Recap: Model Checking for model-based testing

From test spec.

- **LTL Property**
- **System Model**
- **Model Checking**
- Yes, with Counter-example trace
- No, with Counter-example trace

Encoding test specifications

- **Def. 1**
 - A trace σ satisfies a test specification M if σ contains at least one linearization of M as a contiguous subsequence.
 - Given MSC M,
 - define $\text{Lin}(M)$ = set of linearizations of M.
 - For each linearization $\sigma = e_1 e_2 \ldots e_k$ define
 - $\text{prop}_\sigma = \Box_{e_1}(X_{e_2}(X_{e_3}(\ldots(X_{e_k}(\ldots)))$)
 - Define property ϕ_M corresponding to M as
 - $\phi_M = \neg \bigvee_{\sigma \in \text{Lin}(M)} \text{prop}_\sigma$
 - A counter-example to ϕ_M is a test satisfying M.

Encoding test specifications

- **Def. 2**
 - A trace σ satisfies a test specification M if σ contains at least one linearization of M as a subsequence.
 - Given MSC M,
 - define $\text{Lin}(M)$ = set of linearizations of M.
 - For each linearization $\sigma = e_1 e_2 \ldots e_k$ define
 - $\text{prop}_\sigma = \neg (e_1 \lor e_2 \lor \ldots \lor e_k)$
 - $\text{prop}_\sigma = \neg (\text{prop}_\sigma \lor (e_1 \land X_{e_2}(\ldots \land X_{e_k}(\ldots)))$
 - Define property ϕ_M corresponding to M as
 - $\phi_M = \neg \bigvee_{\sigma \in \text{Lin}(M)} \text{prop}_\sigma$
 - A counter-example to ϕ_M is a test satisfying M.
LTL Model Checking – does $M \models \varphi$

1. Consider $\neg \varphi$. None of the exec. traces of M should satisfy $\neg \varphi$.
2. Construct a finite-state automata $A_{\neg \varphi}$ such that $\text{Language}(A_{\neg \varphi}) = \text{Traces satisfying } \neg \varphi$.
3. Construct the synch product $M \times A_{\neg \varphi}$.
4. Check whether any exec trace σ of M is an exec trace of the product $M \times A_{\neg \varphi}$ i.e. check $\text{Language}(M \times A_{\neg \varphi}) = \text{empty-set}$?
 - Yes: Violation of φ found, report counterexample σ
 - No: Property φ holds for all exec traces of M.

Recap: finite-state automata

- Regular languages:
 - Accept any finite-length string $\sigma \in \Sigma^*$ which ends in a final state.
- ω-regular languages:
 - Accept any infinite-length string $\sigma \in \Sigma^\omega$ which visits a final state infinitely many times.
- Set of strings accepted = Language of the automata.

Finite automata

- Meaning as a regular language
 - $(a+b)^* b^*$
 - All finite length strings ending with b
- Meaning as a ω-regular language
 - All infinite length strings with finitely many a

LTL properties to automata

- Given a LTL property p
 - we want to convert p to an automata A_p such that $\text{Language}(A_p) = \text{strings / traces satisfying } p$
- LTL properties are checked over infinite traces.
 - Given an infinite trace σ and a LTL property p, we can check whether $\sigma \models p$
- To convert LTL properties to finite-state automata, consider automata accepting infinite length traces.
 - $\text{Language}(A_p)$ is ω-regular, not regular.
LTL properties to automata

- Given a LTL property φ
 - We convert it to a ω-regular automata A_φ.
- $\text{Language}(A_\varphi) = \{ \sigma \in \sum^\omega : \sigma \models \varphi \}$
 - $\text{Language}(A_\varphi)$ is defined as per the ω-regular notion of string acceptance; it accepts infinite length strings.
 - All infinite length strings satisfying φ form the language of A_φ.
 - Whether an infinite length string satisfies φ (or not) is defined as per LTL semantics.

Recall: LTL Model Checking

1. Consider $\neg \varphi$. None of the exec. traces of M should satisfy $\neg \varphi$.
2. Construct a finite-state automata $A_{\neg \varphi}$ such that
 - $\text{Language}(A_{\neg \varphi}) = \text{Traces satisfying } \neg \varphi$
3. Construct the synch product $M \times A_{\neg \varphi}$
4. Check whether any exec trace σ of M is an exec trace of the product $M \times A_{\neg \varphi}$ i.e. check $\text{Language}(M \times A_{\neg \varphi})$ = empty-set?
 - Yes: Violation of φ found, report counterexample σ.
 - No: Property φ holds for all exec traces of M.

Example: Verify $\text{GF} \varphi$

- Construct negation of the property $\neg \text{GF} \varphi = \text{FG} \neg \varphi$
- Construct automata accepting infinite length traces satisfying $\text{FG} \neg \varphi$

Product Automata Construction

- System Model M
- Property Automata $A_{\neg \varphi}$
- Product Automata $M \times A_{\neg \varphi}$

Product Automata

- (i) System Model M
- (ii) Property Automata $A_{\neg \varphi}$
- (iii) Product Automata $M \times A_{\neg \varphi}$
Recall: LTL Model Checking
1. Consider $\neg \phi$. None of the exec. traces of M should satisfy $\neg \phi$.
2. Construct a finite-state automata $A_{\neg \phi}$ such that
 - $\text{Language}(A_{\neg \phi}) = \text{Traces satisfying } \neg \phi$
3. Construct the synch product $M \times A_{\neg \phi}$
4. Check whether any exec trace σ of M is an exec trace of the product $M \times A_{\neg \phi}$ i.e. check $\text{Language}(M \times A_{\neg \phi}) = \text{empty-set}$?
 - Yes: Violation of ϕ found, report counterexample σ
 - No: Property ϕ holds for all exec traces of M.

Emptiness Check
- Perform DFS from initial state until you reach an accepting state s_{acc}
- When you reach s_{acc}, remember s_{acc} in a global var. and start a nested DFS from s_{acc}
- Stop the nested DFS if you can reach s_{acc}
- If no accepting cycles are found, report yes.
- If accepting cycles are found
 - Concatenate the two DFS stacks and report it as counterexample trace of the LTL property.
 - This algo. is implemented in SPIN model checker.

Nested DFS – step 1
- procedure dfs1(s)
 - push s to Stack1
 - add s to States1
 - if accepting(s) then
 - States2 := empty; seed := s; dfs2(s)
 - endif
 - for each transition $s \rightarrow s'$ do
 - if $s' \in$ States1 then dfs1(s')
 - endfor
 - pop s from Stack1
- end

Nested DFS – step 2
- procedure dfs2(s)
 - push s to Stack2
 - add s to States2
 - for each transition $s \rightarrow s'$ do
 - if $s' =$ seed then report acceptance cycle
 - else if $s' \notin$ States2 then dfs2(s')
 - endif
 - endfor
 - pop s from Stack2
- end