
Rhapsody Tutorial

This tutorial gives a step-by-step demonstration on how to build the
microwave oven example as given in the demo.zip using “Rhapsody in J”
6.2. It only covers limited features of the Rhapsody tool that might be
helpful for your assignment 1. To learn/use more features of the tool, please
go for the Rhapsody tutorials at “Help / List of Books”.

1 Modeling Procedures

The process of constructing a system includes four steps - analyze, design,
build and animate(simulate).

1. Analyze
Before modeling the system, we first need to analyze the system spec-
ification to identify the components of the systems and their behav-
iors(functionalities).

For example, our microwave oven contains three buttons for three dif-
ferent heating options (heat for 1000 time unit, heat 500 time unit, or
stop current heating), as well as one engine which does the actually
heating.

2. Design
To design this system using Rhapsody, we need following steps.

• Create a new project by selecting File / New

• Create class diagram: expand “Object Model Diagrams” on the
left panel, select the default diagram “Model1” (you may choose to
rename it). To create a class, click the “class” icon on the middle
toolbar, then click on the drawing area at the right. By double
click a class you have created, the class property window appears,
from which you can change the class name, add attributes and
operations. Similarly, you can create and configure associations

1



between classes. Note that when an object of class A needs to
communicate with another object of class B, class A and class B
must have association in the class diagram.

In our example, we create two classes, “Button” and “Engine”.
We have an attribute named “period” in the “Button” class, to
capture the heating period of the three buttons (0 for stop). An
constructor “Button(int p)” is created to initialize the value of
“period”. Moreover, a directed association from “Button” to “En-
gine” (named “itsEngine”) is created so that we can send messages
from “Button” objects to the engine.

• Create object diagram: We first create a new object model dia-
gram by right click “Object Model Diagrams” and choose “Add
New Object Model Diagram”. In the object diagram, we create
three buttons objects (longButton, shortButton, and stopButton),
one engine, and links (instances of associations) from each button
to the engine. We can initialize the value of “period” for each but-
ton object in the object diagram. To do so, double click a button
object, click “initialization” under “general” tab, set values of the
parameters of “Button” constructor.

• Create statecharts: create a statechart for a class by right clicking
the class in the class diagram, then choose Add new statechart.

– States: Simple, Or, and And states. States may have ac-
tion on entry/exit which are executed when the states are
entered/exited, respectively.

– Transitions: Upon receiving an event, an object changes its
state by executing a transition. A transition includes the trig-
ger event, a guard (boolean expression on local variables) and
action. Action may involve any Java statements or event send-
ing to another objects. For example, when the “stopButton”
is pressed (receives an external event “press”), it will send an
“stop” event to the engine by calling “getItsEngine().gen(new
stop())”.

– Reception: Events which are used as the communication mech-
anisms among objects. When you type a event name in the
“trigger” field of a transition, Rhapsody will automatically
create such an event for you. In the browser / package /
Events, you can add or modify the events used in the pack-
age. Events can carry data with them. To make an event have
data associated with it, right click the event, choose Features,

2



and add parameters and their types corresponding to the data
you want to associate with the event.

3. Build
Once you have created all the necessary diagrams for the model, you
need to generate and build java code for the model. This is the prepa-
ration step before doing animation to debug a model at design level.
These are the steps:

• Create a component
A component contains the configuration used to generate, build
and run the model. You can use the default component (in the
Components category in the browser) and rename it if you want.
Set the component features as follows:

– Type: Executable

– Scope: All Elements

• Create a configuration for the component
Each component contains a default configuration named “Default-
Config”. Expand the component in the browser to see it. Double
click the “DefaultConfig” under it, set the configuration as follows.

– Initialization tab, initial instances: explicit

– Settings tab, Instrumentation mode: animation. Time model:
Real. Statechart implementation: flat.

• Generate code
Set the active configuration for which you generate code by right-
clicking the configuration, select Set as Active Configuration. From
the menu, select Code / Generate / <active configuration name>.

• Build code
Select Build from menu Code or Make tool in the Code toolbar.
Debug the compilation error if any.

4. Animate
When doing animation, you can open animated diagrams to observe the
model running. First create a new sequence diagram by click “Tools
/ Sequence Diagram”. In the diagram, draw the “instance line” for
each object you want to monitor during animation. Draw a “system
border” to indicate where the external events come from. Then start to
run your model by click “Code / Run”. Please refer to “Rhapsody in
J” tutorial, page 65-71 for details of how to run the model and generate
external events (inputs) to the model.

3


