
1

20/09/200720/09/2007 11

CS4272: HW SW Codesign

HW SW Partitioning

Abhik Roychoudhury
School of Computing

National University of Singapore

Modified and augmented from Peter Marwedel’s lecture notes

20/09/2007 2

Reading
Section 5.3 of textbook

Embedded System Design
Peter Marwedel

Also must read
Hardware/software partitioning using Integer
programming, by Ralf Niemann
URL available from CS4272 webpage.
This article has a much better explanation of
the same material.

20/09/2007 3

Hardware/Software Codesign

20/09/2007 4

Hardware/software partitioning

Functionality to be implemented in software or in hardware?Functionality to be implemented in software or in hardware?

No need to consider special purpose hardware in the long run?
Correct for fixed functionality, but wrong in general, since

“By the time MPEG-n can be implemented in software, MPEG-n+1
has been invented” [de Man]

20/09/2007 5

Functionality to be implemented
in software or in hardware?

Decision
based on
hardware/
software
partitioning,
a special case
of hardware/
software
codesign.

Decision
based on
hardware/
software
partitioning,
a special case
of hardware/
software
codesign.

platform

20/09/2007 6

Codesign Tool (COOL)
as an example of HW/SW partitioning

Inputs to COOL:
1. Target technology
2. Design constraints
3. Required behavior

Inputs to COOL:
1. Target technology
2. Design constraints
3. Required behavior

Design constraints refer to constraints on performance,
hardware area etc.

We need to clarify the other two terms.

2

20/09/2007 7

Target Technology
A graph of nodes --- Nodes denote

Hardware components or Processors
• Memories also present, but

mapping of tasks to HW or Proc.

Edges denote interconnections --- often in the
form of buses

P1 P2

M H

20/09/2007 8

So, Target Tech is
Hardware Components

Possibly of different types

Set of Processors
External memory and buses between
them.

20/09/2007 9

Behavior
Hierarchical Task Graphs
What is a task graph ?

Typically DAG of tasks
Nodes denotes specific tasks in the
functionality of the system being designed
Edges can denote several things
• Causal dependences, or in more details
• Communication (with weightage of data being

communicated)
• There might exist causal dependence T1 → T2

without any data being communicated from T1 to T2

Nodes of hierarchical task graphs can be
task graphs

20/09/2007 10

Why task graphs?
Reasonable way to capture repetitive
reactive behavior

Tasks produce output streams from input
streams (from environment or other tasks).

Task graphs thus represent a high-level
behavioral specification of the system.

How each task is described depends on who is
designing it (hardware designer, programmer)
Diff. from how each task will be implemented !

20/09/2007 11

Approach

[Niemann, Hardware/Software Co-Design for Data Flow Dominated Embedded Systems, Kluwer
Academic Publishers, 1998 (Comprehensive mathematical model)]

Processor
P1

Processor
P2 Hardware

Specification

Mapping

20/09/2007 12

Task graph input
Input to the partitioning method is a
hierarchical task graph.

At the lowest level (leaves of the hierarchy),
behavior of each node is specified say in VHDL
• Alternately in C ?

3

20/09/2007 13

Schematic
Target Tech. VHDL System Spec. Design Constraints

Syntax Graph Model

C Code Generation VHDL Code Generation

Retargetable
Compilation

High-level
Synthesis

SW costs HW costs

ILP optimization Problem
(contains all info.)

Solve
20/09/2007 14

Schematic (solving ILP)
Solving ILP Optimization Problem

Solution? Result := ValidPartitionno

ValidPartition := Solution found
yes

Cluster SW nodes

Retargetable Compilation

SW costsRefine ILP problem

20/09/2007 15

Partition Refinement

A

B 1

2 C

D

A,B

2 1

C,D

A,B,
C,D,
1,2

Denotes “implemented in software”
20/09/2007 16

COOL partitioning algorithm

1. Translation of the behavior into an internal graph
model
2. Translation of the behavior of each node from VHDL
into C (we assumed task description in VHDL, otherwise
this step is not required).
3. Compilation

• All C programs compiled for the target processor,
• Computation of the resulting program size,
• estimation of the resulting execution time

(simulation input data might be required)
4. Synthesis of hardware components:
∀ leaf node, application-specific hardware is synthesized.
High-level synthesis sufficiently fast.

1. Translation of the behavior into an internal graph
model
2. Translation of the behavior of each node from VHDL
into C (we assumed task description in VHDL, otherwise
this step is not required).
3. Compilation

• All C programs compiled for the target processor,
• Computation of the resulting program size,
• estimation of the resulting execution time

(simulation input data might be required)
4. Synthesis of hardware components:
∀ leaf node, application-specific hardware is synthesized.
High-level synthesis sufficiently fast.

20/09/2007 17

COOL partitioning algorithm

5. Flattening of the hierarchy:
Granularity used by the designer is maintained.
Cost and performance information added to the nodes. Precise
information required for partitioning is pre-computed
6. Generating and solving a mathematical model of the
optimization problem:
Integer programming IP model for optimization.
Optimal with respect to the cost function (approximates
communication time)

5. Flattening of the hierarchy:
Granularity used by the designer is maintained.
Cost and performance information added to the nodes. Precise
information required for partitioning is pre-computed
6. Generating and solving a mathematical model of the
optimization problem:
Integer programming IP model for optimization.
Optimal with respect to the cost function (approximates
communication time)

20/09/2007 18

COOL partitioning algorithm

7. Iterative improvements:
Adjacent nodes mapped to the same hardware component are
now merged.

7. Iterative improvements:
Adjacent nodes mapped to the same hardware component are
now merged.

4

20/09/2007 19

COOL partitioning algorithm

8. Interface synthesis:
After partitioning, the glue logic required for interfacing
processors, application-specific hardware and memories is
created.

We now describe step 6 (Integer Programming) in more details.

20/09/2007 20

Integer programming models
Ingredients:

Cost function
Constraints

Ingredients:

Cost function
Constraints

Involving linear expressions of
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints
(2) is called an integer programming (IP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said
to be a 0/1 integer programming problem.

Cost function)1(,with NxRaxaC i
Xx

iii
i

∈∈= ∑
∈

Constraints:)2(,with: ,, RcbcxbJj
Xx

jjijiji
i

∈≥∈∀ ∑
∈

ℕ

ℝ

20/09/2007 21

Example

321 465 xxxC ++=

}1,0{,,
2

321

321

∈

≥++

xxx
xxx

Optimal

C

20/09/2007 22

On integer programming

Maximizing the cost function can be done by setting C‘=-C

Integer programming is NP-complete.

In practice, running times can increase exponentially with the
size of the problem, but problems of some thousands of
variables can still be solved with commercial solvers,
depending on the size and structure of the problem.

IP models can be a good starting point for modeling, even if in
the end heuristics have to be used to solve them.

Maximizing the cost function can be done by setting C‘=-C

Integer programming is NP-complete.

In practice, running times can increase exponentially with the
size of the problem, but problems of some thousands of
variables can still be solved with commercial solvers,
depending on the size and structure of the problem.

IP models can be a good starting point for modeling, even if in
the end heuristics have to be used to solve them.

20/09/2007 23

Digress: Linear Programming
Example: Grocery Shopping

m varieties of nutrients (vitamins, protein, ..)
• need b1 units of Nut1, b2 units of Nut2,…, bm units of

Nutm.

Can buy n types of food (milk, bread, beef,..)
Each unit of food contains a certain number of
units of each type of nutrients.
ai, j represents the number of units of the ith
type nutrient contained in one unit of food of
the jth type.

20/09/2007 24

Digress: Linear Programming

Milk bread fish Beef Celery ……. Ice-cream

1 2 ……. n

Vitamin A 1

Vitamin B 2

…..

…..

Protein m 15

5

20/09/2007 25

Digress: Linear Programming
Suppose you buy x1 units of food type 1
and x2 units of food type 2,… and xn units
of food type n. Then for nutrition type of
type i it must be the case :
ai,1 . x1 + ai,2 . x2 + ….. + ai,n . xn ≥ bi

20/09/2007 26

Digress: Linear Programming

a1,1 . x1 + a1,2 . x2 + ….. + a1,n . xn ≥ b1

a2,1 . x1 + a2,2 . x2 + ….. + a2,n . xn ≥ b2

ai,1 . x1 + ai,2 . x2 + ….. + ai,n . xn ≥ bi

am, 1, . x1 + am, 2 . x2 + ….. + am, n . xn ≥ bm

20/09/2007 27

Digress: Linear programming
A X ≥ b
A - m × n matrix
X - n × 1 column vector of unknowns.
b - m × 1 column vector of constants.
Additional constraints

xj ≥ 0 (j = 1, 2, …n) (why?)

Cost function:
z = c1 . x1 + c2 . x2 + …+ cn . xn

ci - the cost of one unit of food type i.

20/09/2007 28

Digress: Linear Programming
The LP Problem.

Find (x1, x2, …, xn) such that:
• All the constraints are satisfied.
• The cost function is minimized.

If (y1, y2, …, yn) also satisfies all the constraints then
z’ ≥ z where:
z = c1 . x1 + c2 . x2 + …+ cn . Xn

z’ = c1 . y1 + c2 . y2 + …+ cn . yn

20/09/2007 29

Integer Linear Programming
Demand in addition:

Each xi should be an integer.

Solving an ILP problem usually boils down to
solving a series of LP problems.
The General Idea in solving an LP:

Feasible solution is a solution that satisfies all the
constraints.
The set of feasible solutions (for sensible LP problems!)
is a convex polyhedron.
One of the corner points of the polyhedron is the optimal
solution.

20/09/2007 30

Mixed Integer Linear Programming
Problem

Demand the integer-value constraint only
for a subset of the variables.
In principle, LP problems can be solved in
polynomial time.
But ILP problems have only exponential
time algorithms at present.

NP-complete

Role of ILP in solving co-design problems
ILP based resource aware compilation – Palsberg and Naik
http://www.cs.ucla.edu/~palsberg/paper/mpsoc-chapter03.pdf

6

20/09/2007 31

The Partitioning Problem

Set of entities
or tasks

B C

D

G

E F

ASIC DSP

Memory

A Task

Graph Target Tech.

Partitioning Problem: Map {A,B,C,D.E,F,G} to {ASIC, DSP}.

20/09/2007 32

Possible solution

B C

D

G

E F

A Task

Graph

Green color: executing in DSP

Shared
implementation

20/09/2007 33

IP model for partitioning

Notation:
Index set I denotes task graph nodes.
Index set L denotes task graph node types

e.g. square root, DCT or FFT
Index set KH denotes hardware component types.

e.g. hardware components for the DCT or the FFT.
Index set J of hardware component instances
Index set KP denotes processors.

All processors are assumed to be of the same type

Notation:
Index set I denotes task graph nodes.
Index set L denotes task graph node types

e.g. square root, DCT or FFT
Index set KH denotes hardware component types.

e.g. hardware components for the DCT or the FFT.
Index set J of hardware component instances
Index set KP denotes processors.

All processors are assumed to be of the same type

20/09/2007 34

IP model for partitioning

Xi,k: =1 if node vi is mapped to hardware
component type k ∈ KH and 0 otherwise.
Yi,k: =1 if node vi is mapped to processor k ∈ KP

and 0 otherwise.
NY ℓ,k =1 if at least one node of type ℓ is mapped to

processor k ∈ KP and 0 otherwise.
T is a mapping from task graph nodes to their

types:
T: I →L
The cost function accumulates the costs:
C = cost(processors) + cost(memories) +

cost(application specific hardware)

Xi,k: =1 if node vi is mapped to hardware
component type k ∈ KH and 0 otherwise.
Yi,k: =1 if node vi is mapped to processor k ∈ KP

and 0 otherwise.
NY ℓ,k =1 if at least one node of type ℓ is mapped to

processor k ∈ KP and 0 otherwise.
T is a mapping from task graph nodes to their

types:
T: I →L
The cost function accumulates the costs:
C = cost(processors) + cost(memories) +

cost(application specific hardware)

20/09/2007 35

Constraints

Operation assignment constraintsOperation assignment constraints

∑ ∑
∈ ∈

=+∈∀
KHk KPk

kiki YXIi 1: ,,

All task graph nodes have to be mapped either in
software or in hardware.
Variables are assumed to be integers.
Additional constraints to guarantee they are either 0 or 1:

1:: , ≤∈∀∈∀ kiXKHkIi

1:: , ≤∈∀∈∀ kiYKPkIi
20/09/2007 36

Operation assignment
constraints (2)

∀ ℓ ∈L, ∀ i:T(vi)= ℓ, ∀ k ∈ KP: NY ℓ,k ≥ Yi,k

For all types ℓ of operations and for all nodes i of this type:
if i is mapped to some processor k, then that processor must
implement the functionality of ℓ.

Decision variables must also be 0/1 variables:

∀ ℓ ∈L, ∀ k ∈ KP: NY ℓ,k ≤ 1.

∀ ℓ ∈L, ∀ i:T(vi)= ℓ, ∀ k ∈ KP: NY ℓ,k ≥ Yi,k

For all types ℓ of operations and for all nodes i of this type:
if i is mapped to some processor k, then that processor must
implement the functionality of ℓ.

Decision variables must also be 0/1 variables:

∀ ℓ ∈L, ∀ k ∈ KP: NY ℓ,k ≤ 1.

7

20/09/2007 37

Resource & design constraints

• ∀ k ∈ KH, the cost (area) used for components of that type
is calculated as the sum of the costs of the components of
that type. This cost should not exceed its maximum.

• ∀ k ∈ KP, the cost for associated data storage area should
not exceed its maximum.

• ∀ k ∈ KP the cost for storing instructions should not exceed
its maximum.

• The total cost (Σk ∈ KH) of HW components should not
exceed its maximum

• The total cost of data memories (Σk ∈ KP) should not exceed
its maximum

• The total cost instruction memories (Σk ∈ KP) should not
exceed its maximum

• ∀ k ∈ KH, the cost (area) used for components of that type
is calculated as the sum of the costs of the components of
that type. This cost should not exceed its maximum.

• ∀ k ∈ KP, the cost for associated data storage area should
not exceed its maximum.

• ∀ k ∈ KP the cost for storing instructions should not exceed
its maximum.

• The total cost (Σk ∈ KH) of HW components should not
exceed its maximum

• The total cost of data memories (Σk ∈ KP) should not exceed
its maximum

• The total cost instruction memories (Σk ∈ KP) should not
exceed its maximum

20/09/2007 38

Timing constraints

Timing constraints
These constraints can be used to guarantee that
certain time constraints are met.

Timing constraints
These constraints can be used to guarantee that
certain time constraints are met.

Execution time of a node in the task graph is
variable (implemented in hardware or software)

This defines execution time of node as a linear
expression on our decision variables.

Using these execution times, we can define start
and end times of each node.

The end time of the sink node in the task graph
should be less than pre-defined constant

--- overall timing constraint on the design.

Scheduling

Processor
p1 ASIC h1

FIR1 FIR2

v1 v2 v3 v4

v9 v10

v11

v5 v6 v7 v8

e3 e4

t

p1

v8 v7

v7 v8

or

...

... ...

...

t

c1

or

...

... ...

...e3

e3

e4

e4t

FIR2 on h1

v4 v3

v3 v4

or

...

... ...

...

Communication channel c1

20/09/2007 40

Scheduling / precedence
constraints

For all nodes vi1 and vi2 that are potentially mapped to
the same processor or hardware component instance,
introduce a binary decision variable bi1,i2,k with
bi1,i2,k=1 if vi1 is executed before vi2 in component k and

= 0 otherwise.
Define constraints of the type
(end-time of vi2) ≤ (start time of vi1) if bi1,i2,k=0

Ensure that the schedule for executing operations is
consistent with the precedence constraints in the task
graph.

For all nodes vi1 and vi2 that are potentially mapped to
the same processor or hardware component instance,
introduce a binary decision variable bi1,i2,k with
bi1,i2,k=1 if vi1 is executed before vi2 in component k and

= 0 otherwise.
Define constraints of the type
(end-time of vi2) ≤ (start time of vi1) if bi1,i2,k=0

Ensure that the schedule for executing operations is
consistent with the precedence constraints in the task
graph.

20/09/2007 41

Scheduling Constraints
bi1,i2,k + yi1,k ≥ 1
bi1,i2,k +yi2,k ≥ 1
bi1,i2,k + bi2,i1,k ≥ 1
bi1,i2,k + bi2,i1,k + yi1,k +yi2,k ≤ 3

Timei1
start ≥ Timei2

end – (Large Const) * bi1,i2,k

Timei2
start ≥ Timei1

end – (Large Const) * bi2,i1,k

20/09/2007 42

Example

HW types H1, H2 and H3 with
costs of 20, 25, and 30.
Processors of type P.
Tasks T1 to T5.
Execution times:

HW types H1, H2 and H3 with
costs of 20, 25, and 30.
Processors of type P.
Tasks T1 to T5.
Execution times:

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

8

20/09/2007 43

Operation assignment
constraints (1)

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

X1,1+Y1,1=1 (task 1 mapped to H1 or to P)
X2,2+Y2,1=1
X3,3+Y3,1=1
X4,3+Y4,1=1
X5,1+Y5,1=1

∑ ∑
∈ ∈

=+∈∀
KHk KPk

kiki YXIi 1: ,,

20/09/2007 44

Operation assignment
constraints (2)

Assume types of tasks are ℓ =1, 2, 3, 3, and 1.

∀ ℓ ∈L, ∀ i:T(vi)= ℓ ∀ k ∈ KP: NYℓ,k ≥ Yi,k

Assume types of tasks are ℓ =1, 2, 3, 3, and 1.

∀ ℓ ∈L, ∀ i:T(vi)= ℓ ∀ k ∈ KP: NYℓ,k ≥ Yi,k

Functionality 3 to be
implemented on

processor if node 4 is
mapped to it.

20/09/2007 45

Other equations

Time constraints leading to: Application
specific hardware required for time
constraints under 100 time units.

Time constraints leading to: Application
specific hardware required for time
constraints under 100 time units.

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

Cost function:
C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor)
+ cost(memory)

20/09/2007 46

Result

For a time constraint of 100 time units and cost(P)<cost(H3):For a time constraint of 100 time units and cost(P)<cost(H3):

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

Solution (educated guessing) :
T1 → H1
T2 → H2
T3 → P
T4 → P
T5 → H1

20/09/2007 47

Separation of scheduling and
partitioning

Combined scheduling/partitioning very complex;
Heuristic: Compute approx. time values.

Perform partitioning for approx. time values.
Perform final scheduling using the above partition.
If final schedule does not meet time constraint,

go to 1 using a reduced overall timing constraint.

Combined scheduling/partitioning very complex;
Heuristic: Compute approx. time values.

Perform partitioning for approx. time values.
Perform final scheduling using the above partition.
If final schedule does not meet time constraint,

go to 1 using a reduced overall timing constraint.

2nd Iteration

t

specificationspecification
Actual execution time

1st Iteration

approx. execution time

t

Actual execution time

approx. execution time
New specificationNew specification

20/09/2007 48

How to get approx time?
Compute start and end times of each node
without the scheduling constraints.

Only basic constraints based on topological ordering in
the task graph.
Timei

start ≥ Σpredecessors j Yj,k * (sw time of j on k)
• Similarly for hardware

Timei
start ≥ Timej

end +
Σ j’∈path(j,i) Yj’,k * (sw time of j’ on k)

where j is the dominator of i in task graph.
(similar constraints for hardware costs).

Compute partitioning with these time values.
Then solve the scheduling using the given partition.

9

20/09/2007 49

Application example

Audio lab (mixer, fader, echo, equalizer,
balance units); slow SPARC processor
1µ ASIC library
Allowable delay of 22.675 µs (~ 44.1 kHz)

Audio lab (mixer, fader, echo, equalizer,
balance units); slow SPARC processor
1µ ASIC library
Allowable delay of 22.675 µs (~ 44.1 kHz)

SPARC
processor

ASIC
(Compass,
1 µ)

External
memory

Outdated technology; just a proof of concept.

20/09/2007 50

Running time for COOL
optimization

Only simple models can be solved optimally.

20/09/2007 51

Deviation from optimal design

Hardly any loss in design quality.

20/09/2007 52

Running time for heuristic

20/09/2007 53

Design space for audio lab

Everything in software: 72.9 µs, 0 λ2

Everything in hardware: 3.06 µs, 457.9x106 λ2

Lowest cost for given sample rate: 18.6 µs, 78.4x106 λ2,
20/09/2007 54

Final remarks

COOL approach:
shows that formal model of hardware/SW codesign is
beneficial; IP modeling can lead to useful implementation
even if optimal result is available only for small designs.

Other approaches for HW/SW partitioning:
starting with everything mapped to hardware; gradually
moving to software as long as timing constraint is met.
starting with everything mapped to software; gradually
moving to hardware until timing constraint is met.
Simple approaches like Binary search.

COOL approach:
shows that formal model of hardware/SW codesign is
beneficial; IP modeling can lead to useful implementation
even if optimal result is available only for small designs.

Other approaches for HW/SW partitioning:
starting with everything mapped to hardware; gradually
moving to software as long as timing constraint is met.
starting with everything mapped to software; gradually
moving to hardware until timing constraint is met.
Simple approaches like Binary search.

10

20/09/2007 55

Exercise

160 time units

T1

T2

T3 T4

T5

20/09/2007 56

Exercise
At most 2 nodes can be implemented in
HW ASIC. Each ASIC costs 20 units and
each software implementation costs 5
units.
Each task’s HW execution is 8 time units
and the SW execution is 60 time units.
Total execution time should be less than
160 time units.
Perform HW-SW partitioning for this task
graph.

20/09/2007 57

Exercises
A. Consider a traffic light controller with two different lights each of

which must be red when the other is not red. They both start in the
red state. When one of them receives a start event, it performs a cycle
going from red to green to yellow and back to red. When either light
reaches the red state, it tells the other to perform a cycle.

1. Draw the above as a statechart.

2. Identify what features of statechart you found most useful ?

B. Event broadcasting allows output of a transition to serve as
triggers of transitions in orthogonal components of a system. Can
such broadcast go on in an infinite loop ? Construct a small example
statechart to show that this is possible.

20/09/2007 58

Exercise A

tm(n): a timeout transition triggered after a specified amount of time (n)
has passed.

20/09/2007 59

Exercise B

