
2/8/2012

1

SPIN Model Checker
CS 4271

Abhik Roychoudhury
National University of Singapore

Copyright 2012 by Abhik Roychoudhury1

From last lecture

LTL 
Property

System 
Model

Promela model

Copyright 2012 by Abhik Roychoudhury2

Model 
Checking

Yes
No, with 
Counter-example trace

OR

SPIN model checker

SPIN
A tool for modeling complex concurrent and distributed 
systems.
Provides:

Promela, a protocol meta language
A model checker

Copyright 2012 by Abhik Roychoudhury3

The nested DFS algorithm discussed in last class is implemented 
inside the SPIN model checker!

A random simulator for system simulation
Promela models can be automatically generated from a safe 
subset of C.

Our Usage
Learn Promela, a low-level modeling language.
Use it to model simple concurrent system protocols and 
interactions.
Gain experience in verifying such concurrent software using 
the SPIN model checker.
Gi   f l (   ll l )

Copyright 2012 by Abhik Roychoudhury4

Gives a feel (at a small scale)
What are hard-to-find errors ?
How to find the bug in the code, once model checking has 
produced a counter-example ?

Our Usage

Requirements (English)

Alternate models??

Manual step
Manual step

Desirable 
Properties

User

Copyright 2012 by Abhik Roychoudhury5

Promela

Code

Tests
Testing

Debug

Alternate models??
Sequence Diag.

??
Automated

Verification

Only use as guide

Verification vs. testing
Sequential Program

Test
Try one/selected inputs

Verify
Try all possible inputs and check 
whether output is as “expected”

Concurrent Program
Test

Try one/selected inputs and/or 
thread schedules.

Verify
Try all possible inputs and for 
th  ll ibl  h d l

Copyright 2012 by Abhik Roychoudhury6

Need to specify “expectation” them all possible schedules
No notion of output, specify 
“expectation” as temp. logic 
properties over exec. trace



2/8/2012

2

Why Promela ?
Extensive support of various control constructs for 
computation.

Assignments, Assert, If, Do
Ideas from guarded command languages

Dynamic creation of processes supported.

Copyright 2012 by Abhik Roychoudhury7

y p pp
Gives the flavor of a realistic multi-threaded programming 
language
Yet supported directly by a model checker !!
Ideal for our purposes in this course.

Features of Promela
Concurrency

Multiple processes in a system description.

Asynchronous Composition
At any point one of the processes active.
Interleaving semantics

Copyright 2012 by Abhik Roychoudhury8

Communication
Shared variables
Message passing

Handshake (synchronous message passing)
Buffers (asynchronous message passing)

Features of Promela
Within a process

Non-determinism : supports the situation where all details of a 
process may not be captured in Promela model.
Standard C-like syntax

Assignment 
Switch statement

Copyright 2012 by Abhik Roychoudhury9

Switch statement
While loop
Guarded command

Guard and body may not evaluated together, that is, atomically.

Example 1 

byte state = 0; 

proctype A() 

{  byte tmp; 

We need to define how processes are

scheduled.

Copyright 2012 by Abhik Roychoudhury10

(state==0) -> tmp = state; 

tmp = tmp+1; 

state = tmp;

}

init  { run A() ; run A(); }

Example 2

bit  flag;                                         init {

byte sem;                                            atomic{

proctype myprocess(bit i)                            run myprocess(0));

{    (flag != 1) ->flag = 1;                                run myprocess(1)

Copyright 2012 by Abhik Roychoudhury12

sem = sem + 1;                                         run observer();

sem = sem – 1;                               }

flag =  0;                                   }

}

proctype observer() {

assert( sem != 2 );

}

All three processes 

Instantiated together



2/8/2012

3

Concepts in Example 2
Interleaved execution among threads.
Shared variable communication 
Unintended shared variable values

Due to unforeseen interleavings

And, a mechanism for ,
Specifying the unintended behavior
Producing the interleaving that produces this unintended 
behavior.
We only do this in our modeling environment – hard to do this 
for real programs!

SPIN’s process scheduling
All processes execute concurrently

Interleaving semantics
At each time step, only one of the “active” processes will execute (non-
deterministic choice here)
A process is active, if  it has been created, and its “next” statement is not 
blocked.

      

Copyright 2012 by Abhik Roychoudhury15

Each statement in each process executed atomically.
Within the chosen process, if several statements are enabled, one of 
them executed non-deterministically.

We have not seen such an example yet !

Will this loop terminate?

byte count;

proctype counter()
{

do

Non-determinism within a single process.

Copyright 2012 by Abhik Roychoudhury

:: count = count + 1
:: count = count - 1
:: (count == 0) -> break
od;

}

Enumerate the reasons for non-termination in this example

16

This loop will not terminate

active proctype TrafficLightController() {

byte color = green;

do

:: (color == green) -> color = yellow;

:: (color == yellow) > color = red;

Copyright 2012 by Abhik Roychoudhury

:: (color == yellow) -> color = red;

:: (color == red) -> color = green;

od;

}

green yellow red
s0 s1

s2

17

Channels
SPIN processes can communicate by exchanging messages 
across channels

Apart from communication via shared variables.

Channels are typed.
Any channel is a FIFO buffer.
H d h k  d h  b ff   ll

Copyright 2012 by Abhik Roychoudhury

Handshakes supported when buffer is null.
chan ch = [2] of bit;

A buffer of length 2, each element is a bit.
Array of channels also possible.

Talking to diff. processes via dedicated channels.

18



2/8/2012

4

Handshake or not?

1

2
3

Sender Receiver
Handshake communication

<!1, ?1>, <!2, ?2>, <!3, ?3>, …
(only possible interleaving)

Buffer of length 2
!1, !2, ?1, !3, ?2, …
(also possible)

Copyright 2012 by Abhik Roychoudhury19

4

What is the minimum sized buffer needed to allow this interleaving?

!1, !2, ?1, ?2, !3, !4, ?3, ?4, …

Example with channels

chan data, ack = [1] of bit;

proctype node1() {                  proctype node2() {
do                                                 do
:: data!1;                                      :: ack!1;
:: ack?1;                                       :: data?1;

                                                 

data

ack

node1 node2

Copyright 2012 by Abhik Roychoudhury20

od                                                 od
}                                               }

init{ atomic{
run node1(); run node2();

}
}

…..

ack

data

ack

Example with channels

chan data, ack = [1] of bit;

proctype node1() {                 proctype node2() {
do                                                 do
:: data!1;                                      :: ack!1;
:: ack?1;                                       :: data?1;

data ack

data ack

node1 node2

Copyright 2012 by Abhik Roychoudhury21

:: ack?1;                                       :: data?1;
od                                                 od
}                                               }

init{ atomic{
run node1(); run node2();

}
}

….

SPIN Execution Semantics
Select an enabled transition of any thread, and execute it.
A transition corresponds to one statement in a thread.

Handshakes must be executed together.
chan x = [0] of {…};
x!1              ||   x?data

Copyright 2012 by Abhik Roychoudhury22

SPIN Execution Engine
while ( (E = executable(s))  != {})

for some (p,t) ∈ E

{    s’ = apply(t.effect, s); /* execute the chosen statement */

if (handshake == 0)

{          s = s’ ;

p.curstate = t.target

Copyright 2012 by Abhik Roychoudhury23

}

else{  …

SPIN Execution Engine

/* try to complete the handshake */

E’ = executable(s’);  /* E’ ={} ⇒ s unchanged */

for some (p’, t’) ∈ E’

{       s = apply(t’.effect, s’);

p.curstate = t.target;

p’ curstate = t’ target;

Copyright 2012 by Abhik Roychoudhury24

p .curstate = t .target;

}

handshake = 0

}   /*  else  */

} /*  for some (p, t) ∈ E */

}  /* while ((E = executable(s))  … */

while  (stutter) { s = s }



2/8/2012

5

Model Checking in SPIN
(P1 || P2 || P3)  |= ϕ

P1, P2, P3 are Promela processes
ϕ is a LTL formula

Construct a state machine via
M, asynchronous composition of processes P1, P2, P3

Copyright 2012 by Abhik Roychoudhury25

y p p
A¬ϕ, representing ¬ϕ

Show that “language” of M ×A¬ϕ is empty
No accepting cycles.

All these steps have been studied by us !!

Specifying properties in SPIN
Invariants

Local: via assert statement insertion
Global: assert statement in a monitor process

Deadlocks
Arbitrary Temporal Properties (entered by user)

Copyright 2012 by Abhik Roychoudhury26

y p p ( y )
SPIN is a LTL model checker.
LTL properties can be entered as input to the checker!

Shown in the lab hour of the last lecture!

Connect system & property in SPIN

System model
int  x = 100;
active proctype A()
{   do

:: x %2 -> x = 3*x+1
od

Property
GF (x = 1)

Insert into code
#define q (x == 1)

Now try to verify GF q

Copyright 2012 by Abhik Roychoudhury27

od
}  
active proctype B()
{  do

:: !(x%2) -> x = x/2
od

}

More Involved Example
Alternating Bit Protocol

Reliable channel communication between sender and receiver.
Exchanging msg and ack.
Channels are lossy 
Attach a bit with each msg/ack.

    f      

Copyright 2012 by Abhik Roychoudhury

Proceed with next message if the received bit matches your 
expectation.

28

ABP Architecture

datachan

Implemented as SPIN processes

Copyright 2012 by Abhik Roychoudhury

sender receiver
datachan

ackchan

29

Sender  & Receiver code
chan datachan = [2] of { bit };
chan ackchan = [2] of { bit };

active proctype Sender()
{    bit out, in;

do
:: datachan!out ->

active proctype Receiver()
{ bit in ;

Copyright 2012 by Abhik Roychoudhury

ackchan?in;
if 
:: in == out -> out = 1- out;
:: else fi

od

}

{    bit in ;
do
:: datachan?in -> ackchan!in
:: timeout -> ackchan!in
od

}

30



2/8/2012

6

Timeouts
Special feature of the language

Time independent feature.
Do not specify a time as if you are programming.

True if and only if there are no executable statements in any of 
the currently active processes.
True modeling of deadlocks in concurrent systems (and the 

Copyright 2012 by Abhik Roychoudhury

resultant recovery).

31

Model Checking in SPIN
SPIN performs model checking by Nested DFS

Discussed in the past lecture !!

Find acceptance states reachable from initial states (DFS).

Find all such acceptance states which are reachable from itself (DFS).

Counter-example evidence (if any) obtained by simply concatenating the 

Copyright 2012 by Abhik Roychoudhury32

Counter-example evidence (if any) obtained by simply concatenating the 
two DFS stacks.

Some Common Questions
How does the product of the system and property automata 
work ?

How is the interaction between system and property 
automata achieved ?

Can we specify LTL properties directly ?
Y    d   i  SPIN

Copyright 2012 by Abhik Roychoudhury33

Yes, you can do so in SPIN.

Can we model/verify pgms with procedures
Yes.

Let us finish with a real-life situation
July 4, 1997

NASA’s Pathfinder landed on Mars.
Tremendous engineering feat.
Hard to design the control software with concurrency and 
priority driven scheduling of threads.
Th  S R  ld l   i h h i  

Copyright 2012 by Abhik Roychoudhury34

The SpaceRover would lose contact with earth in 
unpredictable moments.

The Mars Pathfinder problem

“But a few days into the mission, not long 
after Pathfinder started gathering 
meteorological data, the spacecraft began 
experiencing total system resets  each 

Copyright 2012 by Abhik Roychoudhury35

experiencing total system resets, each 
resulting in losses of data. The press 
reported these failures in terms such as 
"software glitches" and "the computer was 
trying to do too many things at once".” …

Essence of the problem in SPIN
mtype = { free, busy, idle, waiting, running };

mtype H = idle;   mtype L = idle; mtype mutex = free;

active  proctype high();

{end:  do

:: H = waiting;

i  {   f  >

active proctype low() provided (H == idle)

{ end: do

:: L = waiting;

i {  f > 

Copyright 2012 by Abhik Roychoudhury36

atomic { mutex == free ->

mutex = busy };

H = running;

atomic{ H=idle; mutex=free }

od

}

atomic{ mutex== free-> 

mutex = busy};

L = running;

atomic{ L=idle; mutex = free }

od

}



2/8/2012

7

State Space Graph

i,i,f

w,i,f
f

i,w,f

Copyright 2012 by Abhik Roychoudhury37

w,w,f

i,w,b

i,r,b

w,r,b

w,w,b

w,w,b

r,w,b

w,i,b

r,i,b

w ≡waiting

i ≡idle

r ≡running

b ≡busy

f ≡ free

Source of deadlock
Counterexample

Low priority thread acquires lock
High priority thread starts 
Low priority process cannot be scheduled
High priority thread blocked on lock

Copyright 2012 by Abhik Roychoudhury38

Actual error was a bit more complex with three 
threads of three different priorities

Timer went off with such a deadlock resulting in a system 
reset and loss of transmitted data.

More readings on SPIN
http://spinroot.com/spin/Man/Manual.html

SPIN manual

The model checker SPIN (Holzmann)
IEEE transactions on software engineering, 23(5), 1997.

http://spinroot.com/spin/Doc/SpinTutorial.pdf
SPIN beginner’s tutorial (Theo Ruys)

Copyright 2012 by Abhik Roychoudhury39

g ( y )

``The SPIN model checker: primer and reference manual”, by 
Holzmann (mostly chapters 2,3,7,8)

This one is optional reading.

Exercise 1 – Model Checking 
Two Computer Engineering students are taking the CS4271 exam. We must ensure that 
they cannot leave the exam hall at the same time. To prevent this, each student reads a 
shared token n before leaving the hall. The shared token is an arbitrary natural number. The 
global state of the system is given by s1, s2, n where s1 and s2 are the local states of students 
1 and 2 respectively. Note that s1 {in, out}, s2 {in, out}. The pseudo-code executed by the two 
students are:

do forever{                                      do forever{
if s1 = in and n is odd                           if s2 = in and n is even

Copyright 2012 by Abhik Roychoudhury40

{ s1 := out }                                                {s2 := out}
else if s1 = out                                     else if s2 = out and n is even

{ s1 := in; n := 3*n+1}                                { s2 := in ; n := n/2 }
else {do nothing }                                 else { do nothing }
}                                                     }

The two student processes are executed asynchronously. Every time one process is 
scheduled, it atomically executes one iteration of its loop. The above system is an infinite state 
system. Design a finite state abstraction and draw the global automata for the abstracted 
system. Your abstraction should be refined enough to prove mutual exclusion. Initially s1 
= in and s2 = in. 
Consider the mutual exclusion property. Specify it in LTL. Is the mutual exclusion property 
true in this case? Why or why not? 

Exercise 2 – Concurrency, Model Checking
Consider an asynchronous composition of two processes, i.e. 
in any time step only one of them makes a move. These 
processes communicate via a single shared variable x. Both 
processes are executing the following infinite loop:

while true do x := x + x

Copyright 2012 by Abhik Roychoudhury41

while true do x := x + x

Every time one of the processes is scheduled, it atomically 
executes x := x + x and then again another process is 
scheduled. The initial value of x is . What will be the values of x 
reached during system execution and why ?

Exercise 2 – Take a guess!
Suppose the infinite loop is compiled by a naïve compiler as follows. The 

sequence of instructions executed by process A and process B are shown. 
The processes are running asynchronously, and each time a  process is 
scheduled, only its next instruction is executed atomically.  Initially x = 1.

Process A                               Process B 
LoopA:       regA

1 = x                          LoopB:    regB
1 = x

regA
2 = x                                        regB

2 = x

Copyright 2012 by Abhik Roychoudhury42

regA  x                                        regB  x
regA

3 = regA
1 + regA

2 regB
3 = regB

1 + regB
2

x = regA
3 x = regB

3

go to LoopA  go to LoopB

What are all the possible values that x reach during system execution in 
this situation ? Explain your answer. Note that x is a shared  global variable 
and regA

i, regB
i are local registers in processes A and B respectively.


