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Timing in Embedded Systems

Communication network 

CPU Co-proc. DSPTask2Task1 Task4 Communication 
scheduling

Task
Scheduling

event stream
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I/O

Complex Interaction
With environment

Subsystem
A

Subsystem
B

Task3Task5

Many possible inputs
- Complex application programs  

Complex Processors
Cache, Pipeline

Difficult to analyze & debug!Difficult to analyze & debug!

Example Set-up

raw video
stream

media processor + 
µ architecture

MPEG-2 encoder

on-chip
network

encoded
video stream

system-level view of a video 
encoder in a video phone
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µ-architectureon-chip
buffer

video 
capture

video decoding
and playout at the

receiver at a 
specified frame-rateminimum

buffer size
required?

Need to look inside the different processing tasks, and analyze their timing!

Time is abstracted!
Our programming languages do not mention time

C, Java, C#, C++

Even an instruction takes variable time
Hit/miss in instruction cache
Hit/miss in data cache
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Pipeline stalls
Data hazard
Resource contention

Branch prediction …

Need timing analysis of programs!

Timing analysis of programs
Estimating uninterrupted software execution time on a given 
hardware (processor).
A building block for more complicated performance analysis. 

Communicating multi-processor execution.

Helps estimate performance of a design point.
Serves as a sub-routine for Design Space Exploration
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Serves as a sub routine for Design Space Exploration.

Timing analysis of programs
Schedulability analysis of Hard Real-time systems.

Such analysis assumes knowledge of WCET of each task being 
scheduled.

WCET stands for Worst-case Execution Time

Rate Monotonic scheduling with tasks T1,…,Tn

C t ti  ti  C C
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Computation times C1,…,Cn

Period = deadline  D1,…,Dn

Here C1,…,Cn are the WCET (not average execution times of the 
programs)
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Organization
Software timing analysis

WCET analysis

System level analysis
Schedulability analysis

Design issues to improve timing predictability
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g p g p y
Scratchpad memories

WCET
Worst Case Execution Time (WCET) of a program for a given 
hardware platform.

Sequential Terminating Programs.
Gets input, computes, produces output.

Many inputs are possible.
L d   diff  i  i
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Leads to different execution times.

WCET : An upper bound on the execution time for all possible 
inputs.

Why need analysis?
To find WCET of a program, execute it for all possible 
inputs.

WCET by measurement.
Exponentially many possible inputs in terms of input size.

Insertion sort program
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Similar problems will be encountered for WCET Analysis via 
platform simulation.

Need access to platforms/simulators also!
Go for static analysis.

WCET by measurement?
What about single path programs such as matrix multiplication 
?

Execution path is independent of input data.
Still execution time can be variable.

Latency of floating point operation (e.g., multiplication) depends on 
the input data.
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the input data.

Not possible to try it on all possible platforms and then 
choose one. 

Often trying to decide the platform as well.

Why Platform-aware Analysis?
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Distribution of execution times across inputs in a quicksort 
program on a simple and complex processor

WCET Analysis

Employ static analysis to compute an upper bound on 
actual WCET (Estimated WCET)
Run program on selected inputs get a lower bound on 
actual WCET (Observed WCET)
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Observed

Actual

Estimated

Estimated WCET ≥  Actual WCET ≥ Observed WCET
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BCET and WCET
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WCET Analysis
Program path analysis 

All paths in control flow graph are not feasible.
Micro-architectural modeling

Dynamically variable instruction execution time.
Cache, Pipeline, Branch Prediction
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Out-of-order Pipelines

Observed

Actual

Estimated

Clarification: Control flow graph
x = 1; y = 0; z = 0;
while (x < 10){

if (x > 5)
y = y + x;

else   z = z + x;

x =1; y = 0; z = 0;

x < 10

x > 5

Y N
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else   z  z + x;
x = x + 1;

}
printf(….);

y = y +x z = z + x

Y N

x = x +1
printf(…)

Nodes of the graph, basic blocks, are maximal code fragments executed without control 
transfer. The edges denote control transfer.

Exercise: CFG
procedure Check_data()
{         int  i = 0, morecheck = 1, wrongone = -1, datasize = 10;

L:     while (morecheck)
LB:   {

if  (data[i] < 0)
A:                {  wrongone = i;   morecheck = 0; }

else
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B:                    if  (++i >= datasize) morecheck = 0;
}
if (wrongone >= 0)

C:               { handle_exception(wrongone); return 0; }
C’:     else  return i;

}

Exercise on CFG
Construct the CFG of the procedure given in the 
previous slide.

How to construct an inter-procedural CFG for a program 
with many procedures?

Copyright 2009 by Abhik Roychoudhury17

main(){                 f1(){                f2(){
…                             …                    …

f1();                     f2();                 f2();
f2();                      …                    …

…                         }                       }
}

Why all paths may not be feasible?
if (x > 0{

y = 1;
else

y = 2; 
}
if (x > 1){

x >0

y = 1 y = 2

x >1

Y N
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if (x > 1){
z = 10;

else
z = 20;

}
…

z = 10 z = 20

Y N

…
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Restrictions  of analysis – (1)
Static analysis need not be on source program.

We can perform static analysis on assembly code of a given 
program.
The analysis is only for time taken, and not for the memory 
locations / values accessed.
N  t i ti    d t  t t  d f  WCET 
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No restriction on program data structures used for WCET 
analysis.
What about control flow ?

Restrictions of analysis – (2)
Restrictions on control flow

1. No unbounded loops
Common sense. 

Otherwise how to guarantee time?

2. No unbounded recursion
Similar issue
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Similar issue.

3. No dynamic function calls
Need to statically know the functions called, and the possible call sites 
of these functions.

Organization of WCET Analysis
What is Timing Analysis ?
An Early solution -- Timing Schema.
Modeling Program Flows.

Primarily Control flow.
Modeling timing effects of Micro-architecture.

Copyright (c) 2009, Abhik Roychoudhury21

Cache, pipeline.

Timing Schema
One of the first works on WCET analysis.
Basically, perform control flow analysis to find the “longest” 
program path.
The notion of “longest” is weighted

Take into account the cost of executing individual program 
l
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elements.
Timing schema is a simple way of composing these costs.

Does not work on Control Flow Graphs
Works on Abstract Syntax Tree

Example
sum = 0;

for (i=0; i< 10; i++){ 

if (i % 2 == 0)

sum += i;

if (sum < 0)

SEQUENCE

sum = 0; 

i = 0

FOR return sum
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break;

}

return sum;

i < 10 i++SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

AST and CFG
Hierarchy

AST shows the different scopes at different levels
CFG has no hierarchy.

Loops
AST is tree, free from cycles

Copyright 2009 by Abhik Roychoudhury24

Any loop in the program is a cycle in the CFG.
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AST and CFG
SEQUENCE

sum = 0; i = 0 FOR return sum

sum =0; i =0;

i < 10

i %2==0

Y N

Y N
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i < 10 i++SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

sum+=i

sum<0

break

i++ return sum

Y N

Timing schema – (works on AST)
Time(S1;S2) = Time(S1) + Time(S2)
Time(if B {S1} else {S2}) 

= Time (B) +  max( Time(S1), Time(S2) )

Time( while B {S1} )
= (n+1) * Time(B)  + n * Time(S1)
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( ) ( ) ( )
n  is the loop bound.

Time( for(Init; B; Incr.){ S } )
= Time(Init) + (n+1)*Time(B) + n*Time(S) + n*Time(Incr.)

Time( if (B) { S} ) = Time(B) + Time(S)

Timing schema
SEQUENCE

sum = 0; i = 0 FOR return sum

4

Time(for-loop) 
= Time(i= 0) +

11 * Time(i < 10) + 
10 * 4  + 10 * Time(i++)

= 1 + 11 + 10*4 + 10*1
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i < 10 i++SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

(1 + 1 ) = 
2

(1 + 1 ) = 2

= 62 time units

Assumption:
Each assignment/condition 
takes 1 time unit
(not realistic in practice).

Problems with Timing Schema
Language Level:

Just a control flow analysis.
Insensitive to knowledge of infeasible paths.

Compiler level:
How to integrate effect of compiler opt?

Easy to handle – schema on optimized code.
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y p

Architecture level:
Instructions take constant time – Not true.
Cache hits, pipelining and other performance enhancing 
features.

The issue with Infeasible Paths

SEQ

i = 0 WHILE
T5 = (n+1)*T4 + n*T3T6

T = T5 + T6
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B IF

B1 S1 S2

T3 = T0 + 
max(T1,T2)

T0 T1 T2

T4What if T1 > T2 
and

S1 is executed 
only in the first 
loop iteration?

Infeasible paths

Infeasible sequence of  statements in general
if  (J== 0) {

K = 1

} else { 

K = 10 

Cannot be executed 
together
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K  10 

}

if  (K < 5){

J++;

} else {

J--;

}

Such infeasible paths 
should not be a witness 
to our WCET estimate.
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Infeasible Path handling in Timing Schema
if  (J== 0) {

K = 1
} else { 

K = 10; …
}

SEQUENCE

ITE ITE
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}
if  (K < 5){

J++;…
} else {

J--;
}

J== 0 K=1 K=10;
… K <5 J++ J--

How will timing schema work on this example?

Working of timing schema

SEQUENCE

ITE ITE

Time(first-if-statement)
= 1 + max(1,5) = 6

Time(second-if-statement)
= 1 + max(5,1) = 6

Estimated  worst case
i   6 + 6  12

Copyright 2009 by Abhik Roychoudhury32

J== 0 K=1 K=10;
… K <5 J++; 

… J--;

1
5

1 5
1 1

time = 6 + 6 = 12

Actual worst-case time
= 2 +6 = 8

Why?

Where is the overestimate from?

Control flow graph (CFG)

J == 0  ??

K = 1 K = 10

Y N
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K  < 5  ??

J++ J --
Y N

Infeasible path in CFG 

J == 0  ??

K = 1 K = 10

Y N

Copyright (c) 2009, Abhik Roychoudhury34 34

K  < 5  ??

J++ J --
Y N

Modeling of control flow
Path-based

Enumerate paths and find longest path
Expensive !
Need to remove longest path if it is infeasible.

Tree-based
Bottom-up pass of Syntax Tree
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Bottom up pass of Syntax Tree
Timing Schema

Difficult to integrate infeasible path info
Integer Linear Programming

Can take into account certain infeasible path information if 
available.
Efficient solvers available e.g. CPLEX

Forms the back-end of most state-of-the-art timing analyzers.

Integer Linear Programming

ILP: Integer Linear Programming
Variables and linear constraints on them.
Cost function (linear) to optimize.
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f = 3x + 5y + z

0 <= x, y, z <= 100

x + y + z = 200

x + 2y <= 160

________________________________________________

Optimal: f = 520; x = 40; y = 60; z = 100

Non-Optimal: f = 480; x = 80; y = 30; z = 90
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ILP Modeling

Basic Blk

e1 e2

x
x = e1 + e2 

3 4
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We are dealing with aggregated execution counts of nodes/edges of CFG.

e3 e4

= e3 + e4

sum = 0;

for (i=0; i< 10; i++){ 

if (i % 2 == 0)

sum += i;

if (  < 0)

sum = 0; i = 0

i < 10

i % 2 == 0

1

2

3
yes no

yes no
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if (sum < 0)

break;

}

return sum;

sum += i

sum<0

i++

return sum

4

5

6

7

no yes

break8

sum = 0; i = 0

i < 10

i % 2 == 0

1

2

3
yes no

yes no

Maximize
Time = 
c1N1 +c2N2 +c3N3 +c4N4+ 
c5N5 + c6N6 + c7N7 + c8N8

1 = N1 = E1,2
E6,2 + E1,2 = N2 = E2,3 + E2,7
E2,3 = N3 = E3,4 + E3,5
E = N = E
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sum += i

sum<0

i++

return sum

4

5

6

7

no yes

break8

E3,4 = N4 = E4,5
E3,5 + E4,5 = N5 = E5,6 + E5,8
E5,6 = N6 = E6,7
E5,8 = N8 = E8,7
E8,7 + E2,7 = N7 = 1

E6,2 ≤ 10

Infeasible path

The break statement 
is executed at most 
once.

N8 ≤ 1

sum = 0; i = 0

i < 10

i % 2 == 0

 += i

1

2

3

4

yes no

yes no
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sum += i

sum<0

i++

4

5

6

7

no yes

break8

return sum

Blocks 3 and 6 are 
never executed in 
same loop iteration

N3 +N6 ≤ loopbound
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Edges (2,3) and (5,6) 
are not executed 
together.

E2,3 = E5,7

How to express this inf. path constraint?

J == 0  ??

K = 1 K = 10

Y N
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K  < 5  ??

J++ J --
Y N
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Exercise: What are the infeasible paths?
procedure Check_data()
{         int  i = 0, morecheck = 1, wrongone = -1, datasize = 10;

while (morecheck)
{

if  (data[i] < 0)
{  wrongone = i;   morecheck = 0; }

l
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else
if  (++i >= datasize) morecheck = 0;

}
if (wrongone >= 0)

{ handle_exception(wrongone); return 0; }
else  return i;

}

Organization
What is Timing Analysis ?
An Early solution – Timing schema
Modeling Program Flows.

Primarily Control flow.

Modeling timing effects of Micro-architecture.
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Cache, pipeline.

The two phases
WCET analysis involves

Program path analysis – ILP
Micro-architectural modeling.

How do the two analyses interact?
Time = c1*N1 + c2*N2 +c3*N3 + …
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c1,c2, …  :  exec time of basic blocks 1,2, …
N1,N2, … : exec count of basic blocks 1,2, …
c1, c2, …  are estimated by µ-arch. modeling
N1,N2, … are fixed by control flow analysis via Integer Linear 
Programming (ILP).

Instruction Cache Modeling
One concrete hardware data structure.
With no hardware modeling, all instructions should be taken 
as misses.
Instead we can categorize some instructions as “always hit”

Coarse modeling.
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For certain instructions, even the “worst case” may not be a 
miss !

Categorization
… of instructions

AH (always hit)
AM (always miss)
PS  (Persistent: second and all further executions are 
guaranteed to produce a hit)

Eff t f ld i
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Effect of cold misses

NC (not AH, AM, PS)

Cache - basics
Redundant storage to reduce memory access time.
Many memory blocks map to a single cache line
F: Memory Block → Cache lines

Given a memory block m, F(m) returns the set of cache lines it can map 
to.
If F(m) is always a singleton set, then we have a direct mapped cache.
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If |F(m)| is  n, we have n-way set associative cache.
If F(m) = Set of all cache lines, then we have a fully associative cache (any 
memory block can map to any cache line).
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Cache - basics
Fully associative with LRU policy.
Cache lines = L1, L2, …, Ln

L1 is the youngest line
Ln is the oldest line
Do not refer to physical cache lines
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Memory blocks = S1, …,Sm

Any block Si can map to any cache line Lj during program 
execution

Concrete cache update

z

y

s

z

s
youngest
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x

t

y

x

s is not in cache

oldest

Removed from cache

Concrete cache update

z

s

s

z

s
youngest
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x

t

x

t

s is in cache

oldest

Abstract cache state
In the concrete cache state c, if a block is in cache line x, its 
age is x

Cache line 1 is youngest.
In the abstract cache state c’, each line x contains a set of 
memory blocks

B ∈ c’( Lx ) at a program point  p means …
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( x ) p g p p
When control reaches p, B may (must)  be in cache with min 
(max) age = x
Direction of approximation in abstraction.

May analysis

{a}

{c,f}

{}

{d}

{c}

{e}

{a}

{d}

youngest

oldest
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{ }

{a,c}

{e,f}

{}

{d}

1. In cache in some path.

2. If so, take min. age

Must analysis

{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

youngest

oldest
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{}

{}

{a,c}

{d}

1. In cache in both paths

2. If yes, take max age.
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Persistence analysis

{e}

{b}

{c}

{d}

{c}

{e,f}

{a}

{d}

youngest

oldest

{ } {b}
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{}

{e,f}

{c}

{d}

1. In cache in any path

2. If yes, take max age.

{a} {b}

{a,b}

How to use such analyses?
Let I be an instruction at control loc. CL
Let M be the memory block containing I.

Consider cache state at CL obtained via “must analysis”. 
If M is in some cache line within this abstract cache state, then I is 
Always Hit.

For cache state at CL obtained via “may analysis”
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For cache state at CL obtained via may analysis
If M is not in any cache line within this abstract cache state, then I is 
Always Miss.

For abstract cache state at CL obtained from persistence 
analysis

If M is not in the evicted line, then I is Persistent.

Use of may-must analyses
Let  hit_time = t1, miss_time = t2 
Number of accesses of I == #I (ILP variable)

I is AH
#I * t1 = contribution of I to WCET

I is AM
*
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#I * t2  = contribution of I to WCET

I is PS
(#I -1)*t1 + t2 = contribution of I to WCET

Formulation is still linear, solve via ILP.

Improving precision
If we can bound the number of misses of instr. I (via 
constraints)

No need to reduce exec. Time of I to constant
Contribution of I to WCET

#miss(I)*t2 + (#I – #miss(I))*t1 
Need constraints to bound #miss(I)
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Need constraints to bound #miss(I)
How to develop such constraints ? 

ILP, Expensive !!
See cache conflict graph approach in textbook

Pages 147 – 149.

Micro-arch. modeling so far
Modeling timing effects of I-cache

Abstract Interpretation to categorize instr
ILP based modeling is more expensive.

I-cache does not have timing anomalies
Can assume all accesses are misses.
Very pessimistic  but estimate still safe !
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Very pessimistic, but estimate still safe !
For certain processors, even this is not true !

Adding worst-case of each instruction may produce an estimate lower 
than the global worst-case !

Pipelined execution

Divide the execution of an instruction into stages

Instruction I+1 can proceed before I completes

Increased throughput, lower overall execution time

IF SIMPLIFIED VIEW !!
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I
I

I
I

I

I+1
I+1

I+1
I+1

I+2
I+2

I+2
I+3

I+3I+4

IF
ID

EX

WB
CM

0

1

2

3

4

SIMPLIFIED VIEW !!
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Out-of-order pipeline

I-1

headtail

I-4

IBUF

GPR

I+1
I

IF

ID

Mem => I-buffer 
(inorder)

IBUF => ROB (in-order)
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I-2 I-3

GPR

FPR

ROB

ALU
MULT
FPU

EX

WB

CM

ROB => FU (out-of-
order), (Instr still in 
ROB)

FU => ROB (out-of-order) 
(forward data) 

Update register file, free 
ROB entry (in-order)

O-o-o execution (1)

#   Ready   Instruction
Cycle

A  0   mult r3 r1 r2
B 1 add r3 r3 8

Partial order of dependences

A
B

D
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B  1   add  r3 r3 8
C  2   and  r3 r3 0xff
D  3   addu r5 r4 8
E  4   mult r5 r5 r6

Latencies

MULTU  1 ~ 4 cycles
ALU    1     cycle

MULTU

ALU
D

A

B C

E

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

B
C E

O-o-O execution (2)

#   Ready   Instruction
Cycle

A  0   mult r3 r1 r2
B  1   add  r3 r3 8

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

D
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C  2   and  r3 r3 0xff
D  3   addu r5 r4 8
E  4   mult r5 r5 r6

Latencies

MULTU  1 ~ 4 cycles
ALU    1     cycle

Instruction A executes 3 cycles

Instruction sequence
A

B
C

D

E

Difficulty in modeling

#   Ready   Instruction
Cycle

A  0   mult r3 r1 r2
B  1   add  r3 r3 8
C  2   and  r3 r3 0xff

dd

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

D

Instruction A executes 3 cycles
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D  3   addu r5 r4 8
E  4   mult r5 r5 r6

Latencies

MULTU  1 ~ 4 cycles
ALU    1     cycle

MULTU

ALU
D

A

B C

E

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

Timing Anomaly
Overall WCET of an instruction sequence cannot be obtained 
from WCET of each instruction
Need to consider all possible execution times of each 
instruction to safely estimate WCET !

Expensive enumeration
V  diff  f  h  d li
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Very different from cache modeling
Worst-case cache behavior of an instruction sequence can 
be safely estimated by considering all cache accesses as 
misses

Summing up …
WCET Analysis

Program flow modeling (typically by ILP)
Combine reasoning about timing of program fragments.
Exploiting Infeasible path information.
Difficult to use model checking for this purpose.

Micro-architectural modeling (customized analysis)
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Exec. time of each instruction is not constant.
Worst-case not found by adding up worst-cases of code fragments –
non compositional.

Efficient analysis developed to overcome this (not discussed).
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Chronos Tool for WCET analysis
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Chronos – views of program
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Set loop bounds
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Constraints specified by user at source code level.
These are automatically translated to node counts of assembly level control flow 
graph.

Flexible micro-arch modeling
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WCET Estimation
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Simulation vs Estimation

Simulation 
produces 
Observed WCET.

Estimation 
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produces 
Estimated WCET

Observed 
WCET ≤ 
Actual WCET 
≤ Estimated 
WCET


