
1

23/08/2007 CS 4272 1

Modeling Embedded Systems using
UML

Abhik Roychoudhury
CS 4272 – Hardware Software Codesign

Ack: lecture notes of P.S. Thiagarajan

23/08/2007 CS 4272 2

Modeling Languages

• UML – Unified Modeling Language
• Why model ?
• Simpler to build a model and test than build

the real thing.
• Many details can be omitted.

– Test Structure and Behavior
– Don’t think about implementation details.

23/08/2007 CS 4272 3

Why Model?

• Modeling helps plan :
– The structural pieces
– How the pieces should behave

individually
Collectively

• Allows for growth and change.

23/08/2007 CS 4272 4

System Modeling

• Use object-based methods.
– Emphasizes the notion and reuse of

components.
– Hides implementation details.
– Can lead to C++, JAVA code.
– Widely accepted

23/08/2007 CS 4272 5

Objects

• Object
– Encapsulates data

Attributes
Fields

– Supports operations (methods) on these data.
• Stack

– Data : Function names
– Operations : push() , pop(), Is-Empty ()

23/08/2007 CS 4272 6

UML

• History
– Booch
– Rumbaugh
– Jacobsen

• Rational Corporation
• Plus many others …
• OMG (Object management Group)

recommended UML as a standard.

2

23/08/2007 CS 4272 7

What kind of systems

• Highly reactive
– Not necessarily data-intensive

As in media-processing e.g. MPEG
encoder/decoder

– Can be control intensive, time-critical
Automotive, avionics …

• Object-oriented
– Line up with conventional SE.

23/08/2007 CS 4272 8

What kind of objects?

• Not necessarily passive
– State changed only by method invocation by

other objects.
– Can be active with control flow of its own.

• Concurrency
– Can be multiple-threads also.
– Even for single thread, various models for

communication.

23/08/2007 CS 4272 9

What kind of communication?

• Inter-object communication
– Via events

Objects in a class described via a State Diagram.
Transitions in the State Diagram can be triggered by
events.

– Via Method Calls
Can appear as annotations in the transitions of the
State Diagram.
Sequential flow of control.

23/08/2007 CS 4272 10

Design Methodology ?

• UML is not a design methodology.
• It is just a language.
• Design Methodology :

– A Language plus
– A process (recipe) for using this language to

produce a design.
• UML is meant for :

– Iterative, rapid-prototyping styles.

23/08/2007 CS 4272 11

General Features

• Semi-Formal
• Discrete
• Universal
• Graphical notations
• Weak semantics
• Weak integration of the different views.

23/08/2007 CS 4272 12

The Models of UML

• Requirement Models.
– Meeting point between the client and the designer.

• Structural Models.
– (Static) Relationships between Object classes. Actors.

• Behavioral Models.
– Behaviors of the object classes (and interactions).
– Close to implementation

3

23/08/2007 CS 4272 13

Rail Car System

Terminal

Terminal

Terminal Terminal

Control
Center

23/08/2007 CS 4272 14

Rail Car System

Platform

23/08/2007 CS 4272 15

Rail Car System
Terminal 2 REQ OK !

1

3

4

23/08/2007 CS 4272 16

Car

• Cruise Control
– Off, engaged, dis-engaged

• Car should never come closer than 80 yards
of any other car. (safety property)

• A stopped car can start only if the nearest
car is at least 100 yards away.

• A car eventually gets permission to enter a
platform (liveness property)

23/08/2007 CS 4272 17

Passenger

• Passenger at a platform requests by pressing
the chosen REQ button.

• When the car arrives at the platform that :
– is going to the desired destination
– is not full

• The appropriate “OK!” light flashes.

23/08/2007 CS 4272 18

Requirement Models.

• What are requirements ?
– IEEE Standard :
– The requirements should include all the details

the software developer needs to create a design.
functional
Performance
Technology Constraints
External Interfaces

4

23/08/2007 CS 4272 19

Requirement Models.

• What are requirements ?
– A Management Consulting Firm :
– Requirements identify those facets of the

business process which will be enabled by the
new application……A solution that is feasible,
cost-justified and has a high-degree of fit within
the current culture and organization

23/08/2007 CS 4272 20

Requirements Models of UML

• Use cases.
– Requirements will consist of a few –a dozen-

use cases.
– A use case captures a chunk of functionality

which is externally visible.
– System-level behavior rather than individual

objects’ behaviors and their implementations.

23/08/2007 CS 4272 21

Use cases

• Use Cases
– Each use case will have a set of actors
– Actor is an object external to the system.

Human users, sensors, actuators
passengers

• Use cases can be related to each other.
– Use other case as a sub-routine.
– Be a specialized version of a general case.

23/08/2007 CS 4272 22

Use Cases

• Use case diagrams are static.
• Examples :

– Car approaching terminal
– Car departing terminal
– Car passing through terminal

23/08/2007 CS 4272 23

Use Case Diagrams

Car Terminal

Car-approach-
terminal

Allot-entry-platform

<<uses>>

23/08/2007 CS 4272 24

Use Case Diagrams

Car
Passenger

Passenger-gets-car

Passenger-gets-
immediately-car

<<extends>>

Terminal

5

23/08/2007 CS 4272 25

Use Cases
• Use Cases are captured via :

– Use case diagrams (static)
– Sequence diagrams (Message Sequence Charts,

Scenarios, sequence charts) (dynamic)

23/08/2007 CS 4272 26

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 27

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 28

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 29

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 30

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

6

23/08/2007 CS 4272 31

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 32

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 33

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 34

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 35

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

23/08/2007 CS 4272 36

Sequence Diagrams

arrivReq

arrivACK

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

7

23/08/2007 CS 4272 37

Sequence Diagrams

arrivReq

proxSensor

alertStop

disengage
stop

Cruiser Car CarHandler

Car Approaching Platform

Dist. < 90

23/08/2007 CS 4272 38

Sequence Diagrams

• Each use case will give rise to many
sequence diagrams.
– Some times infinite!

• Must find succinct ways of describing such
collections of sequence diagrams.

• Augment sequence diagram syntax with
conditions, branching, looping etc.

• Use HMSCs (MSGs)

23/08/2007 CS 4272 39

Message Sequence Charts

rq

U I

rq

y

y

R

23/08/2007 CS 4272 40

rq
rq

n

rq
y

y

U I R

23/08/2007 CS 4272 41

rq
rq
n

rq

y
y

U I R

n

rq

23/08/2007 CS 4272 42

Online Exercise

• How to capture all such interactions
between User (U), Interface (I) and
Resource (R) as a graph of MSCs?
– What does an edge in such a graph mean?

8

23/08/2007 CS 4272 43

Structural Diagrams

• Class diagrams
– Key feature of object based methods
– Show relationships between object classes

Associations
Sub typing

• Each Object class also has :
– Attributes
– Operations

23/08/2007 CS 4272 44

Perspective

• Conceptual
– The Classes may be there to just help identify

the key concepts.
– May not be implemented directly

• Specification
– The classes specify the desired attributes and

operations i.e. interfaces of the classes to be
implemented.

23/08/2007 CS 4272 45

Class Diagrams

Car

Terminal

Passenger
Control Center

1
Stops-at

Dest.

1

4

Can also specify object multiplicities in each class, special case is *

23/08/2007 CS 4272 46

Class Diagrams

Car

Terminal

Passenger
Control Center

1
Stops-at

Dest.

1

4

Association

Attribute

Association
Multiplicities

23/08/2007 CS 4272 47

Object Classes
Terminal

Car
handler

Platform
Manager Panel

Entry

Exit

Aggregation shown here.

23/08/2007 CS 4272 48

Class Diagrams

• There are many other features
– Generalization
– Constraint rules
– Stereotypes

High level classification of objects such as
“controllers”, “coordinators”

– Dynamic classification
object – type relationships

9

23/08/2007 CS 4272 49

Class Diagrams & Behavior

• Refer to only system structure?
– Elaborated by State Diagrams for each class.
– Use cases can be elaborated by Sequence

Diagrams.
• Can also refer to initialization of behavior

– How many objects in each class?
– How many tuples in each association?

23/08/2007 CS 4272 50

Initialization of Behavior

• Unambiguous
– From class multiplicities and association

multiplicities.
• Ambiguous, but bounded

– Get the bound from object multiplicities.
• Otherwise

– How to initialize?

23/08/2007 CS 4272 51

Behavioral Models

• Behavioral Models
– State charts
– Activity diagrams
– Sequence diagrams
– Collaboration diagrams

• Used to capture the behavior of object
classes.

• Closer to implementations.

23/08/2007 CS 4272 52

State Charts

• Due to David Harel (1984 … 1987 !)
• A significant extension of FSMs (Finite

State Machines)
– OR states

Composite states, sub-machines, hierarchy

– AND states
Concurrency, orthoganality

– Many Other features !

23/08/2007 CS 4272 53

Finite State Machines

S

T

U

G/A

F

E/BG/A

E

F

F

F – Event

G/A – Trigger/ Action

Trigger – Event, condition,
..

23/08/2007 CS 4272 54

OR States

S

T

U

G/A
E/BG/A

E

F

F – Event

G/A – Trigger/ Action

Trigger – Event, condition,
..

V

F

10

23/08/2007 CS 4272 55

OR States

• V is an OR state
– S or T
– F can occur at S OR T. In both cases the

machine goes to U.
– From U

if E occurs then it goes to S
If G occurs, then A is executed and it goes to T.

23/08/2007 CS 4272 56

Multi Level OR States

External

E

wait Test

Alarm
OK

Off
Power-On

Power-off

input

[Level > 10]
Ok-level

B

Initialize Test

23/08/2007 CS 4272 57

AND States

U

V

W

Y

X

T

E H[in (Y)]

E
J

G

K

23/08/2007 CS 4272 58

AND States

U

V

W

Y

X

T

E H[in (Y)]

E
J

G

K

23/08/2007 CS 4272 59

AND States

U

V

W

Y

X

T

E H[in (Y)]

E
J

G

K

23/08/2007 CS 4272 60

AND States

U

V

W

Y

X

T

E H[in (Y)]

E
J

G

K

11

23/08/2007 CS 4272 61

AND States

U

V

W

Y

X

T

E H[in (Y)]

E
J

G

K

23/08/2007 CS 4272 62

AND States

• If an AND state A has two orthogonal
components and each component has 100
OR states then the total number of states in
the “flat” automaton representing A could
have 10000 states !

• State explosion.

23/08/2007 CS 4272 63

State Charts

• If G/E occurs in a component then E is available
during the next “tick” to all transitions whose
trigger part contains E.

• Communication is, in this sense, broadcast.

• Connectors can also be quite complicated.
– Fork
– Join
– …

23/08/2007 CS 4272 64

Recap.

• Requirement models
– Use cases : use case diagrams, sequence diagrams,

collaboration diagrams.
• Structural models

– Class diagrams : attributes, operations, associations and
many other features.

– Static
• Behavioral models

– State Charts : OR states, AND states, Complex
connections, support hierarchy and concurrency.

23/08/2007 CS 4272 65

Status

• Very popular for documentation
• Tools : Rational Rose, Rhapsody, ..
• Semantics ?
• Consistency ?
• Code generation ?
• Verification ?

23/08/2007 CS 4272 66

References

• Martin Fowler and Kendall Scott : UML Distilled
: Applying the Standard Object Modeling
Language. Addison-Wesley, (1997)

• David Harel and Michal Politi : Modeling
Reactive Systems with State Charts: The
STATEMATE Approach. McGraw-Hill, 1998

• See also references in the above references!

12

23/08/2007 CS 4272 67

Question 1

• In the first lecture, we discussed the Y-chart
approach towards embedded system design. In
this approach, we evaluate an architecture
instance and an “application”. The key here is
how the application is represented. In class, we
saw various stages of developing an application
--- from UML models to code. Suppose we
have two Y-charts --- one operating at the UML
model level and another at the code level. How
will these two Y-charts be linked for the purpose
of system design?

23/08/2007 CS 4272 68

Answer to Q1

• Ans: The Y-chart at the UML model level will be
used to do a high-level performance analysis and
ruling out parts of the design space. For the
remaining design points, we can do a more
detailed analysis by following a Y-chart approach
at the code level. This will be the overall strategy
for design space exploration.

23/08/2007 CS 4272 69

Question 2
• Consider a multi-processor System-on-Chip (SoC) with

multiple processors requesting for bus access to read/write
to several memory/peripheral modules. We want to model
the communication between the different components in
this system using the Unified Modeling Language (UML).
What will be the classes in the system and what will be the
associations? Also, list some use cases from the point of
view of a processor which is trying to access the bus. You
may list the use-cases in English or elaborate them using
Sequence Diagrams.

23/08/2007 CS 4272 70

Answer to Q2.
Class diagram

Processor

BusController

*

1

Memory

1

*

* *

23/08/2007 CS 4272 71

Answer to Q2

Use cases

:Processor :BusController

b_request()

ack()

b_done()

:Memory

m_get(addr)

reply()

23/08/2007 CS 4272 72

Answer to Q2
:Process

or
:BusCont

roller

b_request()

ack()

split()

:Memory

m_write(addr,data)

write_done()

w_read(addr)

13

23/08/2007 CS 4272 73

Question 3
• Elaborate the design by filling in the State Diagrams of

each class you identified. Your design must satisfy the
following criteria --- (a) at most one processor must access
the bus at any time, (b) if there are one or more processors
requesting the bus, the bus should not be idle, (c) any
processor requesting the bus should eventually get access
to the bus. Clearly state what parts of your Statechart
design are ensuring each of these three properties. If you
make any assumptions for ensuring these properties, you
should clearly state all your assumptions.

23/08/2007 CS 4272 74

Answer to Q3

Memory

idle
m_get/
reply(m.addr)

m_write/
m.addr = data;
write_done;

m_get/
reply(m.addr)

m_write/
m.addr = data;
write_done;

BusController

busy

[req_Q.size > 0]/p=req_Q.dequeue();
p->ack();

b_request/
req_Q.enqueue(pn); next_req

b_done

tm(burst)/p->split

b_request/
req_Q.enqueue(pn)

idle

b_request/
p->ack

[else]

[req_Q.size > 0]/p=req_Q.dequeue();
p->ack();

b_request/
req_Q.enqueue(pn); b_done

tm(burst)/p->split

b_request/
req_Q.enqueue(pn)

b_request/
p->ack

[else]

Processor

requesting

reading

granted

ack

read/m_get(addr)

reply
writing

write/
m_write(addr,data)

write_done

idle

request/
b_request

finish/b_done
split

split
split

ack

read/m_get(addr)

reply

write/
m_write(addr,data)

write_done

request/
b_request

finish/b_done
split

split
split

23/08/2007 CS 4272 75

Explanations for Q3
Only one processor (denoted as p) can access the bus at any time. All other

processors sending requests to the bus controller will be added to a FIFO
queue (req_Q).

If the queue is not empty, i.e. one or more processors are requesting the bus, bus
controller will immediately acknowledge the next requesting processor after
current processor’s communications are done or killed, which ensures the
bus not idle.

A processor will inform the bus controller when its communications are done
(modeled as an external event finish). Or it can occupy the bus for at most
some amount of time (the burst). Thus, any processor requesting the bus
will eventually get access to the bus, since the bus controller maintains a
queue of waiting processors (who are waiting to access the bus). We of
course rely on the assumption that any processor which is granted bus
access does not occupy the bus for an indefinite amount of time.

