
2/8/2012

1

Model-based testing
Specifications – temporal logics

Abhik Roychoudhury
http://www.comp.nus.edu.sg/~abhik

Copyright 2009 by Abhik Roychoudhury1

Flow of today’s lecture
Test generated from models

Run on implementation.

How to find a “suitable” test case?
What is the purpose of testing?

Finding a “suitable” test case guided by test specification

Copyright 2009 by Abhik Roychoudhury

g g y p
Given a test specification, we search the model to find a test?

Two questions
How to describe test specifications – temporal logics.
How to search the system model – model checking.

2

Model-based system development

Informal Requirements

(in English)

S t M d l

Model SimulationModeling

Copyright 2009 by Abhik Roychoudhury

System Model

(UML State and Class Diagrams)

System Implementation
(Hardware / C)

Testing
Partitioning, Scheduling

and other impl. steps

3

Model-based testing
Generate test-cases from model, run them on the
implementation.
What are the criteria for generating test cases?

Generate a suite of test cases to ensure a structural coverage
of the model

S f S

Copyright 2009 by Abhik Roychoudhury

State coverage, Transition coverage for State Diagrams.

Generate test cases from the model based on some test
specification

How to describe the test specification?
Temporal logic (discussed later)

How to find a test satisfying a test specification?
Model checking (discussed later)

4

Test-purpose based test gen. & exec.
Test purpose
or Test spec.

System
Model

Model-
based Test
Generator

Copyright 2009 by Abhik Roychoudhury

Sample
Test-case

System
Implementation

Test
Execution

Test Verdict
(pass/fail/inconclusive)

5

Test Execution Architecture

Test-case

INPUT OUTPUT

IUT

Represents
Ck+1 Cn

Test
Generation

IUT = Implementation Under Test

Copyright 2009 by Abhik Roychoudhury

Non IUT
Comp.

IUT
Comp.

1 k k+1 n

Master
Tester

Test
verdicts

Internal
Msgs.

Output
Verdict Tester

System

Implemented by

Tester1 Testerk

INPUT OUTPUT

Test
verdicts

6

2/8/2012

2

Test Execution – (1)

m1
m2

m3

A BIUT A BIUT

!m1

!m2

!m?m

?m1

?m2

A B

!m1

?m2

Copyright 2009 by Abhik Roychoudhury

m4

!m3

!m4

?m3

?m4

!m4

(a) Test-case MSC
M

(b) Partial Order of
M

(c) Test graph of events
involving interaction

between tester
components and IUT.

7

Test Execution – (2)

A
B!m1

!m

?m2

(c) Test graph of events
involving interaction between
tester components and IUT.

A B
!m1

?m2
?s

!s1
?s1

A B
!m1

?m2

?s2

!s1

?s1

Copyright 2009 by Abhik Roychoudhury

!m4 ?s2

!pass
!pass

!s2

?s2

!pass
!pass

!s2

(d) Test graph of M-
Synchronization

events

(e) Local test graphs of
tester lifelines A and B

!m4 !m4

A BIUT

!m1

!m2

!m3

!m4

?m3

?m1

?m2

?m4

(b) Partial Order of
M8

Test Execution – (3)

m1
m2

m3

m4

A BIUT
A B

!m1

?m2

?s2

!pass

!s1

?s1

!

!s2
!m4

!s1

A

?s2

!pass

?¬s2

!fail!inconc

θ

!m1

!m4

Copyright 2009 by Abhik Roychoudhury

Test-case MSC
!pass!pass

Tester lifelines B

?m2

!pass

?s1

!s2

?¬s1

!fail

θ

!inconc

?¬m2

!fail!inconc

θ

Synthesized
Tester
Components

9

Test Verdicts
Pass

All the tester components convey “Pass” to a Master tester.

Fail
At least one tester component returns fail.

Inconclusive

Copyright 2009 by Abhik Roychoudhury

None of the tester components return fail, and
At least one tester component returns inconclusive.

10

Test-purpose based test generation

Test purpose
or Test spec.

System
Model

Described as
MSC

FSMs/ State Diagrams

Copyright 2009 by Abhik Roychoudhury

Model-
based Test
Generator

Sample
Test-case

Automated search
in the global FSM

As a MSC or a trace.

11

Test spec. & Generated Test
Client ATC WCP

update
ClientPreUpd

WCPDisable
ClientUpd

GET_NEW_WTHR

ATC WCP

update

Copyright 2009 by Abhik Roychoudhury

Yes

ClientPostUpd

USE_NEW_WTHR

Yes
enable

enable

Test Specification

12

2/8/2012

3

Test spec. & Generated test
Test spec. is in the form of an MSC M.
Def. 1

A trace σ satisfies a test specification M if σ contains at least
one linearization of M as a contiguous subsequence.

Def. 2

Copyright 2009 by Abhik Roychoudhury

A trace σ satisfies a test specification M if σ contains at least
one linearization of M as a subsequence.

Which def. did we follow in the previous slide?

13

Test Generation

Test
purpose

or Test spec.

System
Model

Described as MSC FSMs/ State Diagrams

Temporal Logic
Property

Copyright 2009 by Abhik Roychoudhury

Model-
based Test
Generator

Sample
Test-case

Automated search
in the global FSM

Model Checking
(applications in test
gen. and other
purposes)

As a MSC or a trace.Counter-
example

14

Test generation
Test purpose

Defined as MSC or Sequence Diagram
Can be described using temporal logic (taught now)

System model
Described as FSM or State Diagram

Copyright 2009 by Abhik Roychoudhury

Test generation method
Finite search inside the System model’s FSM
Accomplished by model checking (taught in next week)

Output of test generation method
A test case described as a trace or a MSC
Satisfies the test purpose MSC.

15

Organization
So Far

What is a Model?
ATC – Running Example
How to model such requirements
How to validate the models

Copyright 2009 by Abhik Roychoudhury

Simulations,
Model-based testing,
Model Checking (discussed now)

Temporal logics (the property specification)
Checking method

Also, model-based testing accomplished by model checking

16

The big picture

System to be
built (Dream

or
requirements)

System
Model
(Rough
Idea)

Simulate

Copyright 2009 by Abhik Roychoudhury

Properties
to Satisfy
(caution)

Checking
Method

(Automated)

Counter-
examples

Refine the
model

Temporal logics and model checking have a
general usage in model / system validation,
apart from test generation in model-based
testing.

17

Example System Model - FSMs

green yellow
red

Copyright 2009 by Abhik Roychoudhury

green yellow
red

Infinite length traces
Possible to have infinitely many traces.

18

2/8/2012

4

Temporal Logic
On June 1 2007, I am teaching temporal logics which will
be followed by teaching of model checking on June 8,
2007
Teaching of temporal logics occurs 1 week before the
teaching of model checking.

Copyright 2009 by Abhik Roychoudhury

Teaching of temporal logics is always eventually followed
by the teaching of model checking.
Teaching of temporal logics is always immediately followed
by the teaching of model checking.

19

Example properties
The light is always green.
Whenever the light is red, it eventually becomes green.
Whenever the light is green, it remains green until it
becomes yellow.
…

Copyright 2009 by Abhik Roychoudhury

Are these properties true for the 2 example models in
the previous slide?

Let us try the second property for example …

20

When is a property satisfied?
A property is interpreted on the traces of a system
model.

Given a trace of the system model x and a property p, we can
uniquely determine a yes/no answer to whether x satisfies p.

A property p is satisfied by a system model M, if all traces
f M i f

Copyright 2009 by Abhik Roychoudhury

of M satisfy p.

So, given a system model what are its traces?

21

Traces of a system model

green yellow red

Copyright 2009 by Abhik Roychoudhury

Only one trace, it has infinite length
(green, yellow, red) – repeated forever Written as
(green, yellow, red) ω

22

Traces of a system model

green yellow red

Copyright 2009 by Abhik Roychoudhury

Infinitely many traces, each of infinite length
(green)ω - 1 trace
(green)* yellow (red) ω - many traces
(green)*yellow (red)* (green) ω

…
(green, yellow, red) ω

23

Property Specification Language
Properties in our property spec. language will be
interpreted over infinite length traces.

Finite length traces can be converted into infinite length traces
by putting a self-loop at last state.

A property is satisfied by a system model if all execution
 i f h

Copyright 2009 by Abhik Roychoudhury

traces satisfy the property.
In general, we cannot test the property on each exec. trace –
infinitely many of them.
Model checking is smarter – we discuss it later!

We formally describe the property spec. lang. or logic

24

2/8/2012

5

Why study new logics ?
Need a formalism to specify properties to be checked
Our properties refer to dynamic system behaviors

Eventually, the system reaches a stable state
Never a deadlock can occur

We want to maintain more than input-output properties
(which are typical for transformational systems)

Copyright 2009 by Abhik Roychoudhury

(which are typical for transformational systems).
Input-output property: for input > 0, output should be > 0
No notion of output or end-state in reactive systems.

25

Why study new logics ?
Our properties express constraints on dynamic evolution of
states.
Propositional/first-order logics can only express properties of
states, not properties of traces
We study behaviors by looking at all execution traces of the
system

Copyright 2009 by Abhik Roychoudhury

system.
Linear-time Temporal Logic (LTL) is interpreted over execution traces of
a system model.

26

Formally, system model is
Model for reactive systems

M = (S, S0, →, L)
S is the set of states
S0 ⊆ S is the set of initial states
→ ⊆ S × S is the transition relation

Copyright 2009 by Abhik Roychoudhury

Set of (source-state, destination-state) pairs

L: is the labeling function mapping S to 2AP

Maps each state s to a subset of AP
These are the atomic prop. which are true in s.

27

Atomic Propositions

All of our properties will contain atomic props.
These atomic props. will appear in the labeling function of
the system model you verify.
The atomic props. represent some relationships among
variables in the design that you verify.
At i i th f ll i l

Copyright 2009 by Abhik Roychoudhury

Atomic props in the following example
green, yellow, red (marked inside the states with obvious
labeling function).

green yellow red

28

Linear-time Temporal Logic
The temporal logic that we study today build on a “static” logic
like propositional logic.

Used to describe/constrain properties inside states.

Temporal operators describe properties on execution traces.
Used to describe/constrain evolution of states.

Time is not explicitly mentioned in the formulae

Copyright 2009 by Abhik Roychoudhury

Time is not explicitly mentioned in the formulae
Properties describe how the system should evolve over time.

29

Linear-time Temporal Logic
Does not capture exact timing of events, but rather the
relative order of events
We capture properties of the following form.

Whenever event e occurs, eventually event e’ must occur.

We do not capture properties of the following form.
At t =2 e occurs followed by e’ occurring at t =4

Copyright 2009 by Abhik Roychoudhury

At t =2 e occurs followed by e occurring at t =4.

30

2/8/2012

6

Notations and Conventions
An LTL formula ϕ is interpreted over an infinite sequence of
states π = s0,s1, …

Use M,π |= ϕ to denote that formula ϕ holds in path π of system model
M.

Define semantics of LTL formulae w.r.t. a system model M.
An LTL property ϕ is true of a system model iff all its

Copyright 2009 by Abhik Roychoudhury

An LTL property ϕ is true of a system model iff all its
traces satisfy ϕ
M |=ϕ iff M,π |= ϕ for all traces π in system model M

31

Notations and Conventions
M,π |= ϕ

Path π = s0,s1,s2,… in model M satisfies property ϕ
M,πk |= ϕ

Path sk , sk+1 , … in model M satisfies property ϕ

Copyright 2009 by Abhik Roychoudhury

We now use these notations to define the syntax &
semantics of LTL.

32

LTL - syntax
Propositional Linear-time Temporal logic

ϕ = Xϕ | Gϕ | Fϕ | ϕ U ϕ | ϕ R ϕ |
¬ϕ | ϕ ∧ ϕ | Prop

Copyright 2009 by Abhik Roychoudhury

Prop is the set of atomic propositions
Temporal operators

X (next – state)
F (eventually), G (globally)
U (until), R (release)

33

Semantics of propositional logic

M,π |= p iff s0 |= p i.e. p ∈ L(s0) where L is the labeling
function of Kripke Structure M

M, π |= ¬ ϕ iff ¬ (M, π |= ϕ)

Copyright 2009 by Abhik Roychoudhury34

M, π |= ϕ1 ∧ ϕ2 iff M, π |= ϕ1 and M, π |= ϕ2

neXt-state operator of LTL

M,π |= Xϕ iff M,π1 |= ϕ
Path starting from next state satisfies ϕ

Satisfies ϕ

Copyright 2009 by Abhik Roychoudhury
35

…..

Satisfies Xϕ

Finally operator of LTL

M,π |= Fϕ iff ∃k ≥ 0 M,πk |= ϕ
Path starting from an eventually reached state satisfies ϕ

Copyright 2009 by Abhik Roychoudhury36

…..

Satisfies ϕ

Satisfies Fϕ

…..

2/8/2012

7

Globally operator of LTL

M,π |= Gϕ iff ∀k ≥ 0 M,πk |= ϕ
Path always satisfies ϕ (all suffixes
of the path satisfy ϕ)

Satisfies ϕ

…..

Copyright 2009 by Abhik Roychoudhury37

…..

Satisfies Gϕ

Until operator of LTL

M,π |= ϕ1 U ϕ2 iff ∃k ≥ 0 such that
M,πk |= ϕ2, and
∀0≤ j < k M, πj |= ϕ1

Copyright 2009 by Abhik Roychoudhury38

p p p p p q

A trace satisfying pU q, where p,q ∈ Prop

…..

Satisfies ϕ1

Satisfies ϕ1

Satisfies ϕ1

Until Operator

Copyright 2009 by Abhik Roychoudhury39

….. …..

Satisfies ϕ1 U ϕ2

Satisfies ϕ2

Release operator of LTL

M,π |= ϕ1 R ϕ2 iff
Either ∀k ≥ 0 M,πk |= ϕ2
OR both of the following hold

∃k ≥ 0 M,πk |= ϕ1
∀0≤ j ≤ k M,πj |= ϕ2

Copyright 2009 by Abhik Roychoudhury40

ϕ1 releases the req. for ϕ2 to hold.

q q q q q p,q

Release – Case 1

Satisfies ϕ2

Satisfies ϕ2

Copyright 2009 by Abhik Roychoudhury41

Satisfies ϕ1 R ϕ2

Satisfies ϕ2

ϕ

…..

Release –
Case (2) Satisfies ϕ2

Satisfies ϕ2

Satisfies ϕ2

Copyright 2009 by Abhik Roychoudhury
42

…..

Satisfies ϕ1 R ϕ2

…..

…..

Satisfies ϕ1 ∧ϕ2

2/8/2012

8

Exercise – (1)
The light is always green.
Whenever the light is red, it eventually becomes green.
Whenever the light is green, it remains green until it
becomes yellow.
Whenever the light is yellow, it becomes red immediately

Copyright 2009 by Abhik Roychoudhury43

g y , y
after.

Encode these properties in LTL.

Exercise – (2)

Check whether the four LTL properties in the
previous slide are satisfied by our simple traffic light
controller.

0 s1

Copyright 2009 by Abhik Roychoudhury44

green yellow red
s0 s1

s2

LTL Exercise – (3)
Consider a resource allocation protocol where n processes

P1,…,Pn are contending for exclusive access of a shared
resource. Access to the shared resource is controlled by an
arbiter process. The atomic proposition reqi is true only when
Pi explicitly sends an access request to the arbiter. The atomic
proposition gnti is true only when the arbiter grants access to
P Now suppose that the following LTL formula holds for our

Copyright 2009 by Abhik Roychoudhury45

Pi. Now suppose that the following LTL formula holds for our
resource allocation protocol.

G (reqi ⇒ F gnti)

LTL Exercise – (3)
Explain in English what the property means.
Is this a desirable property of the protocol ?
Suppose that the resource allocation protocol has a
distributed implementation so that each process is
implemented in a different site Does the LTL

Copyright 2009 by Abhik Roychoudhury46

implemented in a different site. Does the LTL
property affect the communication overheads among
the processes in any way ?

Model Checking

LTL
Property

System
Model

Copyright 2009 by Abhik Roychoudhury47

Model
Checking

Yes
No, with
Counter-example trace

OR

Recap: Model Checking for model-based
testing

LTL
Property

System
Model

From
test
spec.

Copyright 2009 by Abhik Roychoudhury48

Model
Checking

No, with
Counter-example trace Generated

Test

2/8/2012

9

Encoding test specifications
Def. 1

A trace σ satisfies a test specification M if σ contains at least
one linearization of M as a contiguous subsequence.
Given MSC M,

define Lin(M) = set of linearizations of M.
For each linearization σ = e e e define

Copyright 2009 by Abhik Roychoudhury49

For each linearization σ = e1,e2,…,ek define
Define propσ = F(e1 ∧X(e2 ∧X(… X(ek)…)))

Define property ϕM corresponding to M as
ϕM = ¬ (∨σ∈Lin(M) propσ)

A counter-example to ϕM is a test satisfying M.

Example
p q

e1 e2

e3 e4

Possible linearizations
e1, e2, e3, e4
e1, e3, e2, e4

LTL property
¬ (F(e1 /\ X(e2 /\ X(e3 /\ X e4)))

∨
F(1 /\ X(3 /\ X(2 /\ X 4)))

Copyright 2009 by Abhik Roychoudhury

F(e1 /\ X(e3 /\ X(e2 /\ X e4)))
)

50

Encoding test specifications
Def. 2

A trace σ satisfies a test specification M if σ contains at least
one linearization of M as a subsequence.
Given MSC M,

define Lin(M) = set of linearizations of M.
For each linearization σ = e e e define

Copyright 2009 by Abhik Roychoudhury51

For each linearization σ = e1,e2,…,ek define
nσ = ¬(e1 ∨ e2 ∨ … ∨ ek)
propσ = (nσ U (e1∧X(nσ U(e2 ∧X(… X(nσ U ek)…))))

Define property ϕM corresponding to M as
ϕM = ¬ (∨σ∈Lin(M) propσ)

A counter-example to ϕM is a test satisfying M.

Example
p q

e1 e2

e3 e4

Possible linearizations
e1, e2, e3, e4
e1, e3, e2, e4

LTL property

??

Copyright 2009 by Abhik Roychoudhury

(try this as an exercise)

52

Model Checking – Next class

LTL
Property ϕ

System
Model M

Copyright 2009 by Abhik Roychoudhury53

Model Checking

Yes No, with
Counter-example trace

OR

Describe Model Checking as a
general verification procedure.
It proceeds by search.Check M |= ϕ

