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Recap: Model Checking for model-based
testing

From LTL
test Property
spec.
Model
Checking
No, with
Counter-example trace Generated
Test
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Encoding test specifications
» Def. |

A trace o satisfies a test specification M if ¢ contains at least
one linearization of M as a contiguous subsequence.
Given MSC M,
define Lin(M) = set of linearizations of M.
For each linearization = e,,e,,...,e, define
Define prop, = F(e; AX(e; AX(... X(e))...)))
Define property ¢y corresponding to M as
9= = (Voeling) ProPs )

» A counter-example to @y is a test satisfying M.
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Encoding test specifications
» Def.2

A trace o satisfies a test specification M if ¢ contains at least
one linearization of M as a subsequence.
Given MSC M,
define Lin(M) = set of linearizations of M.
For each linearization ¢ = e,e,,...,e, define
n,=—(e vev..ve)
prop, = (n, U (e;AX(n, U(e2 AX(... X(n, U ek)...))))
Define property ¢\ corresponding to M as
@1= = (VoeLinge) PrOPs )

» A counter-example to @y is a test satisfying M.
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Model Checking

Describe Model Checking as a

Model Checking

Check M |= @ It proceeds by search.

OR
No, with
Counter-example
trace
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general verification procedure.
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LTL Model Checking — does M |= o

I. Consider —¢. None of the exec. traces of M should
satisfy —¢.
2. Construct a finite-state automata A _, such that
Language(A _, ) = Traces satisfying —¢
3. Construct the synch product M xA _,
4. Check whether any exec trace ¢ of M is an exec trace
of the product M x A _ i.e. check Language(M xA _)
= empty-set?
Yes:Violation of ¢ found, report counterexample ¢
No: Property ¢ holds for all exec traces of M.
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Recap: finite-state automata
» A=(Q, 2, Qp >, F)

Q is a finite set of states

2 is a finite alphabet

Q, < Q is the set of initial states

— < Q x2x Q is the transition relation

F < Q is the set of final states.

» What is the language of such an automaton?
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Recap: finite-state automata

» Regular languages:
Accept any finite-length string 6 €X* which ends in a final
state.

» w-regular languages:
Accept any infinite-length string ¢ €X© which visits a final state
infinitely many times.

» Set of strings accepted = Language of the automata.

9 Copyright 201 | by Abhik Roychoudhury

Finite automata

Gb

b

» Meaning as a regular language
(a+b)*b*
All finite length strings ending with b

» Meaning as a m-regular language
All infinite length strings with finitely many a
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LTL properties to automata
» Given a LTL property p

we want to convert p to an automata A, such that
Language(A,) = strings / traces satisfying p

» LTL properties are checked over infinite traces.
Given an infinite trace ¢ and a LTL property p, we can check
whether ¢ |= p

» To convert LTL properties to finite-state automata,

consider automata accepting infinite length traces.

Language(A,) is m-regular, not regular.
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Example: LTL property to automata

Represents negation of the LTL
property

G(p=((P Uq)

true

p &&!q

p&&!q 'q

true

12 Copyright 201 | by Abhik Roychoudhury




2/8/2012

LTL properties to automata
» Given a LTL property ¢

We convert it to a o-regular automata A,

» Language(A,) = {o| ceX® A o |= ¢}
Language(A,) is defined as per the w-regular notion of string
acceptance. It accepts infinite length strings.
All infinite length strings satisfying ¢ form the language of A,
Whether an infinite length string satisfies ¢ (or not) is defined
as per LTL semantics.
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Recall: LTL Model Checking

I. Consider —@. None of the exec. traces of M should
satisfy —¢.
2. Construct a finite-state automata A _, such that
Language(A _,) = Traces satisfying —¢
3. Construct the synch product M xA _
4. Check whether any exec trace ¢ of M is an exec trace
of the product M x A _ i.e. check Language(M x A _)
= empty-set?
Yes:Violation of ¢ found, report counterexample ¢
No: Property ¢ holds for all exec traces of M.
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Example: Verify GFp
» Construct negation of the property
—GFp = FG—p

» Construct automata accepting infinite length traces
satisfying FG—p

—p

true
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Product Automata
\ —p

-p
g m— P
q2

ql

true

(i) System Model M (ii) Property Automata A

(s1.a2)

M |= GFp

-p

(s2.ql) @ (s2.92)

(iii) Product Automata M x A
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Product Automata Construction

—P
: -
ql q2

g m—P
true

(i) System Model M (ii) Property Automata A

(sl.q2)
Note that sl |= —p (slah)
ﬁP
true
true

M|=GFp o
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(iii) Pruduct Automata M x A

Product Automata

—p
{ 0 h
N s2 ql q2
true

(i) System Model M (ii) Property Automata A
true L -p
-p_ !
(shal) I = @ (s192)
true
—p
(s2,q! )Q>true (s2,92)
(iii) Product Automata M x A
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Recall: LTL Model Checking

I. Consider —¢. None of the exec. traces of M should
satisfy —¢.
2. Construct a finite-state automata A _, such that
Language(A _, ) = Traces satisfying —¢
3. Construct the synch product M xA _,
4. Check whether any exec trace ¢ of M is an exec trace
of the product M x A _ i.e. check Language(M xA _)
= empty-set?
Yes:Violation of ¢ found, report counterexample ¢
No: Property ¢ holds for all exec traces of M.
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Emptiness Check

» Language(M x A _ ) = empty-set?

o
Is there any trace which visits one of the accepting states
of the product automata infinitely many times?

Look for accepting cycles.

So <:: >
Sace
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Emptiness Check

» Perform DFS from initial state until you reach an
accepting state s,
» When you reach s, ., remember s, in a global var. and
start a nested DFS from s,
Stop the nested DFS if you can reach s,
» If no accepting cycles are found, report yes.
» If accepting cycles are found

Concatenate the two DFS stacks and report it as counter-
example trace of the LTL property.

» This algo. is implemented in SPIN model checker.
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- JFS!

PES2
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Nested DFS - step 1

» procedure dfsl(s)
push s to Stack|
add {s} to States|
if accepting(s) then
States2 := empty; seed := s; dfs2(s)
endif
for each transition s — s’ do
if s’ ¢ States| then dfl(s’)
endfor
pop s from Stack|

» end
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Nested DFS — step 2

» procedure dfs2(s)

push s to Stack2

add {s} to States2

for each transition s — s’ do
if s’ = seed then report acceptance cycle

else if s’ ¢ States2 then df2(s’)

endif

endfor

pop s from Stack2

» end
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