
4/6/2011

1

Performance Validation of SW
CS 4271 Lectures 8, 9

Abhik Roychoudhury
National University of Singapore

Copyright 2009 by Abhik Roychoudhury1

http://www.comp.nus.edu.sg/~abhik/

Timing in Embedded Systems

Communication network

CPU Co-proc. DSPTask2Task1 Task4 Communication
scheduling

Task
Scheduling

event stream

Copyright (c) 2009, Abhik Roychoudhury2

I/O

Complex Interaction
With environment

Subsystem
A

Subsystem
B

Task3Task5

Many possible inputs
- Complex application programs

Complex Processors
Cache, Pipeline

Difficult to analyze & debug!Difficult to analyze & debug!

Example Set-up

raw video
stream

media processor +
µ architecture

MPEG-2 encoder

on-chip
network

encoded
video stream

system-level view of a video
encoder in a video phone

Copyright 2009 by Abhik Roychoudhury3

µ-architectureon-chip
buffer

video
capture

video decoding
and playout at the

receiver at a
specified frame-rateminimum

buffer size
required?

Need to look inside the different processing tasks, and analyze their timing!

Time is abstracted!
Our programming languages do not mention time

C, Java, C#, C++

Even an instruction takes variable time
Hit/miss in instruction cache
Hit/miss in data cache

Copyright (c) 2009, Abhik Roychoudhury4

Pipeline stalls
Data hazard
Resource contention

Branch prediction …

Need timing analysis of programs!

Timing analysis of programs
Estimating uninterrupted software execution time on a given
hardware (processor).
A building block for more complicated performance analysis.

Communicating multi-processor execution.

Helps estimate performance of a design point.
Serves as a sub-routine for Design Space Exploration

Copyright (c) 2009, Abhik Roychoudhury5

Serves as a sub routine for Design Space Exploration.

Timing analysis of programs
Schedulability analysis of Hard Real-time systems.

Such analysis assumes knowledge of WCET of each task being
scheduled.

WCET stands for Worst-case Execution Time

Rate Monotonic scheduling with tasks T1,…,Tn

C t ti ti C C

Copyright (c) 2009, Abhik Roychoudhury6

Computation times C1,…,Cn

Period = deadline D1,…,Dn

Here C1,…,Cn are the WCET (not average execution times of the
programs)

4/6/2011

2

Organization
Software timing analysis

WCET analysis

System level analysis
Schedulability analysis

Design issues to improve timing predictability

Copyright (c) 2009, Abhik Roychoudhury7

g p g p y
Scratchpad memories

WCET
Worst Case Execution Time (WCET) of a program for a given
hardware platform.

Sequential Terminating Programs.
Gets input, computes, produces output.

Many inputs are possible.
L d diff i i

Copyright (c) 2009, Abhik Roychoudhury8

Leads to different execution times.

WCET : An upper bound on the execution time for all possible
inputs.

Why need analysis?
To find WCET of a program, execute it for all possible
inputs.

WCET by measurement.
Exponentially many possible inputs in terms of input size.

Insertion sort program

Copyright (c) 2009, Abhik Roychoudhury9

Similar problems will be encountered for WCET Analysis via
platform simulation.

Need access to platforms/simulators also!
Go for static analysis.

WCET by measurement?
What about single path programs such as matrix multiplication
?

Execution path is independent of input data.
Still execution time can be variable.

Latency of floating point operation (e.g., multiplication) depends on
the input data.

Copyright (c) 2009, Abhik Roychoudhury10

the input data.

Not possible to try it on all possible platforms and then
choose one.

Often trying to decide the platform as well.

Why Platform-aware Analysis?

4

6

8

10

12

N
um

be
r o

f I
np

ut
s

6

8

10

12

14

16

m
be

r o
f I

np
ut

s

Copyright (c) 2009, Abhik Roychoudhury11

0

2

3000 3010 3020 3030 3040 3050 3060 3070 3080
Execution Time (cycles)

N

0

2

4

2690 2700 2710 2720 2730 2740 2750
Execution Time (cycles)

N
um

Distribution of execution times across inputs in a quicksort
program on a simple and complex processor

WCET Analysis

Employ static analysis to compute an upper bound on
actual WCET (Estimated WCET)
Run program on selected inputs get a lower bound on
actual WCET (Observed WCET)

Copyright (c) 2009, Abhik Roychoudhury12

Observed

Actual

Estimated

Estimated WCET ≥ Actual WCET ≥ Observed WCET

4/6/2011

3

BCET and WCET

cu
tio

n
T

im
e

Over-estimation

Copyright (c) 2009, Abhik Roychoudhury13

D
is

tr
ib

ut
io

n
of

 E
xe

c

Actual
BCET

Actual
WCET

Execution Time

Observed
WCET

Estimated
WCET

Observed
BCET

Estimate
d
BCET

Actual

Observed

WCET Analysis
Program path analysis

All paths in control flow graph are not feasible.
Micro-architectural modeling

Dynamically variable instruction execution time.
Cache, Pipeline, Branch Prediction

Copyright (c) 2009, Abhik Roychoudhury14

Out-of-order Pipelines

Observed

Actual

Estimated

Clarification: Control flow graph
x = 1; y = 0; z = 0;
while (x < 10){

if (x > 5)
y = y + x;

else z = z + x;

x =1; y = 0; z = 0;

x < 10

x > 5

Y N

Copyright 2009 by Abhik Roychoudhury15

else z z + x;
x = x + 1;

}
printf(….);

y = y +x z = z + x

Y N

x = x +1
printf(…)

Nodes of the graph, basic blocks, are maximal code fragments executed without control
transfer. The edges denote control transfer.

Exercise: CFG
procedure Check_data()
{ int i = 0, morecheck = 1, wrongone = -1, datasize = 10;

L: while (morecheck)
LB: {

if (data[i] < 0)
A: { wrongone = i; morecheck = 0; }

else

Copyright 2009 by Abhik Roychoudhury16

B: if (++i >= datasize) morecheck = 0;
}
if (wrongone >= 0)

C: { handle_exception(wrongone); return 0; }
C’: else return i;

}

Exercise on CFG
Construct the CFG of the procedure given in the
previous slide.

How to construct an inter-procedural CFG for a program
with many procedures?

Copyright 2009 by Abhik Roychoudhury17

main(){ f1(){ f2(){
… … …

f1(); f2(); f2();
f2(); … …

… } }
}

Why all paths may not be feasible?
if (x > 0{

y = 1;
else

y = 2;
}
if (x > 1){

x >0

y = 1 y = 2

x >1

Y N

Copyright 2009 by Abhik Roychoudhury18

if (x > 1){
z = 10;

else
z = 20;

}
…

z = 10 z = 20

Y N

…

4/6/2011

4

Restrictions of analysis – (1)
Static analysis need not be on source program.

We can perform static analysis on assembly code of a given
program.
The analysis is only for time taken, and not for the memory
locations / values accessed.
N t i ti d t t t d f WCET

Copyright (c) 2009, Abhik Roychoudhury19

No restriction on program data structures used for WCET
analysis.
What about control flow ?

Restrictions of analysis – (2)
Restrictions on control flow

1. No unbounded loops
Common sense.

Otherwise how to guarantee time?

2. No unbounded recursion
Similar issue

Copyright (c) 2009, Abhik Roychoudhury20

Similar issue.

3. No dynamic function calls
Need to statically know the functions called, and the possible call sites
of these functions.

Organization of WCET Analysis
What is Timing Analysis ?
An Early solution -- Timing Schema.
Modeling Program Flows.

Primarily Control flow.
Modeling timing effects of Micro-architecture.

Copyright (c) 2009, Abhik Roychoudhury21

Cache, pipeline.

Timing Schema
One of the first works on WCET analysis.
Basically, perform control flow analysis to find the “longest”
program path.
The notion of “longest” is weighted

Take into account the cost of executing individual program
l

Copyright (c) 2009, Abhik Roychoudhury22

elements.
Timing schema is a simple way of composing these costs.

Does not work on Control Flow Graphs
Works on Abstract Syntax Tree

Example
sum = 0;

for (i=0; i< 10; i++){

if (i % 2 == 0)

sum += i;

if (sum < 0)

SEQUENCE

sum = 0;

i = 0

FOR return sum

Copyright (c) 2009, Abhik Roychoudhury23

break;

}

return sum;

i < 10 i++SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

AST and CFG
Hierarchy

AST shows the different scopes at different levels
CFG has no hierarchy.

Loops
AST is tree, free from cycles

Copyright 2009 by Abhik Roychoudhury24

Any loop in the program is a cycle in the CFG.

4/6/2011

5

AST and CFG
SEQUENCE

sum = 0; i = 0 FOR return sum

sum =0; i =0;

i < 10

i %2==0

Y N

Y N

Copyright 2009 by Abhik Roychoudhury25

i < 10 i++SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

sum+=i

sum<0

break

i++ return sum

Y N

Timing schema – (works on AST)
Time(S1;S2) = Time(S1) + Time(S2)
Time(if B {S1} else {S2})

= Time (B) + max(Time(S1), Time(S2))

Time(while B {S1})
= (n+1) * Time(B) + n * Time(S1)

Copyright (c) 2009, Abhik Roychoudhury26

() () ()
n is the loop bound.

Time(for(Init; B; Incr.){ S })
= Time(Init) + (n+1)*Time(B) + n*Time(S) + n*Time(Incr.)

Time(if (B) { S}) = Time(B) + Time(S)

Timing schema
SEQUENCE

sum = 0; i = 0 FOR return sum

4

Time(for-loop)
= Time(i= 0) +

11 * Time(i < 10) +
10 * 4 + 10 * Time(i++)

= 1 + 11 + 10*4 + 10*1

Copyright (c) 2009, Abhik Roychoudhury27

i < 10 i++SEQUENCE

IF IF

i%2==0

sum+=i

sum<0

break

(1 + 1) =
2

(1 + 1) = 2

= 62 time units

Assumption:
Each assignment/condition
takes 1 time unit
(not realistic in practice).

Problems with Timing Schema
Language Level:

Just a control flow analysis.
Insensitive to knowledge of infeasible paths.

Compiler level:
How to integrate effect of compiler opt?

Easy to handle – schema on optimized code.

Copyright (c) 2009, Abhik Roychoudhury28

y p

Architecture level:
Instructions take constant time – Not true.
Cache hits, pipelining and other performance enhancing
features.

The issue with Infeasible Paths

SEQ

i = 0 WHILE
T5 = (n+1)*T4 + n*T3T6

T = T5 + T6

Copyright (c) 2009, Abhik Roychoudhury29

B IF

B1 S1 S2

T3 = T0 +
max(T1,T2)

T0 T1 T2

T4What if T1 > T2
and

S1 is executed
only in the first
loop iteration?

Infeasible paths

Infeasible sequence of statements in general
if (J== 0) {

K = 1

} else {

K = 10

Cannot be executed
together

Copyright (c) 2009, Abhik Roychoudhury30

K 10

}

if (K < 5){

J++;

} else {

J--;

}

Such infeasible paths
should not be a witness
to our WCET estimate.

4/6/2011

6

Infeasible Path handling in Timing Schema
if (J== 0) {

K = 1
} else {

K = 10; …
}

SEQUENCE

ITE ITE

Copyright 2009 by Abhik Roychoudhury31

}
if (K < 5){

J++;…
} else {

J--;
}

J== 0 K=1 K=10;
… K <5 J++ J--

How will timing schema work on this example?

Working of timing schema

SEQUENCE

ITE ITE

Time(first-if-statement)
= 1 + max(1,5) = 6

Time(second-if-statement)
= 1 + max(5,1) = 6

Estimated worst case
i 6 + 6 12

Copyright 2009 by Abhik Roychoudhury32

J== 0 K=1 K=10;
… K <5 J++;

… J--;

1
5

1 5
1 1

time = 6 + 6 = 12

Actual worst-case time
= 2 +6 = 8

Why?

Where is the overestimate from?

Control flow graph (CFG)

J == 0 ??

K = 1 K = 10

Y N

Copyright (c) 2009, Abhik Roychoudhury33

K < 5 ??

J++ J --
Y N

Infeasible path in CFG

J == 0 ??

K = 1 K = 10

Y N

Copyright (c) 2009, Abhik Roychoudhury34 34

K < 5 ??

J++ J --
Y N

Modeling of control flow
Path-based

Enumerate paths and find longest path
Expensive !
Need to remove longest path if it is infeasible.

Tree-based
Bottom-up pass of Syntax Tree

Copyright (c) 2009, Abhik Roychoudhury35

Bottom up pass of Syntax Tree
Timing Schema

Difficult to integrate infeasible path info
Integer Linear Programming

Can take into account certain infeasible path information if
available.
Efficient solvers available e.g. CPLEX

Forms the back-end of most state-of-the-art timing analyzers.

Integer Linear Programming

ILP: Integer Linear Programming
Variables and linear constraints on them.
Cost function (linear) to optimize.

Copyright 2009 by Abhik Roychoudhury36

f = 3x + 5y + z

0 <= x, y, z <= 100

x + y + z = 200

x + 2y <= 160

__

Optimal: f = 520; x = 40; y = 60; z = 100

Non-Optimal: f = 480; x = 80; y = 30; z = 90

4/6/2011

7

ILP Modeling

Basic Blk

e1 e2

x
x = e1 + e2

3 4

Copyright (c) 2009, Abhik Roychoudhury37

We are dealing with aggregated execution counts of nodes/edges of CFG.

e3 e4

= e3 + e4

sum = 0;

for (i=0; i< 10; i++){

if (i % 2 == 0)

sum += i;

if (< 0)

sum = 0; i = 0

i < 10

i % 2 == 0

1

2

3
yes no

yes no

Copyright (c) 2009, Abhik Roychoudhury38

if (sum < 0)

break;

}

return sum;

sum += i

sum<0

i++

return sum

4

5

6

7

no yes

break8

sum = 0; i = 0

i < 10

i % 2 == 0

1

2

3
yes no

yes no

Maximize
Time =
c1N1 +c2N2 +c3N3 +c4N4+
c5N5 + c6N6 + c7N7 + c8N8

1 = N1 = E1,2
E6,2 + E1,2 = N2 = E2,3 + E2,7
E2,3 = N3 = E3,4 + E3,5
E = N = E

Copyright (c) 2009, Abhik Roychoudhury39

sum += i

sum<0

i++

return sum

4

5

6

7

no yes

break8

E3,4 = N4 = E4,5
E3,5 + E4,5 = N5 = E5,6 + E5,8
E5,6 = N6 = E6,7
E5,8 = N8 = E8,7
E8,7 + E2,7 = N7 = 1

E6,2 ≤ 10

Infeasible path

The break statement
is executed at most
once.

N8 ≤ 1

sum = 0; i = 0

i < 10

i % 2 == 0

 += i

1

2

3

4

yes no

yes no

Copyright (c) 2009, Abhik Roychoudhury40

sum += i

sum<0

i++

4

5

6

7

no yes

break8

return sum

Blocks 3 and 6 are
never executed in
same loop iteration

N3 +N6 ≤ loopbound

Copyright (c) 2009, Abhik Roychoudhury41

Edges (2,3) and (5,6)
are not executed
together.

E2,3 = E5,7

How to express this inf. path constraint?

J == 0 ??

K = 1 K = 10

Y N

Copyright 2009 by Abhik Roychoudhury42

K < 5 ??

J++ J --
Y N

4/6/2011

8

Exercise: What are the infeasible paths?
procedure Check_data()
{ int i = 0, morecheck = 1, wrongone = -1, datasize = 10;

while (morecheck)
{

if (data[i] < 0)
{ wrongone = i; morecheck = 0; }

l

Copyright 2009 by Abhik Roychoudhury43

else
if (++i >= datasize) morecheck = 0;

}
if (wrongone >= 0)

{ handle_exception(wrongone); return 0; }
else return i;

}

Organization
What is Timing Analysis ?
An Early solution – Timing schema
Modeling Program Flows.

Primarily Control flow.

Modeling timing effects of Micro-architecture.

Copyright (c) 2009, Abhik Roychoudhury44

Cache, pipeline.

The two phases
WCET analysis involves

Program path analysis – ILP
Micro-architectural modeling.

How do the two analyses interact?
Time = c1*N1 + c2*N2 +c3*N3 + …

Copyright (c) 2009, Abhik Roychoudhury45

c1,c2, … : exec time of basic blocks 1,2, …
N1,N2, … : exec count of basic blocks 1,2, …
c1, c2, … are estimated by µ-arch. modeling
N1,N2, … are fixed by control flow analysis via Integer Linear
Programming (ILP).

Instruction Cache Modeling
One concrete hardware data structure.
With no hardware modeling, all instructions should be taken
as misses.
Instead we can categorize some instructions as “always hit”

Coarse modeling.

Copyright (c) 2009, Abhik Roychoudhury46

For certain instructions, even the “worst case” may not be a
miss !

Categorization
… of instructions

AH (always hit)
AM (always miss)
PS (Persistent: second and all further executions are
guaranteed to produce a hit)

Eff t f ld i

Copyright (c) 2009, Abhik Roychoudhury47

Effect of cold misses

NC (not AH, AM, PS)

Cache - basics
Redundant storage to reduce memory access time.
Many memory blocks map to a single cache line
F: Memory Block → Cache lines

Given a memory block m, F(m) returns the set of cache lines it can map
to.
If F(m) is always a singleton set, then we have a direct mapped cache.

Copyright (c) 2009, Abhik Roychoudhury48

If |F(m)| is n, we have n-way set associative cache.
If F(m) = Set of all cache lines, then we have a fully associative cache (any
memory block can map to any cache line).

4/6/2011

9

Cache - basics
Fully associative with LRU policy.
Cache lines = L1, L2, …, Ln

L1 is the youngest line
Ln is the oldest line
Do not refer to physical cache lines

Copyright (c) 2009, Abhik Roychoudhury49

Memory blocks = S1, …,Sm

Any block Si can map to any cache line Lj during program
execution

Concrete cache update

z

y

s

z

s
youngest

Copyright (c) 2009, Abhik Roychoudhury50

x

t

y

x

s is not in cache

oldest

Removed from cache

Concrete cache update

z

s

s

z

s
youngest

Copyright (c) 2009, Abhik Roychoudhury51

x

t

x

t

s is in cache

oldest

Abstract cache state
In the concrete cache state c, if a block is in cache line x, its
age is x

Cache line 1 is youngest.
In the abstract cache state c’, each line x contains a set of
memory blocks

B ∈ c’(Lx) at a program point p means …

Copyright (c) 2009, Abhik Roychoudhury52

(x) p g p p
When control reaches p, B may (must) be in cache with min
(max) age = x
Direction of approximation in abstraction.

May analysis

{a}

{c,f}

{}

{d}

{c}

{e}

{a}

{d}

youngest

oldest

Copyright (c) 2009, Abhik Roychoudhury53

{ }

{a,c}

{e,f}

{}

{d}

1. In cache in some path.

2. If so, take min. age

Must analysis

{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

youngest

oldest

Copyright (c) 2009, Abhik Roychoudhury54

{}

{}

{a,c}

{d}

1. In cache in both paths

2. If yes, take max age.

4/6/2011

10

Persistence analysis

{e}

{b}

{c}

{d}

{c}

{e,f}

{a}

{d}

youngest

oldest

{ } {b}

Copyright (c) 2009, Abhik Roychoudhury55

{}

{e,f}

{c}

{d}

1. In cache in any path

2. If yes, take max age.

{a} {b}

{a,b}

How to use such analyses?
Let I be an instruction at control loc. CL
Let M be the memory block containing I.

Consider cache state at CL obtained via “must analysis”.
If M is in some cache line within this abstract cache state, then I is
Always Hit.

For cache state at CL obtained via “may analysis”

Copyright (c) 2009, Abhik Roychoudhury56

For cache state at CL obtained via may analysis
If M is not in any cache line within this abstract cache state, then I is
Always Miss.

For abstract cache state at CL obtained from persistence
analysis

If M is not in the evicted line, then I is Persistent.

Use of may-must analyses
Let hit_time = t1, miss_time = t2
Number of accesses of I == #I (ILP variable)

I is AH
#I * t1 = contribution of I to WCET

I is AM
*

Copyright (c) 2009, Abhik Roychoudhury57

#I * t2 = contribution of I to WCET

I is PS
(#I -1)*t1 + t2 = contribution of I to WCET

Formulation is still linear, solve via ILP.

Improving precision
If we can bound the number of misses of instr. I (via
constraints)

No need to reduce exec. Time of I to constant
Contribution of I to WCET

#miss(I)*t2 + (#I – #miss(I))*t1
Need constraints to bound #miss(I)

Copyright (c) 2009, Abhik Roychoudhury58

Need constraints to bound #miss(I)
How to develop such constraints ?

ILP, Expensive !!
See cache conflict graph approach in textbook

Pages 147 – 149.

Micro-arch. modeling so far
Modeling timing effects of I-cache

Abstract Interpretation to categorize instr
ILP based modeling is more expensive.

I-cache does not have timing anomalies
Can assume all accesses are misses.
Very pessimistic but estimate still safe !

Copyright (c) 2009, Abhik Roychoudhury59

Very pessimistic, but estimate still safe !
For certain processors, even this is not true !

Adding worst-case of each instruction may produce an estimate lower
than the global worst-case !

Pipelined execution

Divide the execution of an instruction into stages

Instruction I+1 can proceed before I completes

Increased throughput, lower overall execution time

IF SIMPLIFIED VIEW !!

Copyright (c) 2009, Abhik Roychoudhury60

I
I

I
I

I

I+1
I+1

I+1
I+1

I+2
I+2

I+2
I+3

I+3I+4

IF
ID

EX

WB
CM

0

1

2

3

4

SIMPLIFIED VIEW !!

4/6/2011

11

Out-of-order pipeline

I-1

headtail

I-4

IBUF

GPR

I+1
I

IF

ID

Mem => I-buffer
(inorder)

IBUF => ROB (in-order)

Copyright (c) 2009, Abhik Roychoudhury61

I-2 I-3

GPR

FPR

ROB

ALU
MULT
FPU

EX

WB

CM

ROB => FU (out-of-
order), (Instr still in
ROB)

FU => ROB (out-of-order)
(forward data)

Update register file, free
ROB entry (in-order)

O-o-o execution (1)

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8

Partial order of dependences

A
B

D

Copyright (c) 2009, Abhik Roychoudhury62

B 1 add r3 r3 8
C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

MULTU

ALU
D

A

B C

E

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

B
C E

O-o-O execution (2)

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

D

Copyright (c) 2009, Abhik Roychoudhury63

C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

Instruction A executes 3 cycles

Instruction sequence
A

B
C

D

E

Difficulty in modeling

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8
C 2 and r3 r3 0xff

dd

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

D

Instruction A executes 3 cycles

Copyright (c) 2009, Abhik Roychoudhury64

D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

MULTU

ALU
D

A

B C

E

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

Timing Anomaly
Overall WCET of an instruction sequence cannot be obtained
from WCET of each instruction
Need to consider all possible execution times of each
instruction to safely estimate WCET !

Expensive enumeration
V diff f h d li

Copyright (c) 2009, Abhik Roychoudhury65

Very different from cache modeling
Worst-case cache behavior of an instruction sequence can
be safely estimated by considering all cache accesses as
misses

Summing up …
WCET Analysis

Program flow modeling (typically by ILP)
Combine reasoning about timing of program fragments.
Exploiting Infeasible path information.
Difficult to use model checking for this purpose.

Micro-architectural modeling (customized analysis)

Copyright (c) 2009, Abhik Roychoudhury66

Exec. time of each instruction is not constant.
Worst-case not found by adding up worst-cases of code fragments –
non compositional.

Efficient analysis developed to overcome this (not discussed).

4/6/2011

12

Chronos Tool for WCET analysis

Copyright (c) 2009, Abhik Roychoudhury67

Chronos – views of program

Copyright (c) 2009, Abhik Roychoudhury68

Set loop bounds

Copyright (c) 2009, Abhik Roychoudhury69

Constraints specified by user at source code level.
These are automatically translated to node counts of assembly level control flow
graph.

Flexible micro-arch modeling

Copyright (c) 2009, Abhik Roychoudhury70

WCET Estimation

Copyright (c) 2009, Abhik Roychoudhury71

Simulation vs Estimation

Simulation
produces
Observed WCET.

Estimation

Copyright (c) 2009, Abhik Roychoudhury72

produces
Estimated WCET

Observed
WCET ≤
Actual WCET
≤ Estimated
WCET

