
1

07/08/200707/08/2007 CS4272, 2007CS4272, 2007 11

CS4272: Hardware Software
Codesign

Introduction
Abhik Roychoudhury
School of Computing

National University of Singapore

07/08/2007 CS4272, 2007 2

The Course Title
Much of this lecture will explain the course
title.
Roughly speaking

An advanced course on Embedded System
(ES) design
• An advanced course on ES design from design

models to software and hardware.
An advanced course on ES design from design models
to software and hardware satisfying constraints on
time, power, code size

07/08/2007 CS4272, 2007 3

Today’s Lecture
Embedded Systems (ES)
Quick tour/re-cap of current issues in ES
design.
Overview of co-design methodologies
Course structure, assessment etc.

07/08/2007 CS4272, 2007 4

ES
A computing system which is part of a
“larger system” (read – device).
The larger system constitutes the
environment – in continuous interaction.
The computing system implements a
specific functionality.

A dedicated computer implemented by a
combination of hardware and software.

07/08/2007 CS4272, 2007 5

ES Examples
Automobiles
Train control systems
Avionics / Flight control
Nuclear Power Plants
Inside medical devices (for image
manipulation) and other purposes
Safety first !

07/08/2007 CS4272, 2007 6

ES Examples
Or more vanilla
HDTV
Washing Machines
Microwave
Controllers for other household devices
such as Air-con
Finally, smart room / wear (GA Tech etc.)

2

07/08/200707/08/2007 CS4272, 2007CS4272, 2007 77

Examples

Some embedded systems from
real life

07/08/2007 CS4272, 2007 8

Pedometer
Obvious computer work:

Count steps
Keep time
Averages
etc.

Hard computer work:
Actually identify when a step
is taken
Sensor feels motion of
device, not of user feet

© Jakob Engblom

07/08/2007 CS4272, 2007 9

Mobile phones
Multiprocessor

8-bit/32-bit for UI
DSP for signals
32-bit in IR port
32-bit in Bluetooth

8-100 MB of memory
All custom chips
Power consumption &
battery life depends on
software

© Jakob Engblom
07/08/2007 CS4272, 2007 10

Mobile base station
Massive signal processing

Several processing tasks per
connected mobile phone

Based on DSPs
Standard or custom
100s of processors

© Jakob Engblom

07/08/2007 CS4272, 2007 11

Telecom Switch
Rack-based

Control cards
IO cards
DSP cards
...

Optical & copper
connections
Digital & analog
signals

© Jakob Engblom
07/08/2007 CS4272, 2007 12

Smart Welding Machine
Electronics control voltage &
speed of wire feed
Adjusts to operator

kHz sample rate
1000s of decisions/second

Perfect weld even for quite
clumsy operators
Easier-to-use product, but no
obvious computer

© Jakob Engblom

3

07/08/2007 CS4272, 2007 13

Sewing Machine
User interface

Embroidery patterns
Touch-screen control

”Smart”
Sets pressure of foot
depending on task
Raise foot when stopped

New functions added by
upgrading the software

© Jakob Engblom
07/08/2007 CS4272, 2007 14

Forestry Machines

© Jakob Engblom

07/08/2007 CS4272, 2007 15

Forestry Machines
Networked computer system

Controlling arms & tools
Navigating the forest
Recording the trees harvested
Crucial to efficient work

Processors
16-bit processors in a network

© Jakob Engblom
07/08/2007 CS4272, 2007 16

Operator Panel
Embedded PC

Graphical display
Touch panel
Joystick
Buttons
Keyboard

But tough enough to
be “out in the woods”

© Jakob Engblom

07/08/2007 CS4272, 2007 17

Cars
Multiple networks

Body, engine,
telematics, media,
safety

Multiple processors
Up to 100
Networked together

© Jakob Engblom
07/08/2007 CS4272, 2007 18

Cars
Functions by embedded processing:

ABS: Anti-lock braking systems
Airbags
Efficient automatic gearboxes
Theft prevention with smart keys
Blind-angle alert systems
... etc ...

4

07/08/2007 CS4272, 2007 19

Cars
Large diversity in processor types:

8-bit – door locks, lights, etc.
16-bit – most functions
32-bit – engine control, airbags

Also, note that
Processing where the action is
Sensors and actuators distributed all over the
vehicle

© Jakob Engblom
07/08/2007 CS4272, 2007 20

A note about cars
Car electronics is an increasingly
important market, requiring new design
flows.

Software is important for value addition

Comments by major manufacturers
Daimler Chrysler
• More than 90% of the innovation is from the car

electronics (and not from the mechanical parts!)

BMW
• More than 30% of the manufacturing cost of a car is

from the electronic components !

Reliable/robust ES design flows needed !

07/08/2007 CS4272, 2007 21

Car electronics
1. Critical features in the power train or
chassis

Control engine, brakes, steering wheel
Safety-critical, hard real-time
Accomplished by communicating Electronic
Control Units (ECUs) which contain
• Micro-controller(s), RTOS, application program
• ECUs communicate via buses
• Communication between diff. micro-controllers in the

same ECU also supported by dual-ported RAMs
• Protocol design issues for the bus communication
• … all in the CS/CE domain, as you can see

07/08/2007 CS4272, 2007 22

Car Electronics
2. Controlling Cabin features

Power windows, air-conditioning
Often given as complex state-based
specifications which get translated to code

3. Infotainment/Telematics
Relates to Entertainment, not critical
Soft real-time constraints
Protocol standards for communication among
media devices in a network …

07/08/2007 CS4272, 2007 23

Finally, if you want to play
Lego mindstorms
robotics kit

Standard controller
• 8-bit processor
• 64 kB of memory

Electronics to interface
to motors and sensors

RCX Programmable
controller, see

http://legolab.daimi.au.
dk/CSaEA/RCX/Manual.
dir/RCXManual.html

© Jakob Engblom
07/08/2007 CS4272, 2007 24

Today’s Lecture
Embedded Systems (ES)
Quick tour/re-cap of current issues in ES
design.
Overview of co-design methodologies
Course structure, assessment etc.

5

07/08/2007 CS4272, 2007 25

ES Characteristics
Real-time and/or Reactive

Often combines hard and soft real-time
Timing constraints on the response

Low power budget
Novel architectures etc.

Low code size
Aggressive Code compression possible.

Profile driven development all important.

07/08/2007 CS4272, 2007 26

All methodologies …
Will typically espouse

Integrated model based design
Efficient Programming Technology
• Design Patterns, Run-time support

Link up to middleware/ RTOS
• Services to Application Software

System-on-Chip Platforms and/or
Programmable hardware
High levels of assurance at each stage.

07/08/2007 CS4272, 2007 27

But this is …
A little bit too abstract
Sounds like canonical CS stuff or some
collections of it.

What are the ES design issues ?

We need to look deeper and in more
details.

07/08/2007 CS4272, 2007 28

Levels of Abstraction

Models

Programming

OS, Middleware

Architectures, Hardware

07/08/2007 CS4272, 2007 29

Models of Computation

“The primary technology outcome of the MoBIES program
will be Model-Based Integration technology.

The key technology components to be developed are
model-based programming environments and
model-based generators. … “

Excerpt from US Air Force Research Lab
MOBIES Program Objectives

07/08/2007 CS4272, 2007 30

Models of Computation
Model based programming

Programming Systems which allow
construction of complex models as a by-
product of programming
• not the current norm !

Model based generators
Input to verification/analysis tools from models
Generate actual component interfaces etc.
from models

6

07/08/2007 CS4272, 2007 31

What kind of models ?
Concurrent processes
Support for timing
Support for process communication

Explicit modeling of process communication
can ease interface synthesis.
Separation of computation /communication

Objects (crucial link to Programming
Technology)
Discrete and Continuous models

07/08/2007 CS4272, 2007 32

Programming Technology
Hard and soft real-time requirements
Inter-process synchronization
requirements

Implementation of communication

Communication is often peer-to-peer
rather than centralized.
All these requirements need to introduced
into otherwise vanilla code.

07/08/2007 CS4272, 2007 33

Programming Technology

The PCES program will extend and combine approaches from
programming language analysis and compilation; composable
policies and protocols for communications and operating systems
services, and correct-by-construction software techniques. These
techniques will be developed for both interactive and automatic
use in support of embedded real-time programming and
execution.

Excerpt from the “Vision” of DARPA PCES Program

- Program Composition for Embedded Systems

07/08/2007 CS4272, 2007 34

Or more simply …
Develop re-usable core software.
Develop list of “features” (or “aspects”) you
want to assure

Synchronization , Timing, Memory management, Power

Safe code transformation for introducing these
aspects into core code.
Analysis tools for studying tradeoffs between
cross-cutting aspects.
AOP, SW Composition: much to learn from PL,SE

07/08/2007 CS4272, 2007 35

OS, Middleware

“The DARPA Quorum program is pursuing technology
research projects that are attempting solutions to a number
of the missing capabilities needed for mission critical system
development, such as predictable performance for network
based applications, fault tolerance and dependability
characteristics, real time performance properties, and fine
grained distributed systems security. “

Excerpt from description of DARPA Quorum
Program

07/08/2007 CS4272, 2007 36

So, the key points include…
Guarantee of real-time performance (related to
scheduling and schedulability)

Related to timing and/or power estimation

Quality of Service (QoS) guarantees in networked
distributed embedded systems

Handling multiple QoS guarantees – expt. Platform
Formal specification of QoS guarantees and even run-
time monitoring.

Middleware for open systems
Fault tolerance, Dynamic scheduling.

7

07/08/2007 CS4272, 2007 37

Hardware, Architecture
Low power processor architectures
Power model for system-on-chip platforms

Need to model buses / networks, and traffic flow
Abstractions in traffic flow : count based distributions

Transforming assembly code to reduce power
hotspots (more mem. Accesses etc.)
Other layers can also handle power

E.g. power as a secondary concern in scheduling
But here power is all important.

07/08/2007 CS4272, 2007 38

Hardware, Architecture
Transformations for predictable code
Take into account underlying hardware platform
(a formal model of pipeline, cache etc. ?)
Both sides of the coin

Analyze the performance of assembly code to find
worst- case execution time etc. (Well understood)
Trade off performance for predictability

• Cache locking schemes, New memory architectures

Develop models to predict the effect of well-understood
code transformations

07/08/2007 CS4272, 2007 39

Hardware, Architectures
Other conventional areas in co-design

Other EDA topics (like design space exploration)
conventionally considered under HW/Arch., …
… but can be considered to belong to all the layers of ES
design presented in this talk.

Reconfigurable architectures
Reconfigure data-paths, functional units etc. at run-time
and/or based on application.
Technical support – Field Programmable Gate Arrays
(FPGA): plug-n-play with processors in a design.

07/08/2007 CS4272, 2007 40

Organization
Embedded Systems (ES)
Quick tour/re-cap of current issues in ES
design
Overview of co-design methodologies
Course structure, assessment etc.

07/08/2007 CS4272, 2007 41

Co-design (1)
A. Model the system as a whole

Irrespective of which parts are implemented in
hardware and which parts in software.
Various choices of Models of Computation for
reactive real-time systems.
• Model level functionality verification is possible.

B. Partition into HW and SW
HW: Can be reconfigurable (FPGA)
SW: Run on micro-controllers or more complex
processors.
• Further allocation needed if multiple processing

elements (PEs) are available.

07/08/2007 CS4272, 2007 42

Co-design (2)
C. Scheduling

After allocation of tasks to PEs
Determines order in which tasks allocated to
the same PE will be invoked so that
• Performance constraints (deadlines) are met.
• Any dependencies between tasks are preserved.
• Communication/context-switch overheads in

execution are minimized if possible.

Requires execution-time estimation of the
tasks as well.
• However, this involves the code which may require

further optimization, not purely linear design flow !

8

07/08/2007 CS4272, 2007 43

Co-design (3)
D. Communication synthesis

Simple: Replace shared var. names by
appropriate locations
• If placed in local memory of a PE, the other PEs need

to access this.
• Choice of memory hierarchies for each PE --- there

might be a unified or a per-process scratchpad
memory where shared variables are allocated leading
to different communication overheads.

Complex: Design interfaces to enable
communication among design components
• Native protocols of the design components are

incompatible, but can be “fixed” !

07/08/2007 CS4272, 2007 44

Co-design (4)
E. Implementation

E1. SW implementation
• Compilation of the SW parts of the design
• Many issues in optimization of embedded software to

reduce code-size, energy consumption as well.
• At this stage, also profile and debug the code.

E2. HW implementation
• Convert behavioral design components to netlists at

Register Transfer level.
• Can be run on ASIC or FPGA.

E3: Interface implementation
• Convert interfaces designed in the previous step to

(typically) hardware ASIC implementation.

07/08/2007 CS4272, 2007 45

Co-design (5)
Iterative process

If performance/power constraints are not met,
we need to modify design choices
• Design space exploration

To reduce # of iterations, try to make smart
choices straightaway
• e.g. during partitioning try to get optimal partitioning
• The design space is very large

Architecture --- choice of PEs, memory in PEs,
allocation of tasks to PEs
Partitioning of a problem into software/hardware
Even, choice of optimizations for a given code

• Different search strategies to traverse (restricted
parts) of this design space !

07/08/2007 CS4272, 2007 46

Choosing the Architecture
Fix a specific architecture

Processors/memory for each PE etc
When we described the co-design flow, we
implicitly assumed as if the PEs are all fixed
and available --- this is not the case usually.

Let the architecture emerge from the appl
As the application is modeled and then
gradually converted to impl., the arch. is fixed

Fix a family of architectures
Design space exploration and design point
estimation within this family.

07/08/2007 CS4272, 2007 47

What is an Arch. Family?
Family of similar architectures

Parameter values define instances within the
family.

Example
An in-order pipelined processor with direct-
mapped cache.
Instance defined by
• # of pipeline stages
• # of cache lines
• Cache line size

07/08/2007 CS4272, 2007 48

Y-chart approach

Architecture

Instance
Application

Mapping

Performance Analysis

Performance
numbers

9

07/08/2007 CS4272, 2007 49

Organization
Embedded Systems (ES)
Quick tour/re-cap of current issues in ES
design
Overview of co-design methodologies
Course structure, assessment etc.

07/08/2007 CS4272, 2007 50

Learning Objectives
Embedded system design from high-level
executable specifications

Combined model for mixed (HW + SW)
solutions.

Techniques for selecting implementation
platform and mapping an application to a
given platform
Formal analysis of key criteria like
performance.
Pre-requisites

CS2271 and CS3212

07/08/2007 CS4272, 2007 51

Readings
Lecture notes & Weekly readings

Check the course web-page
• http://www.comp.nus.edu.sg/~cs4272

Text Book
Embedded System Design by Peter Marwedel,
Springer.
Available in Co-op
Covers the topics mostly --- supplemented via
lecture notes.

07/08/2007 CS4272, 2007 52

Assessment & Contact
Final : 45%
Midterm: 25%

To be held in the 7th week

Programming Assignments (3 in total)
30%

Contact details & consultation
My office is in COM1 #03-20.
My e-mail: abhik@comp.nus.edu.sg
Follow details from course web-page
• http://www.comp.nus.edu.sg/~cs4272

