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Timing in Embedded Systems

Task

Schedulin Communication
*] Taskl Co-proc. - ‘ ’ scheduling

Communication network

Taska
Complex Processors|

Complex Interaction | Many possible inputs Cache, Pipeline
With environment - Complex application programs

event stream

Difficult to analyze & debug! |
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Example Set-up

system-level view of a video
encoder in a video phone

raw video MPEG-2 encoder

encoded
stream

:lI[I_‘ video stream,
media processor + networ

on-chip | jrarchitecture o .
’ buffer video decoding
video [

capture and playout at the
t receiver at a
minimum specified frame-rate
buffer size
required?

Need to look inside the different processing tasks, and analyze their timing!

3 Copyright 2009 by Abhik Roychoudhury

Time is abstracted!

» Our programming languages do not mention time
» C,Java, C#, C++

» Even an instruction takes variable time

Hit/miss in instruction cache

Hit/miss in data cache

Pipeline stalls

v v v

» Data hazard

» Resource contention

v

Branch prediction ...

» Need timing analysis of programs!
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Timing analysis of programs

» Estimating uninterrupted software execution time on a given
hardware (processor).

» A building block for more complicated performance analysis.
» Communicating multi-processor execution.

» Helps estimate performance of a design point.

» Serves as a sub-routine for Design Space Exploration.

5 Copyright (c) 2009, Abhik Roychoudhury

Timing analysis of programs

» Schedulability analysis of Hard Real-time systems.

» Such analysis assumes knowledge of WCET of each task being
scheduled.
» WCET stands for Worst-case Execution Time
» Rate Monotonic scheduling with tasks T|,..., T,
» Computation times C,...,C_
» Period = deadline D,,...,.D,

» Here C,,...,C, are the WCET (not average execution times of the
programs)
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Organization
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» Software timing analysis
» WCET analysis

» System level analysis
» Schedulability analysis

» Design issues to improve timing predictability
» Scratchpad memories

WCET
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» Worst Case Execution Time (WCET) of a program for a given
hardware platform.
» Sequential Terminating Programs.
» Gets input, computes, produces output.

» Many inputs are possible.
» Leads to different execution times.

» WCET :An upper bound on the execution time for all possible
inputs.
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Why need analysis?

» To find WCET of a program, execute it for all possible
inputs.
» WCET by measurement.
» Exponentially many possible inputs in terms of input size.
» Insertion sort program

» Similar problems will be encountered for WCET Analysis via
platform simulation.

v

Need access to platforms/simulators also!
» Go for static analysis.

WCET by measurement?
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» What about single path programs such as matrix multiplication
?
» Execution path is independent of input data.
» Still execution time can be variable.

» Latency of floating point operation (e.g., multiplication) depends on
the input data.

» Not possible to try it on all possible platforms and then
choose one.
» Often trying to decide the platform as well.
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Why Platform-aware Analysis?
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Distribution of execution times across inputs in a quicksort
program on a simple and complex processor

WCET Analysis
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e Employ static analysis to compute an upper bound on
actual WCET (Estimated WCET)

e Run program on selected inputs get a lower bound on
actual WCET (Observed WCET)

Estimated WCET 2 Actual WCET 2 Observed WCET

le— Estimated 44

le— Actual
le— Observed
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BCET and WCET

Distribution of Execution Time
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WCET Analysis

» Program path analysis
» All paths in control flow graph are not feasible.
» Micro-architectural modeling
» Dynamically variable instruction execution time.
» Cache, Pipeline, Branch Prediction
» Out-of-order Pipelines

le— Estimated 44

le— Actual
le— Observed
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Clarification: Control flow graph

»x=1y=0;z=0;
» while (x < 10){

» if(x>D5)

’ Y=y +tx
» else z=z+x;
»  x=x+1;

>}

» printf(....);

Nodes of the graph, basic blocks, are maximal code fragments executed without control
transfer.The edges denote control transfer.
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Exercise: CFG

» procedure Check_data()
» { int i =0, morecheck = |, wrongone = -1, datasize = 10;
» L while (morecheck)
» LB {
» if (data[i] < 0)
» A { wrongone =i; morecheck = 0;}
> else
» B if (++i >= datasize) morecheck = 0;
8 }
> if (wrongone >= 0)
» C: { handle_exception(wrongone); return 0; }
» C:  else returni;
!
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Exercise on CFG

» Construct the CFG of the procedure given in the
previous slide.

» How to construct an inter-procedural CFG for a program
with many procedures?

main(){ fLO{ 24
o £20; 20
£20;
} }
}
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Why all paths may not be feasible?

if (x>0{
y==h Y x>0 N
else SN
[o=r ] [Cy=2 ]

} )’=2; /

else [ z=10 ] [[z=2

z =20;

»
»

»

»

»

v if (x> 1) . |

»  z=10; /
»

»

»

»
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Restrictions of analysis — (1)
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» Static analysis need not be on source program.

v

We can perform static analysis on assembly code of a given
program.

-

The analysis is only for time taken, and not for the memory
locations / values accessed.

v

No restriction on program data structures used for WCET
analysis.

v

What about control flow ?

Restrictions of analysis — (2)
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» Restrictions on control flow
» |.No unbounded loops
» Common sense.
O Otherwise how to guarantee time?
» 2.No unbounded recursion
» Similar issue.
» 3.No dynamic function calls

» Need to statically know the functions called, and the possible call sites
of these functions.
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Organization of WCET Analysis

Timing Schema

» What is Timing Analysis ?

» An Early solution -- Timing Schema.

» Modeling Program Flows.
» Primarily Control flow.

» Modeling timing effects of Micro-architecture.
» Cache, pipeline.

» One of the first works on WCET analysis.

» Basically, perform control flow analysis to find the “longest”
program path.

» The notion of “longest” is weighted

» Take into account the cost of executing individual program
elements.

» Timing schema is a simple way of composing these costs.

» Does not work on Control Flow Graphs
» Works on Abstract Syntax Tree
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Example

sum =0; SEQUENCE
for (i=0;i< 10;i++){

AST and CFG

if 1%2==0)
return sum
sum +=i;
if (sum < 0)
break;
return sum;
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» Hierarchy
» AST shows the different scopes at different levels
» CFG has no hierarchy.
» Loops
» AST is tree, free from cycles
» Any loop in the program is a cycle in the CFG.
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AST and CFG
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sum =0;i =0; | SEQUENCE ‘

Timing schema — (works on AST)

sum=0;i=0 ‘ |FOR ‘

return sum |

QUENCE

return sum
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» Time(S1;S2) =Time(S1) + Time(S2)
» Time(if B {S1} else {S2})

» =Time (B) + max(Time(SI),Time(S2) )
» Time( while B {SI})

» = (n+l) *Time(B) + n *Time(SI)

» n is the loop bound.

» Time( for(Init; B; Incr.){ S })
» =Time(Init) + (n+1)*Time(B) + n*Time(S) + n*Time(Incr.)
» Time( if (B) { S} ) =Time(B) + Time(S)
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Timing schema

‘SEQUENCE |
Time(for-loop)
=Time(i= 0) + ‘sum=0;i=0‘ | FOR ‘ ‘remm sum|
11 *Time(i < 10) +
10%4 + 10 *Time(i++)
=1+ 11+ 1054 + 101 4

= 62 time units

Assumption: (+1)=
Each assignment/condition 2
takes | time unit
(not realistic in practice).

Problems with Timing Schema
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» Language Level:

» Justa control flow analysis.

» Insensitive to knowledge of infeasible paths.
» Compiler level:

» How to integrate effect of compiler opt?

» Easy to handle — schema on optimized code.

» Architecture level:

» Instructions take constant time — Not true.

» Cache hits, pipelining and other performance enhancing
features.
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The issue with Infeasible Paths

Infeasible paths

sEQ | T=T5+T6
~
Te \ TS = (n+1)¥T4 + n*T3
=0 || wHILE |

Whatif TI >T2 o, T3=T0+
and B IE max(T1,T2)
S| is executed E
only in the first - T N T2
loop iteration? ‘ BI ‘ ‘ sl ‘ ‘ 9 ‘
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o Infeasible sequence of statements in general

o if J==0){
. K=l <1 Cannot be executed

together

o }else{ °g

. K=10

o) Such infeasible paths
should not be a witness

o if (K<5){ to our WCET estimate.

. J++

cdeke{ <

. -

°}
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Infeasible Path handling in Timing Schema
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oif (J==0
!

. K=1
o }else {
e K=10;...
° } | ITE ‘ ’ ITE |
oif (K<5)
. ++... -10;
J ’ H “! KIO' = -
e }else {
. J_.;
. } How will timing schema work on this example?
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Working of timing schema

Time(first-if-statement)
=1 +max(l,5)=6

Time(second-if-statement)
=1 +max(51)=6

SEQUENCE

Estimated worst case
time=6+6=12

Actual worst-case time
=2+6=8

Why?

Where is the overestimate from?
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Control flow graph (CFG)
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Infeasible path in CFG

34 Cop%r@nrm—mmwhcychcudhury
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Modeling of control flow

» Path-based
» Enumerate paths and find longest path
» Expensive !
» Need to remove longest path if it is infeasible.
» Tree-based
» Bottom-up pass of Syntax Tree
» Timing Schema
» Difficult to integrate infeasible path info
» Integer Linear Programming

» Can take into account certain infeasible path information if
available.

» Efficient solvers available e.g. CPLEX
» Forms the back-end of most state-of-the-art timing analyzers.
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Integer Linear Programming

» ILP:Integer Linear Programming
» Variables and linear constraints on them.

» Cost function (linear) to optimize.

f=3x+5y+z
0 <= x, y, z <= 100
X +y +z =200

X + 2y <= 160

Optimal : f = 520; x = 40; y = 60; z

Non-Optimal: f = 480; x = 80; y = 30; z

100
90
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ILP Modeling
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X /-

Basic Blk

x=el+e2
* —e3+ed

N

We are dealing with aggregated execution counts of nodes/edges of CFG.
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sum = 0;
for (i=0;i< 10; i++){
if (1% 2==0)
sum +=i;
if (sum < 0)
break;

}

return sum;
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Maximize
Time =

N, +¢;N, +¢3N; +¢, N+
SsNs+ cgNg + ¢;N; + ¢gNg

I =N, =E,
B TE =N, =B+ By
B3 = N3 =Ey 4+ By

B34 =Ng=Eg
E3s+ Egs= Ny = Esq + Egg
Ese=Ng=Eg;
Esg=Ng = Eg;
Eg;+ Ey; = N;= |
E, <10
» Copyright (¢) 2009, Abhik Roychoudhury Feturn sum

Infeasible path ]
» The break statement
is executed at most
once.
» Ng= |
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Blocks 3 and 6 are Wh”ﬁ:'["ihio”
never executed in =i
same loop iteration Jelse{
j=14;
N; +N; < loopbound }
iF(j<on
k=i
Edges (2,3) and (5,6) telse{
are not executed ) k=j;
together. "y
_ }
E;3=Esy
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How to express this inf. path constraint?
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Exercise: What are the infeasible paths?
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Organization

» procedure Check_data()
» { int i =0, morecheck = |, wrongone = -1, datasize = 10;
> while (morecheck)
’ {
3 if (data[i] <0)
> { wrongone = i; morecheck = 0;}
> else
3 if (++i >= datasize) morecheck = 0;
’ }
> if (wrongone >= 0)
3 { handle_exception(wrongone); return 0; }
3 else return i;
» )
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» What is Timing Analysis ?

» An Early solution — Timing schema

» Modeling Program Flows.
» Primarily Control flow.

» Modeling timing effects of Micro-architecture.
» Cache, pipeline.
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The two phases

» WCET analysis involves
» Program path analysis — ILP
» Micro-architectural modeling.

» How do the two analyses interact?

» Time = cI*NI + c2*N2 +c3*N3 + ...

» cl,c2,... : exec time of basic blocks 1,2,...

» NI,N2, ... :exec count of basic blocks 1,2, ...

» cl,c2,... are estimated by p-arch. modeling

» NI,N2, ... are fixed by control flow analysis via Integer Linear

Programming (ILP).

Instruction Cache Modeling
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One concrete hardware data structure.

v v

With no hardware modeling, all instructions should be taken
as misses.

v

Instead we can categorize some instructions as “always hit”
» Coarse modeling.

» For certain instructions, even the “worst case” may not be a
miss !
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Categorization

» ... of instructions
» AH (always hit)
» AM (always miss)
» PS (Persistent: second and all further executions are
guaranteed to produce a hit)
» Effect of cold misses

» NC (not AH,AM, PS)

Cache - basics
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» Redundant storage to reduce memory access time.
» Many memory blocks map to a single cache line

» F:Memory Block — Cache lines

» Given a memory block m, F(m) returns the set of cache lines it can map
to.

If F(m) is always a singleton set, then we have a direct mapped cache.
If [F(m)| is n, we have n-way set associative cache.

If F(m) = Set of all cache lines, then we have a fully associative cache (any
memory block can map to any cache line).
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Cache - basics

» Fully associative with LRU policy.

» Cachelines=1LL, ... L,

» L, is the youngest line

» L, is the oldest line
» Do not refer to physical cache lines

» Memory blocks =S, ...

S

» Any block S; can map to any cache line L, during program

execution

. 49
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Concrete cache update

youngest

.
0
\

sis notin cache
Removed from cache
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Concrete cache update

c—>

Abstract cache state

» In the concrete cache state ¢, if a block is in cache line x, its
age is X
» Cache line | is youngest.

» In the abstract cache state c’, each line x contains a set of
memory blocks
» B e (L, ) ata program point p means ...
» When control reaches p, B may (must) be in cache with min

(max) age = x

» Direction of approximation in abstraction.
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z s youngest
<
s
X X
t t oldest
sisin cache
H Copyright (c) 2009, Abhik Roychoudhury
May analysis
{a} {c} youngest
©f {e}
i) fa}
{d} {d} oldest
(ac 1. Incache in some path.
2. If so, take min. age
{e.f}
&
{d}

53
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Must analysis

{a} {c} youngest
o {e}
cf {a}
{d} {d} oldest
/In cache in both paths
{ 2. Ifyes, take max age. ‘
¢
{ac}
{d}
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Persistence analysis
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© © youngest
o) el
{c} (&}
{d} {d} oldest
[ @ | | (b} |
&
ef 1. Incache in any path
© 2. Ifyes, take max age.
C
{d}
{ab}
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How to use such analyses?

» Let | be an instruction at control loc. CL
» Let M be the memory block containing I.

» Consider cache state at CL obtained via “must analysis”.

» If Mis in some cache line within this abstract cache state, then | is
Always Hit.

» For cache state at CL obtained via “may analysis”

» If M is not in any cache line within this abstract cache state, then | is
Always Miss.

» For abstract cache state at CL obtained from persistence
analysis

» If M is not in the evicted line, then | is Persistent.
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Use of may-must analyses

» Let hit_time = tl, miss_time = t2

» Number of accesses of | == #| (ILP variable)
» lisAH
» #l* tl = contribution of | to WCET
» lisAM
» #1*t2 = contribution of | to WCET
» lis PS

» (#l -1)*tl + 2 = contribution of | to WCET
» Formulation is still linear; solve via ILP.
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Improving precision

» If we can bound the number of misses of instr. | (via
constraints)

No need to reduce exec.Time of | to constant

Contribution of | to WCET

» #miss(I)*€2 + (# — Hmiss(I))*t|

Need constraints to bound #miss(l)

How to develop such constraints ?

» ILP, Expensive !!

» See cache conflict graph approach in textbook
O Pages 147 — 149.

v v

v v
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Micro-arch. modeling so far

» Modeling timing effects of I-cache
» Abstract Interpretation to categorize instr
» ILP based modeling is more expensive.

» l-cache does not have timing anomalies
» Can assume all accesses are misses.
» Very pessimistic, but estimate still safe !

» For certain processors, even this is not true !

» Adding worst-case of each instruction may produce an estimate lower
than the global worst-case !
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Pipelined execution

Divide the execution of an instruction into stages
Instruction |+1 can proceed before | completes

Increased throughput, lower overall execution time

IF SIMPLIFIED VIEW !!
ol 1 D
1l | T EX
2 | 2| 141 | I wa
3 3|12 |11 I M
4| I+4 | T3 | 142 | T4 T
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Out-of-order pipeline
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Mem => I-buffer
(inorder) IBUF
tail y head
IBUF => ROB (in-order) \
I-1 I-4 R
ROB => FU (out-of- RO e
order), (Instr still in |>2\ 13
ROB) FPR
FU => ROB (out-of-order) ﬁ
(forward data) N
Update register file, free FPU
ROB entry (in-order)
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0-0-0 execution (1)

; Partial order of dependences
# Ready Instruction

mult r3 rl r2 A D

A 0
B 1 add r3 r3 8 \B\ N
c 2 and r3 r3 Oxff c E
D 3 addu r5 r4 8
E 4 mult r5 r5 ré6 01 2345678 910
2 | =
Instruction sequence HOLTY
- olelc|
aLu
MULTU 1 ~ 4 cycles
_ALU 1 cycle .
L atencies Instruction A executes 4 cycles
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0-0-0O execution (2)

# Ready Instruction
Cycle _ muLTy
0 mult r3 rl r2
1 add r3 r3 8
2 and r3 r3 Oxff
3 addu r5 r4 8
4 mult r5 r5 ré

HUOQwP

Instruction sequence

MULTU 1 ~ 4 cycles
_ALU 1 cycle

Latencies
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Difficulty in modeling

# Ready Instruction a ( |
Cyele MuLTU
_ Cycle
A 0 wmult r3 rl r2  aw 2lefo)
B 1 add r3 r3 8
C 2 and r3 r3 Oxff Instruction A execuites 3 cycles
D 3 addu r5 r4 8 |
E 4 mult r5 r5 ré6 %ﬂ.
a E
Instruction sequence HOLTY
n[slc '
ALU '
MULTU 1 ~ 4 cycles
_ALIOD 1 cycle
Latencies Instruction A executes 4 cycles
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Timing Anomaly

» Overall WCET of an instruction sequence cannot be obtained
from WCET of each instruction

» Need to consider all possible execution times of each
instruction to safely estimate WCET !
» Expensive enumeration

» Very different from cache modeling
» Worst-case cache behavior of an instruction sequence can

be safely estimated by considering all cache accesses as
misses
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Summing up ...

» WCET Analysis
» Program flow modeling (typically by ILP)
» Combine reasoning about timing of program fragments.
» Exploiting Infeasible path information.
» Difficult to use model checking for this purpose.
» Micro-architectural modeling (customized analysis)
» Exec. time of each instruction is not constant.

» Worst-case not found by adding up worst-cases of code fragments —
non compositional.

O Efficient analysis developed to overcome this (not discussed).
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Chronos Tool for WCET analysis
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Chronos — views of program

b et e
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File | Opthem Fen Help
"o simplescatar- goc s dweaory [Fon o |
WP-sahver drctony |

Simplesim- 3.8 Suecary Feeil
Loap baund canstraints I—7
Ouher conserins [ EE ]

[Fon
(-

WCIT Estimation Resull | Simulation Hesull | Paocesses Cosdiguralsses

For example : for loop from 1 o 10 = 100
for loop from 19 1o 23 =

Constraints specified by user at source code level.
These are automatically translated to node counts of assembly level control flow

graph.
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Flexible micro-arch modeling
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WCET Estimation

File Option | Rum, Help
e Estimate I
i | Fracesien confepeeation
Dump Pracessos Contiguiaions [
Simulate g

LT | %] [A]
WCET Estimation Result | Simulation Bess® | Frocessos Configurations.

WCET Estimation Result | Simulation Result | Processor Configurations
Warst Lase Execution Tine: 51267

Branch Mispredicion; 406
Instruction Cachi Miss £
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Simulation vs Estimation

Simulation
produces
Observed WCET.

Estimation
produces
Estimated WCET

Observed

WCET <
Actual WCET
< Estimated
WCET
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