4 N

CS4272: HW SW Codesign
Compiler controlled Memories

Dr. Abhik Roychoudhury
School of Computing

\\ National University of Singapore /

14/11/2007

Reading

> WCET Centric Data Allocation to Scratch-pad
Memory

« Suhendra, Mitra, Roychoudhury, Chen, IEEE Real-time
Systems Symposium (RTSS) 2005.

» Discussion in pages 180-181 of textbook.

14/11/2007

The context

General Purpose processor architectures have the following memory
hierarchies

L1 cache
L2 cache
Main memory
--- Difficult to estimate cache behavior as we saw during WCET analysis
--- Can we tackle the problem at a system level as well ?
--- Develop an on-chip memory whose contents will be fixed
during program execution
---- Conceptually a locked cache, called scratch-pad memory

--- Compiler controlled memories !

14/11/2007

Cache

> Processor-memory performance gap
- memory optimizations

> Cache:
« hardware-managed
« access determined during runtime

« unpredictable timing
- problematic for hard real-time systems

> Scratchpad
« On chip memory, more predictable than cache

14/11/2007

Scratch-pad

> Scratchpad Memory
. software-managed
. access: pre-defined address range
- latencies completely predictable

. lower die area, energy consumption
(Banakar et al., 2002)

« job shifted to compiler

» An alternative to or on top of cache

14/11/2007

Architecture

Data
Cache

Scratch-pad
(SRAM)

Ext. Mem. Interf
-7

‘ Main Memory (DRAM) --- Off Chip
14/11/2007

Address Space

SRAM
1cycle
(on
chip)
DRAM
(off
chip)
Data
<:> cachel — cycles”
1
cycle

14/11/2007

Allocation Strategy

> Allocate scalars to scratch-pad
» For arrays
« Find out which arrays overlap in life-time, and
« Result in cache conflicts (if mapped to cache)
« Map one of them to scratch-pad
> The above strategy has a caveat
« Which array results in cache conflict requires a
program trace
. Not based on static program analysis

= This problem is hard even when we rule out the data
cache (quite common in Real-time systems)

14/11/2007 8

Simplified Address Space

Predictable -1 cycle Scratchpad

C On-chip
p
U
Main Mem
Off-chipy| "™
R Address
Predictable - N cycles space

How to decide on the allocation statically?

14/11/2007

ACET based Allocation

> Profile the program for selected inputs
« Build up memory access profile

> Allocate heavily accessed variables
« Optimal solution via 0-1 Knapsack

> If inputs are representative
« Aims fo reduce Average-Case Execution Time

> Inreal-time systems WCET is a key metric

14/11/2007 10

Knapsack formulation

> Possible for ACET based allocation
o items: Vi..Vavars|
. capacity: scratchpad space
« weight of each variable u € {V;...Vjauyars) }= area,

« gain of each variable u € {V;.. auvars) +
« Constant for a given path
» Not constant for WCET based allocation.

14/11/2007

11

ACET vs WCET based

WCET (Worst-case) = Maximum exec. Time of a pgm for all possible inputs

In this simple example assume

> Uand V have same size

> Only one of them can be
allocated,

> ACET savings depends on the
execution counts of Pathl and
Path2

> WCET savings depend on which
path is longer.

Path2

14/11/2007 12

Difficulty in WCET-based allocation

Pathl Path2

Allocate V
Before 90 100
After (g0 80

Contribution of V to WCET path = 20
Reduction in WCET by allocating V = 10

Sub-optimal (local) allocation

Pathl is now the WCET path which has
different var. access frequencies from Path2

14/11/2007 13

V.U both appear in WCET path. Suppose #V > # U

WCET path based allocation = {V}
Pathl Path2
Before 90 100

After |90 80

", Path2

Optimal allocation = {U}
Pathl Path2

Before 90 100
After |75 85

14/11/2007 14

Summary of bad news

> Optimal WCET based allocation
« Must not be profile-guided (WCET path).
« Cannot take WCET contribution of variables as
constant.
* Rules out Knapsack like solutions.
« Should ideally be a global optimization procedure
aware of infeasible paths.
+ Paths in CFG not executed on any program input.

14/11/2007 15

Why not take ACET-based?

ACET based allocation should also reduce WCET, after all.

Yes, but ..
Benehmmsic feens]
>46% additional

. WCET reduction
B
E . ->Varies in other

(Bt ET e benchmarks, but ~20%

5 o = 2y x4
=
§ >,
g
& w

L] e FL
vkt ie) Datn viza

14/11/2007 16

Allocation methods

> Integer Linear Programming (ILP)
« Cannot cater for infeasible paths.

> Branch and Bound (BnB)
« High Complexity.

> Greedy Heuristic
« Diff. from greedy allocation using WCET path.

> Experiments
« WCET reduction, Running time.

14/11/2007 17

source >

Control Flow 6raph (CF6) of a program
Control Flow 6raph (CF6) of a loop
Directed Acyclic Graph (DAG)

sink ———

T/

14/11/2007 18

ILP Formulation

allvars : set of all variables in the program
For each Vv in allvars:
area, : memory area occupied by variable v

gainV: gain in single var. access by allocating vV

S,: 1if Vis allocated, 0 otherwise

Zealvars Sy * area, < scratchpad_size

vveallvars S,20, §, <1

14/11/2007 19

Minimize W1 * loopbound

W, =W, + cost, —ZNM,S(Q S, * gain, * n,;
W, > W, + cost, —E,Evars(z) S, * gain,* n, ,
W, 2 W, + costy =3, arszy Sy * Gain, * n,,
W3 =W, + oSty =2, yarsz) Sy * 9aiN, * N, 5
W, W+ costy -, yarsay S, * 0N, * Ny
W, W+ 00ty =2 yarsiay S, * 0ain, % n, 4
Wg = Wq + COSts =2, yarss) Sy * 9@IN, * N, g
W =W, + costg -3, cvars(6) S, * gain, * n, g
W, = cost; -2,

Lealvars Sy * area, < scratchpad_size

cvars(r) Sy * gain, * n, o

Vveallvars S,20, §, <1

14/11/2007

20

src
o

gaTa—

Extension to whole program

Wy

14/11/2007 21

infeasibility checking

WCET estimation (cycles)
T
|

statemate compress

Benchmarks [OMo infeas check
B With infeas check |

14/11/2007

22

Allocation methods

> Integer Linear Programming (ILP)
« Cannot cater for infeasible paths.

» Branch and Bound (BnB)
« Rule out easy solutions --- ACET based alloc
« High Complexity of BnB
« Greedy Heuristic

- Diff. from greedy allocation using WCET path.

« Infeasible path detection

> Experiments
« WCET reduction, Running time.

14/11/2007 23

Knapsack?

> Possible for ACET based allocation
o items: Vi...anvars)
« capacity: scratchpad space
« weight of each variable u € {V;...ayyars) }= area,
« gain of each variable u € {V... ivars) +
+ Constant for a given path
+ Not constant for WCET based allocation.

14/11/2007

24

Re-cap on Knapsack problem

> Given n objects and a knapsack

« Capacity of knapsack W
« Object i has weight w; and value v;
« Fill up the knapsack so as to maximize value
> Perfect fit for our allocation problem if the
gain by allocating a variable to scratchpad

memory is a constant
« Holds for ACET based allocation
« Not true for WCET based allocation
» Knapsack problem can be easily solved by

dynamic programming.

25

14/11/2007

Dynamic Programming

> Array V[0..n,0..W]

> V[i,jJ] = maximum value if we are restricted to objects
1..i, and the weight limit is j

> Define
o VI[i,j] = max(V[i-1,j1,V[i-1,j-w;] + v;) fori=>0

. V[0,jl]=0
> Final Answer V[n,W]
> This solution is useful only for ACET based

allocation.

26

14/11/2007

For WCET-based

> Knapsack?
% gain in WCET reduction due to a variable v
. not a constant, depends on

= current WCET path
Diff in exec. Times of WCET path and other paths

Occurrence of v in WCET path and other paths

WCET P I

27

14/11/2007

Search tree

Co)

!

[y S S S .
" D EDE @D @ EDED -

allvars

But, cannot search it exhaustively.

14/11/2007

For WCET-based

> Knapsack?
x gain in WCET reduction due to a variable:
« not a constant

« not cumulative
* gaing,, < gain, + gain,.

WCET o

28

14/11/2007

Branch-and-bound

reduction,; =B

14/11/2007

How to estimate the upper

> For partial allocation Vat level 4,
o Ve (v, v}
o UBy,= (WCET reduction due to V)+ max,
= max, computed as knapsack problem:

o items: K1 Vaivars|
capacity: scratchpad space after allocating V

weight of each variable u € {V,1.. Yanvars) }= area,
gain of each variable U € { W,y Yiavars) ¥ = maximum
contribution of v towards exec. time of any path

+ Can be obtained by bottom-up pass of syntax free.

14/11/2007

31

Efficiency Issues

> Search exponential in #vars. even after pruning.
« Efficient heuristics with near-optimal allocation.
« Do not only consider the WCET path.
> WCET est. for a given scratchpad allocation
« Invoked several times by Branch-and-bound
« Needs to consider Infeasible path information
+ Infeasible pairs of assgn/branch in a loop iteration
« Must run very fast [we do not discuss it here]
+ Find heaviest iteration in a loop considering this info.
+ Avoid backtracking without path enumeration

14/11/2007 32

Greedy Heuristic

> Initially:
« No variable allocated
> Iteratively:
« Identify current WCET path P (considering current
allocation)
« Allocate variable with max. gain in P that can fit into
remaining space in scratchpad
> Stop when:
« scratchpad is filled, or
« no more variable can be allocated from current WCET path

14/11/2007

33

Notes on sub-optimality

Becomes close to WCET path
based allocation if

- Scratchpad is very small
->0ne of U, V can be allocated

-Less overlap among vars.
appearing in diff. paths
-V does not appear in Pathl

Unlikely, so backtracking based heuristics did not work any better!

14/11/2007 34

Allocation methods

> Integer Linear Programming (ILP)
« Cannot cater for infeasible paths.
> Optimal with infeasible path info.
« Branch-and-Bound
* High Complexity
« Greedy Heuristic
- Diff. from greedy allocation using WCET path.
« Infeasible path detection

14/11/2007

35

Other Works

> Scratchpad allocation for data memory
« WCET-based
« Easily extensible to
+ Variables with disjoint lifetimes
+ Code memory
> Extensions to Multi-processor SoCs
« Allocate to reduce bus contention among processors.

> ACET-based allocation can be modified to get
scratch-pad allocation to reduce energy for
example --- simple change

> Any such allocation must be combined with WCET
analysis & infeasible path detection

14/11/2007 36

