
Midterm 2010 : CS 4271: Critical Systems and their
Verification

1 hour 15 minutes

Instructions to Candidates

• Answer ALL questions.

• Answers must be written in the space provided in this booklet; otherwise they will not be
graded.

• All answers MUST come with the correct explanations. There is no credit for guessing. A correct
answer without the correct explanation will receive no marks.

• This is an OPEN BOOK examination. You are allowed to bring in any books/lecture notes etc.

• You can ask for extra sheets for rough work.

• PLEASE WRITE YOUR MATRICULATION NUMBER BELOW.

MATRICULATION NO.:

(This portion is reserved for the examiner’s use only)

Question Marks

Question A 3

Question B 4

Question C 3

Question D 3

Question E 3

Question F 2

Question G 2

TOTAL 20

1

A. 3 marks

Are the following Linear Time Temporal Logic (LTL) formulae equivalent? If yes, give a proof. If not,
construct examples to show that they are not equivalent.

¬ FGp and G(¬p ∨XF¬p)

You can assume that p is an atomic proposition.

Answer: The two formulae are equivalent. Since Fp is satisfied by a trace π iff (a) either the first
state of π satisfies p, or (b) one of the second or later states of π satisfies p this results in the following
equivalence

Fp = p ∨XFp

Now, ¬FGp = GF¬p. Using the above equivalence of F p we get

¬FGp = GF¬p = G(¬p ∨XF¬p).

2

B. 4 marks Consider the following program with two processes, which are composed asynchronously.
Assume that initially x == y == 0.

x = 1 a = x

y = 1 b = y

What are the possible values of a and b when the program terminates? For each of these possible values
draw a trace that will generate it.

Answer:

1. a == b == 0

a = x

b = y

x = 1

y = 1

2. a == b == 1

x = 1

y = 1

a = x

b = y

3. a == 0, b == 1

a = x

x = 1

y = 1

b = y

4. a == 1, b == 0

x = 1

a = x

b = y

y = 1

3

C. 3 marks

Are the two following Linear time Temporal Logic (LTL) formula equivalent ? If yes, give a proof. If not,
construct example traces to show that they are not equivalent. You can assume that ϕ is an arbitrary
LTL formula.

G(ϕ⇒ Xϕ)

G(ϕ⇒ Gϕ)

Answer: Consider a path π satisfying G(ϕ⇒ Xϕ). Let k be an index ≥ 0 such that πk |= ϕ where πk

denotes the suffix of π starting from position k. Then, clearly πk+1 |= ϕ. Again this means πk+2 |= ϕ.
A simple induction on i is able to establish that for any natural number i we must have πk+i |= ϕ. This
means π |= G(ϕ⇒ Gϕ).

The proof in the other direction is trivial and follows from the definition of G and X operators. If a path
satisfies G(ϕ⇒ Gϕ) — let k be an index ≥ 0 such that πk |= ϕ where πk denotes the suffix of π starting
from position k. Then, clearly πk+1 |= ϕ. Thus, π |= G(ϕ⇒ Xϕ).

4

D. 3 marks

Consider a system consisting of temperature controller, a thermostat, an air-conditioning unit and a
heater unit. When the controller receives temperature-high signal from the thermostat, it sends an on
signal to the air-conditioning unit, and an off signal to the heater unit. When the controller receives
temperature-low signal from the thermostat, it sends an on signal to the heater unit, and an off signal to
the air-conditioning unit. If the controller receives a normal signal from the thermostat, it turns off both
units.

Construct multiple Sequence Diagrams showing sample behaviors of the above-mentioned reactive system.
You can only get full credit if your collection of Sequence Diagrams is detailed enough to cover as much
of the above requirements as possible.

Answer:

Thermo Ctrl Heater

low

Thermo Ctrl Aircon

high

Aircon Heater

low

on

g

on

off off

Th C l HAiThermo Ctrl Heater

normal

off

Aircon

off

off

5

E. 3 marks

Construct the overall behavior of the system in Question D as one single UML State Diagram. The
thermostat can be treated as external environment. All other components are considered to be part of
the “system”.

Answer:

on
on()/

on
on()/

off()/ on()/
off()/ on()/

hi
gh
()
/h
‐>
of
f(
)

/a
‐>
on

()

off
off()/

off
off()/

/

off

Heater h
Aircon a

Control c

6

F. 2 marks

Suppose we want to verify the LTL formula G(p ⇒ Fq), for a concurrent system Sys where p, q are
atomic propositions. As per the LTL model checking algorithm discussed in class, a property automata
will be synchronously composed with the state machine of Sys. What is the property automata that will
be synchronously composed with the state machine of Sys in this case?

Answer:

The negation of the property is ¬(G(p ⇒ Fq), that is, ¬G(¬p ∨ Fq), that is, F (¬(¬p ∨ Fq)), that is,
F (p ∧ ¬Fq), that is, F (p ∧G(¬q)).

true !q

p /\ !q

q

true

7

G. 2 marks

int x = 0;

while(1){

x = x + 1;

}

Can you use model checking to prove the LTL property F (x == 649). Why or why not?

Answer: The conventional answer is ”no” - because model checking is restricted to finite state systems.
Thus, if we try to construct the state space of the above program it will not terminate since the value of
x comes from an unbounded domain (integer) and also x does assume unboundedly many values.

One can try to argue (with quite a stretch) that the answer is ”yes”. This is the case, if we do not try
to construct the state space prior to traversal - but rather construct and traverse it on-the-fly. In this
case, we can have a bounded representation of x (say 32 bits) – and construct the state space during its
traversal. In this case, we will encounter the value x == 649 as we are constructing/traversing the state
space. However, we still need to reason explicitly that this program has only one execution trace and
that is why when we encounter x == 649 in that execution trace, our proof is complete. This piece of
reasoning is, strictly speaking, not being done inside the model checking search which is only trying to
search for counter-examples rather than proofs.

END OF PAPER

8

