing Analysis
Software timing analysis - Completed!

WCET analysis

System level analysis – Completed!
Scheduling methods

Design issues to improve timing predictability

Copyright 2009 by Abhik Roychoudhury

Design issues to improve timing predictability
Scratchpad memories

Scratchpad Memory
Compiler controlled memory.
Unlike cache, compiler has control over its contents.
We can statically decide what to put in the scratchpad
and lock it in.

Copyright 2009 by Abhik Roychoudhury

So, is it simply a statically locked cache?
No, it is a bit more!

Cache locking and scratchpad

1

2
3
4

3
8

3
7

Copyright 2009 by Abhik Roychoudhury

4
5
6
7
8

8

Memory

Locked Cache

7

Scratchpad

Locked, fully associative
cache.

How scratchpad memory works?

Scratchpad

On-chip
Predictable -1 cycle

C
P

Mem.

Copyright 2009 by Abhik Roychoudhury

Main Mem.

(Off-chip)

U

Predictable – N cycles

Address

Space

Combination with cache is also possible.

Scratchpad

On-chip

Predictable -1 cycle

C
P

Mem.

Copyright 2009 by Abhik Roychoudhury

Main Mem.

(Off-chip)

P
U

1 cycle

Mem.

Address

space

Cache
N cycles

4/6/2011

8

Scratchpad allocation strategy

Assume a scratchpad memory for data variables.
We need to statically decide which variables to allocate in
scratchpad memory.

Variables = {v1, …, vn}
Say n = # of times v is executed in a given execution path

Copyright 2009 by Abhik Roychoudhury

Say ni = # of times vi is executed in a given execution path.
ni is constant.

Define gaini = ni * (N – 1)
gaini = gain from allocating vi to scratchpad.
N = number of cycles needed to access main memory.
gaini is constant

Scratchpad allocation strategy

Maximize
∑1≤i≤n choicei * gaini

Subject to
∑1≤i≤n choicei * wi ≤ Capacity

KNAPSACK Problem

Copyright 2009 by Abhik Roychoudhury

KNAPSACK Problem
wi is the area occupied by variable vi

Capacity is the total area in scratchpad
choicei is 0 or 1

0 if vi is not allocated
1 if vi is allocated.

The gain is not constant
Define gaini = ni * (N – 1)

gaini = gain from allocating vi to scratchpad.
N = number of cycles needed to access main memory.
Say ni = # of times vi is executed in a given execution path.
ni is constant.

Copyright 2009 by Abhik Roychoudhury

Which execution path?
What if we want to allocate to scratchpad memory for reducing the
program’s WCET?

Knapsack problem
Given n objects and a knapsack

Capacity of knapsack W
Object i has weight wi and value gaini

Fill up the knapsack so as to maximize value

Perfect fit for our allocation problem if the gain by

Copyright 2009 by Abhik Roychoudhury

allocating a variable to scratchpad memory is a constant
Holds for ACET based allocation
Not true for WCET based allocation

Knapsack problem can be easily solved by dynamic
programming.

Knapsack
Array V[0..n,0..W]
V[i,j] = maximum value if we are restricted to objects 1..i, and the weight

limit is j

Define
V[i,j] = max(V[i-1,j],V[i-1,j-wi] + vi) for i > 0

Copyright 2009 by Abhik Roychoudhury

[,j] ([,j], [,j i] i)
V[0,j] = 0

Final Answer V[n,W]

This solution is useful only for ACET based allocation.

ACET vs WCET based

if U= V=

if In this simple example assume
U and V have same size
Only one of them can be

Allocate U

WCET (Worst-case) = Maximum exec. time of a pgm. for all possible inputs

Copyright 2009 by Abhik Roychoudhury

U= V=

if U= V= Only one of them can be
allocated.
ACET savings depends on the
execution counts of Path1 and
Path2 (whichever is the more
frequent path forms our profile
say)
WCET savings depend on which
path is longer.

Path2

U= V=

if

Path1

Allocate V

4/6/2011

9

Difficulty in WCET based allocation

if

Path1

90 100

90 80
Before

After

Path1 Path2Allocate V

Copyright 2009 by Abhik Roychoudhury

U= V=
Path2

Path1

Contribution of V to WCET path = 20

Reduction in WCET by allocating V = 10

Path1 is now the WCET path which has
different var. access frequencies from Path2

Sub-optimal allocation

if

V,U both appear in WCET path. Suppose #V > # U

90 100

Path1 Path2
WCET path based allocation = {V}

Copyright 2009 by Abhik Roychoudhury

U= V=
U=

Path2
Path1 90 100

90 80
Before

After

90 100

75 85
Before

After

Path1 Path2
Optimal allocation = {U}

WCET based allocation

gain in WCET reduction due to a variable v
not a constant, depends on

current WCET path
Diff in exec. Times of WCET path and other paths

Copyright 2009 by Abhik Roychoudhury

Occurrence of v in WCET path and other paths

optimize

WCET
P

P’

P

P’

WCET

WCET-based allocation

gain in WCET reduction due to a variable allocation:
not a constant
not cumulative

gain{v,v’} ≤ gainv + gainv’

Copyright 2009 by Abhik Roychoudhury

optimize

WCET
P

P’

P

P’

WCET

Summary: WCET-based allocation
Optimal WCET based allocation

Must not be profile-guided (WCET path).
Cannot take WCET contribution of variables as constant.

Rules out Knapsack like solutions.

ACET-based solution (where gaini is constant) is a well-

Copyright 2009 by Abhik Roychoudhury

(g i)
known knapsack problem with known algorithmic
solutions via dynamic programming.

Overall Summary of Timing Issues
Correctness of many embedded systems depend on their
timing behavior.
Analysis / Validation Methods

Software level
WCET analysis – fine-grained

System level

Copyright 2009 by Abhik Roychoudhury

System level
Scheduling methods – use WCET estimates.

Make the system more time predictable and easier to
analyze

Scratchpad memories are one such solution.

