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Flow of today’s lecture
Test generated from models

Run on implementation.

How to find a “suitable” test case?
What is the purpose of testing?

Finding a “suitable” test case guided by test specification
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g g y p
Given a test specification, we search the model to find a test?

Two questions
How to describe test specifications – temporal logics.
How to search the system model – model checking.
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Model-based system development

Informal Requirements

(in English)

S t  M d l

Model SimulationModeling
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System Model

(UML State and Class Diagrams)

System Implementation
(Hardware / C)

Testing
Partitioning, Scheduling 

and other impl. steps
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Model-based testing
Generate test-cases from model, run them on the 
implementation.
What are the criteria for generating test cases?

Generate a suite of test cases to ensure a structural coverage 
of the model

S     f  S  
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State coverage, Transition coverage for State Diagrams.

Generate test cases from the model based on some test 
specification

How to describe the test specification?
Temporal logic (discussed later)

How to find a test satisfying a test specification?
Model checking (discussed later)
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Test-purpose based test gen. & exec.
Test purpose
or Test spec.

System 
Model

Model-
based Test 
Generator
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Sample  
Test-case

System 
Implementation

Test 
Execution

Test Verdict
(pass/fail/inconclusive)
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Test Execution Architecture

Test-case

INPUT OUTPUT

IUT

Represents
Ck+1 Cn

Test 
Generation

IUT = Implementation Under Test
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Non IUT
Comp.

IUT 
Comp.

1 k k+1 n

Master
Tester

Test 
verdicts

Internal
Msgs.

Output
Verdict Tester

System

Implemented by

Tester1 Testerk

INPUT OUTPUT

Test 
verdicts
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Test Execution – (1)

m1
m2

m3

A BIUT A BIUT

!m1

!m2

!m?m

?m1

?m2

A B

!m1

?m2
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m4

!m3

!m4

?m3

?m4

!m4

(a) Test-case MSC 
M

(b) Partial Order of 
M

(c) Test graph of events 
involving interaction 

between tester 
components and IUT.
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Test Execution – (2)

A
B!m1

!m

?m2

(c) Test graph of events 
involving interaction between 
tester components and IUT.

A B
!m1

?m2
?s

!s1
?s1

A B
!m1

?m2

?s2

!s1

?s1

Copyright 2009 by Abhik Roychoudhury

!m4 ?s2

!pass
!pass

!s2

?s2

!pass
!pass

!s2

(d) Test graph of M-
Synchronization 

events

(e) Local test graphs of 
tester lifelines A and B

!m4 !m4

A BIUT

!m1

!m2

!m3

!m4

?m3

?m1

?m2

?m4

(b) Partial Order of 
M8

Test Execution – (3)

m1
m2

m3

m4

A BIUT
A B

!m1

?m2

?s2

!pass

!s1

?s1

!

!s2
!m4

!s1

A

?s2

!pass

?¬s2

!fail!inconc

θ

!m1

!m4
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Test-case MSC
!pass!pass

Tester lifelines B

?m2

!pass

?s1

!s2

?¬s1

!fail

θ

!inconc

?¬m2

!fail!inconc

θ

Synthesized
Tester
Components

9

Test Verdicts
Pass

All the tester components convey “Pass” to a Master tester.

Fail
At least one tester component returns fail.

Inconclusive
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None of the tester components return fail, and
At least one tester component returns inconclusive.
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Test-purpose based test generation

Test purpose
or Test spec.

System 
Model

Described as 
MSC

FSMs/ State Diagrams

Copyright 2009 by Abhik Roychoudhury

Model-
based Test 
Generator

Sample  
Test-case

Automated search 
in the global FSM

As a MSC or a trace.
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Test spec. & Generated Test
Client ATC WCP

update
ClientPreUpd

WCPDisable
ClientUpd

GET_NEW_WTHR

ATC WCP

update
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Yes

ClientPostUpd

USE_NEW_WTHR

Yes
enable

enable

Test Specification

12
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Test spec. & Generated test
Test spec. is in the form of an MSC M.
Def. 1

A trace σ satisfies a test specification M if σ contains at least 
one linearization of M as a contiguous subsequence.

Def. 2
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A trace σ satisfies a test specification M if σ contains at least 
one linearization of M as a subsequence.

Which def. did we follow in the previous slide?
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Test Generation

Test 
purpose

or Test spec.

System 
Model

Described as MSC FSMs/ State Diagrams

Temporal Logic
Property
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Model-
based Test 
Generator

Sample  
Test-case

Automated search 
in the global FSM

Model Checking
(applications in test 
gen. and other 
purposes)

As a MSC or a trace.Counter-
example
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Test generation
Test purpose 

Defined as MSC or Sequence Diagram
Can be described using temporal logic (taught now)

System model
Described as FSM or State Diagram
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Test generation method
Finite search inside the System model’s FSM
Accomplished by model checking (taught in next week)

Output of test generation method
A test case described as a trace or a MSC
Satisfies the test purpose MSC.
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Organization
So Far

What is a Model?
ATC – Running Example
How to model such requirements
How to validate the models
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Simulations, 
Model-based testing, 
Model Checking  (discussed now)

Temporal logics (the property specification)
Checking method

Also, model-based testing accomplished by model checking
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The big picture

System to be 
built (Dream 

or
requirements) 

System 
Model
(Rough 
Idea) 

Simulate
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Properties 
to Satisfy 
(caution)

Checking 
Method

(Automated)

Counter-
examples

Refine the 
model

Temporal logics and model checking have a 
general usage in model / system validation, 
apart from test generation in model-based 
testing.
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Example System Model - FSMs

green yellow
red
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green yellow
red

Infinite length traces
Possible to have infinitely many traces.

18
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Temporal Logic
On June 1 2007, I am teaching temporal logics which will 
be followed by teaching of model checking on June 8, 
2007
Teaching of temporal logics occurs 1 week before the 
teaching of model checking.
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Teaching of temporal logics is always eventually followed 
by the teaching of model checking.
Teaching of temporal logics is always immediately followed 
by the teaching of model checking.

19

Example properties
The light is always green.
Whenever the light is red, it eventually becomes green.
Whenever the light is green, it remains green until it 
becomes yellow.
…
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Are these properties true for the 2 example models in 
the previous slide?

Let us try the second property for example …
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When is a property satisfied?
A property is interpreted on the traces of a system 
model.

Given a trace of the system model x and a property p, we can 
uniquely determine a yes/no answer to whether x satisfies p.

A property p is satisfied by a system model M, if all traces 
f M i f  
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of M satisfy p.

So, given a system model what are its traces?
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Traces of a system model

green yellow red
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Only one trace, it has infinite length
(green, yellow, red) – repeated forever          Written as 
(green, yellow, red) ω
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Traces of a system model

green yellow red
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Infinitely many traces, each of infinite length
(green)ω - 1 trace
(green)* yellow (red) ω - many traces
(green)*yellow (red)* (green) ω

…
(green, yellow, red) ω
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Property Specification Language
Properties in our property spec. language will be 
interpreted over infinite length traces.

Finite length traces can be converted into infinite length traces 
by putting a self-loop at last state.

A property is satisfied by a system model if all execution 
 i f  h  
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traces satisfy the property.
In general, we cannot test the property on each exec. trace –
infinitely many of them.
Model checking is smarter – we discuss it later!

We formally describe the property spec. lang. or logic

24
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Why study new logics ?
Need a formalism to specify properties to be checked
Our properties refer to dynamic system behaviors

Eventually, the system reaches a stable state
Never a deadlock can occur

We want to maintain more than input-output properties 
(which are typical for transformational systems)
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(which are typical for transformational systems).
Input-output property: for input > 0, output should be > 0
No notion of output or end-state in reactive systems.

25

Why study new logics ?
Our properties express constraints on dynamic evolution of 
states.
Propositional/first-order logics can only express properties of 
states, not properties of traces
We study behaviors by looking at all execution traces of the 
system
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system.
Linear-time Temporal Logic (LTL) is interpreted over execution traces of 
a system model.

26

Formally, system model is
Model for reactive systems

M = (S, S0, →, L)
S is the set of states
S0 ⊆ S is the set of initial states
→ ⊆ S × S is the transition relation
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Set of (source-state, destination-state) pairs

L: is the labeling function mapping S to 2AP

Maps each state s to a subset of AP
These are the atomic prop. which are true in s.
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Atomic Propositions

All of our properties will contain atomic props. 
These atomic props. will appear in the labeling function of 
the system model you verify.
The atomic props. represent some relationships among 
variables in the design that you verify.
At i   i  th  f ll i  l

Copyright 2009 by Abhik Roychoudhury

Atomic props in the following example
green, yellow, red (marked inside the states with obvious 
labeling function).

green yellow red
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Linear-time Temporal Logic
The temporal logic that we study today build on a “static” logic 
like propositional logic.

Used to describe/constrain properties inside states.

Temporal operators describe properties on execution traces.
Used to describe/constrain evolution of states.

Time is not explicitly mentioned in the formulae
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Time is not explicitly mentioned in the formulae
Properties describe how the system should evolve over time.
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Linear-time Temporal Logic
Does not capture exact timing of events, but rather the 
relative order of events
We capture properties of the following form.

Whenever event  e occurs,  eventually event e’ must occur.

We do not capture properties of the following form.
At t =2 e occurs followed by e’ occurring at t =4
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At t =2 e occurs followed by e  occurring at t =4.

30
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Notations and Conventions
An LTL formula ϕ is interpreted over an infinite sequence of 
states π = s0,s1, …

Use M,π |= ϕ to denote that formula ϕ holds in path π of system model 
M.

Define semantics of LTL formulae w.r.t. a system model M.
An LTL property ϕ is true of a system model iff all its 
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An LTL property ϕ is true of a system model iff all its 
traces satisfy ϕ
M |=ϕ iff M,π |= ϕ for all traces π in system model M

31

Notations and Conventions
M,π |= ϕ

Path π = s0,s1,s2,…  in model M satisfies property ϕ
M,πk |= ϕ

Path sk , sk+1 , … in model M satisfies property ϕ
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We now use these notations to define the syntax & 
semantics of LTL.
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LTL - syntax
Propositional Linear-time Temporal logic

ϕ = Xϕ | Gϕ | Fϕ | ϕ U ϕ | ϕ R ϕ | 
¬ϕ | ϕ ∧ ϕ | Prop
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Prop is the set of atomic propositions
Temporal operators

X (next – state)
F (eventually), G (globally)
U (until), R (release)
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Semantics of propositional logic 

M,π |= p iff s0 |= p i.e. p ∈ L(s0) where L is the labeling 
function of Kripke Structure M 

M, π |= ¬ ϕ iff  ¬ (M, π |= ϕ)
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M, π |= ϕ1 ∧ ϕ2  iff M, π |= ϕ1 and M, π |= ϕ2

neXt-state operator of LTL

M,π |= Xϕ iff M,π1 |= ϕ
Path starting from next state satisfies ϕ

Satisfies ϕ
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…..

Satisfies Xϕ

Finally operator of LTL

M,π |= Fϕ iff  ∃k ≥ 0 M,πk |= ϕ
Path starting from an eventually reached state satisfies ϕ
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…..

Satisfies ϕ

Satisfies Fϕ

…..



2/8/2012

7

Globally operator of LTL

M,π |= Gϕ iff ∀k ≥ 0 M,πk |= ϕ
Path always satisfies ϕ (all suffixes 
of the path satisfy ϕ)

Satisfies ϕ

…..
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…..

Satisfies Gϕ

Until operator of LTL

M,π |= ϕ1 U ϕ2 iff ∃k ≥ 0 such that
M,πk |= ϕ2, and
∀0≤ j < k M, πj |= ϕ1

Copyright 2009 by Abhik Roychoudhury38

p p p p p q

A trace satisfying  pU q, where p,q ∈ Prop

…..

Satisfies ϕ1

Satisfies ϕ1

Satisfies ϕ1

Until Operator
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….. …..

Satisfies ϕ1 U ϕ2 

Satisfies ϕ2

Release operator of LTL

M,π |= ϕ1 R ϕ2 iff
Either  ∀k ≥ 0 M,πk |= ϕ2
OR both of the following hold

∃k ≥ 0 M,πk |= ϕ1
∀0≤ j ≤ k  M,πj |= ϕ2
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ϕ1 releases the req. for ϕ2 to hold.

q q q q q p,q

Release – Case 1

Satisfies ϕ2

Satisfies ϕ2
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Satisfies ϕ1 R ϕ2

Satisfies ϕ2

ϕ

…..

Release –
Case (2) Satisfies ϕ2

Satisfies ϕ2

Satisfies ϕ2
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…..

Satisfies ϕ1 R ϕ2

…..

…..

Satisfies ϕ1 ∧ϕ2
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Exercise – (1)
The light is always green.
Whenever the light is red, it eventually becomes green.
Whenever the light is green, it remains green until it 
becomes yellow.
Whenever the light is yellow, it becomes red immediately 
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g y , y
after.

Encode these properties in LTL.

Exercise – (2)

Check whether the four LTL properties in the 
previous slide are satisfied by our simple traffic light 
controller.

0 s1
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green yellow red
s0 s1

s2

LTL Exercise – (3)
Consider a resource allocation protocol where n processes 

P1,…,Pn are contending for exclusive access of a shared 
resource. Access to the shared resource is controlled by an 
arbiter process. The atomic proposition reqi is true only when 
Pi explicitly sends an access request to the arbiter.  The atomic 
proposition gnti  is true only when the arbiter grants access to 
P  Now suppose that the following LTL formula holds for our 
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Pi. Now suppose that the following LTL formula holds for our 
resource allocation protocol.

G (reqi ⇒ F gnti)

LTL Exercise – (3)
Explain in English what the property means.
Is this a desirable property of the protocol ?
Suppose that the resource allocation protocol has a 
distributed implementation so that each process is 
implemented in a different site  Does the LTL 
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implemented in a different site. Does the LTL 
property affect the communication overheads  among 
the processes in any way ?

Model Checking

LTL 
Property

System 
Model
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Model 
Checking

Yes
No, with 
Counter-example trace

OR

Recap: Model Checking for model-based 
testing

LTL 
Property

System 
Model

From 
test 
spec.
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Model 
Checking

No, with 
Counter-example trace Generated

Test
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Encoding test specifications 
Def. 1

A trace σ satisfies a test specification M if σ contains at least 
one linearization of M as a contiguous subsequence.
Given MSC M, 

define Lin(M) = set of linearizations of M.
For each linearization σ = e e e define
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For each linearization σ = e1,e2,…,ek define
Define  propσ = F(e1 ∧X(e2 ∧X(… X(ek)…)))

Define property ϕM corresponding to M as
ϕM = ¬ ( ∨σ∈Lin(M) propσ )

A counter-example to ϕM is a test satisfying M.

Example
p q

e1 e2

e3 e4

Possible linearizations
e1, e2, e3, e4
e1, e3,  e2, e4

LTL property
¬ (   F(e1 /\ X(e2 /\ X( e3 /\ X e4)))

∨
F( 1 /\ X( 3 /\ X( 2 /\ X 4)))
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F(e1 /\ X(e3 /\ X(e2 /\ X e4)))
)
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Encoding test specifications 
Def. 2

A trace σ satisfies a test specification M if σ contains at least 
one linearization of M as a subsequence.
Given MSC M, 

define Lin(M) = set of linearizations of M.
For each linearization σ = e e e define
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For each linearization σ = e1,e2,…,ek define
nσ = ¬( e1 ∨ e2 ∨ … ∨ ek)
propσ = (nσ U (e1∧X(nσ U(e2 ∧X(… X(nσ U ek)…))))

Define property ϕM corresponding to M as
ϕM = ¬ ( ∨σ∈Lin(M) propσ )

A counter-example to ϕM is a test satisfying M.

Example
p q

e1 e2

e3 e4

Possible linearizations
e1, e2, e3, e4
e1, e3,  e2, e4

LTL property

??
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(try this as an exercise)

52

Model Checking – Next class

LTL 
Property ϕ

System 
Model M
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Model Checking

Yes No, with 
Counter-example trace

OR

Describe Model Checking as a 
general verification procedure.
It proceeds by search.Check M |= ϕ


