
1

14/11/200714/11/2007 11

CS4272: HW SW Codesign
Compiler controlled Memories

Dr. Abhik Roychoudhury
School of Computing

National University of Singapore

14/11/2007 2

Reading
WCET Centric Data Allocation to Scratch-pad
Memory

Suhendra, Mitra, Roychoudhury, Chen, IEEE Real-time
Systems Symposium (RTSS) 2005.

Discussion in pages 180-181 of textbook.

14/11/2007 3

The context
General Purpose processor architectures have the following memory
hierarchies

L1 cache

L2 cache

Main memory

--- Difficult to estimate cache behavior as we saw during WCET analysis

--- Can we tackle the problem at a system level as well ?

--- Develop an on-chip memory whose contents will be fixed

during program execution

---- Conceptually a locked cache, called scratch-pad memory

--- Compiler controlled memories !

14/11/2007 4

Cache
Processor-memory performance gap

memory optimizations

Cache:
hardware-managed
access determined during runtime
unpredictable timing

problematic for hard real-time systems

Scratchpad
On chip memory, more predictable than cache

14/11/2007 5

Scratch-pad
Scratchpad Memory

software-managed
access: pre-defined address range

latencies completely predictable
lower die area, energy consumption
(Banakar et al., 2002)

job shifted to compiler

An alternative to or on top of cache

14/11/2007 6

Architecture

CPU

Data

Cache
Scratch-pad

(SRAM)

Ext. Mem. Interf

DataAddr

Main Memory (DRAM) --- Off Chip

2

14/11/2007 7

Address Space

SRAM

(on
chip)

DRAM

(off
chip)Data

cache
N

cycles
1

cycle

1 cycle

14/11/2007 8

Allocation Strategy
Allocate scalars to scratch-pad
For arrays

Find out which arrays overlap in life-time, and
Result in cache conflicts (if mapped to cache)
Map one of them to scratch-pad

The above strategy has a caveat
Which array results in cache conflict requires a
program trace
Not based on static program analysis
• This problem is hard even when we rule out the data

cache (quite common in Real-time systems)

14/11/2007 9

Simplified Address Space

Scratchpad

On-chip

Main Mem

(Off-chip)
Mem.

Address

space

Predictable -1 cycle

C
P
U

Predictable – N cycles

How to decide on the allocation statically?

14/11/2007 10

ACET based Allocation
Profile the program for selected inputs

Build up memory access profile
Allocate heavily accessed variables

Optimal solution via 0-1 Knapsack

If inputs are representative
Aims to reduce Average-Case Execution Time

In real-time systems WCET is a key metric

14/11/2007 11

Knapsack formulation
Possible for ACET based allocation

items: v1…v|allvars|

capacity: scratchpad space
weight of each variable u ∈ {v1…v|allvars| }= areau

gain of each variable u ∈ {v1…v|allvars| }
• Constant for a given path
• Not constant for WCET based allocation.

14/11/2007 12

ACET vs WCET based

U= V=

if U= V=

if In this simple example assume
U and V have same size
Only one of them can be
allocated.
ACET savings depends on the
execution counts of Path1 and
Path2
WCET savings depend on which
path is longer.

Path2

Allocate U

U= V=

if

Path1

Allocate V

WCET (Worst-case) = Maximum exec. Time of a pgm for all possible inputs

3

14/11/2007 13

Difficulty in WCET-based allocation

U= V=

if

Path2
Path1

8090

10090Before

After

Path1 Path2Allocate V

Contribution of V to WCET path = 20

Reduction in WCET by allocating V = 10

Path1 is now the WCET path which has
different var. access frequencies from Path2

14/11/2007 14

Sub-optimal (local) allocation

U= V=
U=

if

Path2
Path1

V,U both appear in WCET path. Suppose #V > # U

8090

10090Before

After

Path1 Path2
WCET path based allocation = {V}

8575

10090Before

After

Path1 Path2
Optimal allocation = {U}

14/11/2007 15

Summary of bad news
Optimal WCET based allocation

Must not be profile-guided (WCET path).
Cannot take WCET contribution of variables as
constant.

• Rules out Knapsack like solutions.
Should ideally be a global optimization procedure
aware of infeasible paths.

• Paths in CFG not executed on any program input.

14/11/2007 16

Why not take ACET-based?

ACET based allocation should also reduce WCET, after all.

Yes, but …

46% additional
WCET reduction

Varies in other
benchmarks, but ~20%

14/11/2007 17

Allocation methods

Integer Linear Programming (ILP)
Cannot cater for infeasible paths.

Branch and Bound (BnB)
High Complexity.

Greedy Heuristic
Diff. from greedy allocation using WCET path.

Experiments
WCET reduction, Running time.

14/11/2007 18

Control Flow Graph (CFG) of a program

Directed Acyclic Graph (DAG)

source

sink

…

…

Control Flow Graph (CFG) of a loop

4

14/11/2007 19

Sv : 1 if v is allocated, 0 otherwise

∑v∈allvars Sv ∗ areav ≤ scratchpad_size∑v∈allvars Sv ∗ areav ≤ scratchpad_size

∀ v∈ allvars Sv ≥ 0, Sv ≤ 1∀ v∈ allvars Sv ≥ 0, Sv ≤ 1

ILP Formulation

cost1

cost2

cost3 cost4

cost5

cost6

cost7

allvars : set of all variables in the program

For each v in allvars:

areav : memory area occupied by variable v

gainv : gain in single var. access by allocating v

14/11/2007 20

∑v∈allvars Sv ∗ areav ≤ scratchpad_size∑v∈allvars Sv ∗ areav ≤ scratchpad_size

∀ v∈ allvars Sv ≥ 0, Sv ≤ 1∀ v∈ allvars Sv ≥ 0, Sv ≤ 1

cost1

cost2

cost3 cost4

cost5

cost6

cost7

W6 = W7 + cost6 −∑v∈vars(6) Sv ∗ gainv ∗ nv,6

W5 = W6 + cost5 −∑v∈vars(5) Sv ∗ gainv ∗ nv,5

W4 ≥ W6 + cost4 −∑v∈vars(4) Sv ∗ gainv ∗ nv,4

W4 ≥ W5 + cost4 −∑v∈vars(4) Sv ∗ gainv ∗ nv,4

W7 = cost7 −∑v∈vars(7) Sv ∗ gainv ∗ nv,7W7 = cost7W7

W6 = W7W6

W4 ≥ W6 + cost4 −∑v∈vars(4) Sv ∗ gainv ∗ nv,4

W4 ≥ W5 + cost4 −∑v∈vars(4) Sv ∗ gainv ∗ nv,4

W4 ≥ W6

W4 ≥ W5

W4

W3 = W7 + cost3 −∑v∈vars(3) Sv ∗ gainv ∗ nv,3

W2 ≥ W4 + cost2 −∑v∈vars(2) Sv ∗ gainv ∗ nv,2

W2 ≥ W3 + cost2 −∑v∈vars(2) Sv ∗ gainv ∗ nv,2

W1 = W2 + cost1 −∑v∈vars(1) Sv ∗ gainv ∗ nv,1

Minimize W1 ∗ loopbound

14/11/2007 21

ILP Formulation

W1

Wsrc

Extension to whole program

14/11/2007 22

WCET est. with/without
infeasibility checking

14/11/2007 23

Allocation methods

Integer Linear Programming (ILP)
Cannot cater for infeasible paths.

Branch and Bound (BnB)
Rule out easy solutions --- ACET based alloc
High Complexity of BnB
Greedy Heuristic

• Diff. from greedy allocation using WCET path.
Infeasible path detection

Experiments
WCET reduction, Running time.

14/11/2007 24

Knapsack?
Possible for ACET based allocation

items: v1…v|allvars|

capacity: scratchpad space
weight of each variable u ∈ {v1…v|allvars| }= areau

gain of each variable u ∈ {v1…v|allvars| }
• Constant for a given path
• Not constant for WCET based allocation.

5

14/11/2007 25

Re-cap on Knapsack problem
Given n objects and a knapsack

Capacity of knapsack W
Object i has weight wi and value vi

Fill up the knapsack so as to maximize value

Perfect fit for our allocation problem if the
gain by allocating a variable to scratchpad
memory is a constant

Holds for ACET based allocation
Not true for WCET based allocation

Knapsack problem can be easily solved by
dynamic programming.

14/11/2007 26

Dynamic Programming
Array V[0..n,0..W]
V[i,j] = maximum value if we are restricted to objects

1..i, and the weight limit is j

Define
V[i,j] = max(V[i-1,j],V[i-1,j-wi] + vi) for i > 0
V[0,j] = 0

Final Answer V[n,W]

This solution is useful only for ACET based
allocation.

14/11/2007 27

For WCET-based
Knapsack?

gain in WCET reduction due to a variable v
not a constant, depends on

current WCET path
Diff in exec. Times of WCET path and other paths
Occurrence of v in WCET path and other paths

optimize

WCET
P

P’

P

P’

WCET

14/11/2007 28

For WCET-based
Knapsack?

gain in WCET reduction due to a variable:
not a constant
not cumulative
• gain{v,v’} ≤ gainv + gainv’

optimize

WCET
P

P’

P

P’

WCET

14/11/2007 29

Search tree

v1

v2

v3

…

al
lv

ar
s

{v1,v3}{v1}{v2,v3}{v2}{v3}{} {v1,v2} {v1,v2,v3}

{} {v2} {v1} {v1,v2}

{} {v1}

But, cannot search it exhaustively.

14/11/2007 30

Branch-and-bound

vk–2

vk

…

vk–1

< B
V2

UBV2

V1
reductionV1 = B

6

14/11/2007 31

How to estimate the upper
bound?

For partial allocation V at level k,
V ⊆ { v1,…, vk }
UBV = (WCET reduction due to V)+ maxk
• maxk computed as knapsack problem:

items: vk+1…v|allvars|

capacity: scratchpad space after allocating V
weight of each variable u ∈ {vk+1…v|allvars| }= areav

gain of each variable u ∈ {vk+1…v|allvars| } = maximum
contribution of v towards exec. time of any path

• Can be obtained by bottom-up pass of syntax tree.

14/11/2007 32

Efficiency Issues

Search exponential in #vars. even after pruning.
Efficient heuristics with near-optimal allocation.
Do not only consider the WCET path.

WCET est. for a given scratchpad allocation
Invoked several times by Branch-and-bound
Needs to consider Infeasible path information

• Infeasible pairs of assgn/branch in a loop iteration
Must run very fast [we do not discuss it here]

• Find heaviest iteration in a loop considering this info.
• Avoid backtracking without path enumeration

14/11/2007 33

Greedy Heuristic
Initially:

No variable allocated
Iteratively:

Identify current WCET path P (considering current
allocation)
Allocate variable with max. gain in P that can fit into
remaining space in scratchpad

Stop when:
scratchpad is filled, or
no more variable can be allocated from current WCET path

14/11/2007 34

U= V=
U=

if

Path2
Path1

Becomes close to WCET path
based allocation if

Scratchpad is very small

One of U, V can be allocated

Less overlap among vars.
appearing in diff. paths

V does not appear in Path1

Notes on sub-optimality

Unlikely, so backtracking based heuristics did not work any better!

14/11/2007 35

Allocation methods
Integer Linear Programming (ILP)

Cannot cater for infeasible paths.
Optimal with infeasible path info.

Branch-and-Bound
• High Complexity

Greedy Heuristic
• Diff. from greedy allocation using WCET path.

Infeasible path detection

14/11/2007 36

Other Works
Scratchpad allocation for data memory

WCET-based
Easily extensible to

• Variables with disjoint lifetimes
• Code memory

Extensions to Multi-processor SoCs
Allocate to reduce bus contention among processors.

ACET-based allocation can be modified to get
scratch-pad allocation to reduce energy for
example --- simple change
Any such allocation must be combined with WCET
analysis & infeasible path detection

