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CS4272: HW SW Codesign

HW SW Partitioning

Abhik Roychoudhury
School of Computing

National University of Singapore

Modified and augmented from Peter Marwedel’s lecture notes 
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Reading
Section 5.3 of textbook

Embedded System Design
Peter Marwedel

Also must read
Hardware/software partitioning using Integer 
programming, by Ralf Niemann
URL available from CS4272 webpage.
This article has a much better explanation of 
the same material.
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Hardware/Software Codesign
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Hardware/software partitioning

Functionality to be implemented in software or in hardware?Functionality to be implemented in software or in hardware?

No need to consider special purpose hardware in the long run?
Correct for fixed functionality, but wrong in general, since

“By the time MPEG-n can be implemented in software, MPEG-n+1 
has been invented” [de Man]
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Functionality to be implemented
in software or in hardware?

Decision 
based on 
hardware/ 
software 
partitioning, 
a special case 
of hardware/ 
software 
codesign.

Decision 
based on 
hardware/ 
software 
partitioning, 
a special case 
of hardware/ 
software 
codesign.

platform
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Codesign Tool (COOL)
as an example of HW/SW partitioning

Inputs to COOL:
1. Target technology
2. Design constraints
3. Required behavior

Inputs to COOL:
1. Target technology
2. Design constraints
3. Required behavior

Design constraints refer to constraints on performance, 
hardware area etc.

We need to clarify the other two terms.
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Target Technology
A graph of nodes --- Nodes denote 

Hardware components or Processors
• Memories  also present, but 

mapping of tasks  to HW or Proc.

Edges denote interconnections --- often in the 
form of buses

P1 P2

M H
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So, Target Tech is
Hardware Components

Possibly of different types

Set of Processors
External memory and buses between 
them.
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Behavior
Hierarchical Task Graphs
What is a task graph ?

Typically DAG of tasks
Nodes denotes specific tasks in the 
functionality of the system being designed
Edges can denote several things
• Causal dependences, or in more details
• Communication (with weightage of data being 

communicated)
• There might exist causal dependence T1 → T2 

without any data being communicated from T1 to T2

Nodes of hierarchical task graphs can be 
task graphs
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Why task graphs?
Reasonable way to capture repetitive 
reactive behavior

Tasks produce output streams from input 
streams (from environment or other tasks).

Task graphs thus represent a high-level 
behavioral specification of the system.

How each task is described depends on who is 
designing it (hardware designer, programmer)
Diff. from how each task will be implemented !
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Approach

[Niemann, Hardware/Software Co-Design for Data Flow Dominated Embedded Systems, Kluwer 
Academic Publishers, 1998 (Comprehensive mathematical model)]

Processor 
P1

Processor 
P2 Hardware

Specification

Mapping
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Task graph input
Input to the partitioning method is a 
hierarchical task graph. 

At the lowest level (leaves of the hierarchy), 
behavior of each node is specified say in VHDL
• Alternately in C ?
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Schematic
Target Tech. VHDL System Spec. Design Constraints

Syntax Graph Model

C Code Generation VHDL Code Generation

Retargetable
Compilation

High-level
Synthesis

SW costs HW costs

ILP optimization Problem 
(contains all info.)

Solve 
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Schematic (solving ILP)
Solving ILP Optimization Problem

Solution? Result := ValidPartitionno

ValidPartition := Solution found
yes

Cluster SW nodes

Retargetable Compilation

SW costsRefine ILP problem
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Partition Refinement

A

B 1

2 C

D

A,B

2 1

C,D

A,B, 
C,D,
1,2

Denotes “implemented in software”
20/09/2007 16

COOL partitioning algorithm

1. Translation of the behavior into an internal graph 
model
2. Translation of the behavior of each node from VHDL 
into C (we assumed task description in VHDL, otherwise 
this step is not required).
3. Compilation

• All C programs compiled for the target processor,
• Computation of the resulting program size, 
• estimation of the resulting execution time

(simulation input data might be required) 
4. Synthesis of hardware components:
∀ leaf node, application-specific hardware is synthesized. 
High-level synthesis sufficiently fast.

1. Translation of the behavior into an internal graph 
model
2. Translation of the behavior of each node from VHDL 
into C (we assumed task description in VHDL, otherwise 
this step is not required).
3. Compilation

• All C programs compiled for the target processor,
• Computation of the resulting program size, 
• estimation of the resulting execution time

(simulation input data might be required) 
4. Synthesis of hardware components:
∀ leaf node, application-specific hardware is synthesized. 
High-level synthesis sufficiently fast.
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COOL partitioning algorithm 

5. Flattening of the hierarchy:
Granularity used by the designer is maintained.
Cost and performance information added to the nodes. Precise 
information required for partitioning is pre-computed
6. Generating and solving a mathematical model of the 
optimization problem:
Integer programming IP model for optimization.
Optimal with respect to the cost function (approximates 
communication time)

5. Flattening of the hierarchy:
Granularity used by the designer is maintained.
Cost and performance information added to the nodes. Precise 
information required for partitioning is pre-computed
6. Generating and solving a mathematical model of the 
optimization problem:
Integer programming IP model for optimization.
Optimal with respect to the cost function (approximates 
communication time)
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COOL partitioning algorithm 

7. Iterative improvements:
Adjacent nodes mapped to the same hardware component are 
now merged.

7. Iterative improvements:
Adjacent nodes mapped to the same hardware component are 
now merged.
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COOL partitioning algorithm

8. Interface synthesis:
After partitioning, the glue logic required for interfacing 
processors, application-specific hardware and memories is 
created.

We now describe step 6 (Integer Programming) in more details.
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Integer programming models
Ingredients:

Cost function
Constraints

Ingredients:

Cost function
Constraints

Involving linear expressions of 
integer variables from a set X

Def.: The problem of minimizing (1) subject to the constraints 
(2) is called an integer programming (IP) problem.

If all xi are constrained to be either 0 or 1, the IP problem said 
to be a 0/1 integer programming problem. 

Cost function )1(,with NxRaxaC i
Xx

iii
i
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Example
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On integer programming

Maximizing the cost function can be done by setting C‘=-C

Integer programming is NP-complete.

In practice, running times can increase exponentially with the 
size of the problem, but problems of some thousands of 
variables can still be solved with commercial solvers, 
depending on the size and structure of the problem.

IP models can be a good starting point for modeling, even if in 
the end heuristics have to be used to solve them.

Maximizing the cost function can be done by setting C‘=-C

Integer programming is NP-complete.

In practice, running times can increase exponentially with the 
size of the problem, but problems of some thousands of 
variables can still be solved with commercial solvers, 
depending on the size and structure of the problem.

IP models can be a good starting point for modeling, even if in 
the end heuristics have to be used to solve them.
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Digress: Linear Programming
Example: Grocery Shopping

m varieties of nutrients (vitamins, protein, ..)
• need  b1 units of Nut1, b2 units of Nut2,…, bm units of 

Nutm.

Can buy n types of food (milk, bread, beef,..)
Each unit of food contains a certain number of 
units of each type of nutrients.
ai, j represents the number of units of the ith
type nutrient contained in one unit of food of 
the jth type.
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Digress: Linear Programming

Milk       bread   fish    Beef   Celery …….                    Ice-cream

1               2  …….                                                             n

Vitamin A    1

Vitamin B    2

…..

…..

Protein     m 15
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Digress: Linear Programming
Suppose you buy x1 units of food type 1 
and x2 units of food type 2,… and xn units 
of food type n. Then for nutrition type of 
type i it must be the case :
ai,1 . x1 + ai,2 . x2 + ….. + ai,n . xn ≥ bi
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Digress: Linear Programming

a1,1 . x1 + a1,2 . x2 + ….. + a1,n . xn ≥ b1

a2,1 . x1 + a2,2 . x2 + ….. + a2,n . xn ≥ b2

ai,1 . x1 + ai,2 . x2 + ….. + ai,n . xn ≥ bi

am, 1, . x1 + am, 2 . x2 + ….. + am, n . xn ≥ bm
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Digress: Linear programming
A X ≥ b
A  - m × n matrix
X - n × 1 column vector of unknowns.
b - m × 1 column vector of constants.
Additional constraints

xj ≥ 0 (j = 1, 2, …n)  (why?)

Cost function:
z = c1 . x1 + c2 . x2 + …+ cn . xn

ci - the cost of one unit of food type i.
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Digress: Linear Programming
The LP Problem.

Find (x1, x2, …, xn) such that:
• All the constraints are satisfied.
• The cost function is minimized.

If (y1, y2, …, yn) also satisfies all the constraints then  
z’ ≥ z  where:
z = c1 . x1 + c2 . x2 + …+ cn . Xn

z’ = c1 . y1 + c2 . y2 + …+ cn . yn
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Integer Linear Programming
Demand in addition:

Each xi should be an integer.

Solving an ILP problem usually boils down to 
solving a series of  LP problems.
The General Idea in solving an LP:

Feasible solution is a solution that satisfies all the 
constraints.
The set of feasible solutions (for sensible LP problems!) 
is a convex polyhedron.
One of the corner points of the polyhedron is the optimal 
solution.
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Mixed Integer Linear Programming 
Problem

Demand the integer-value constraint only 
for a subset of the variables.
In principle, LP problems can be solved in 
polynomial time.
But ILP problems have only exponential 
time algorithms at present.

NP-complete

Role of ILP in solving co-design problems
ILP based resource aware compilation – Palsberg and Naik
http://www.cs.ucla.edu/~palsberg/paper/mpsoc-chapter03.pdf
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The Partitioning Problem

Set of entities 
or tasks

B C

D

G

E F

ASIC DSP

Memory

A Task

Graph Target Tech.

Partitioning Problem:  Map {A,B,C,D.E,F,G} to {ASIC, DSP}.
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Possible solution

B C

D

G

E F

A Task

Graph

Green color: executing in DSP

Shared 
implementation
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IP model for partitioning

Notation:
Index set I denotes task graph nodes. 
Index set L denotes task graph node types

e.g. square root, DCT or FFT
Index set KH denotes hardware component types.

e.g. hardware components for the DCT or the FFT. 
Index set J of hardware component instances
Index set KP denotes processors.

All processors are assumed to be of the same type

Notation:
Index set I denotes task graph nodes. 
Index set L denotes task graph node types

e.g. square root, DCT or FFT
Index set KH denotes hardware component types.

e.g. hardware components for the DCT or the FFT. 
Index set J of hardware component instances
Index set KP denotes processors.

All processors are assumed to be of the same type
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IP model for partitioning

Xi,k: =1 if node vi is mapped to hardware 
component type k ∈ KH and 0 otherwise.
Yi,k: =1 if node vi is mapped to processor k ∈ KP

and 0 otherwise.
NY ℓ,k =1 if at least one node of type ℓ is mapped to 

processor k ∈ KP and 0 otherwise.
T is a mapping from task graph nodes to their 

types:
T: I →L
The cost function accumulates the costs:
C = cost(processors) + cost(memories) + 

cost(application specific hardware)

Xi,k: =1 if node vi is mapped to hardware 
component type k ∈ KH and 0 otherwise.
Yi,k: =1 if node vi is mapped to processor k ∈ KP

and 0 otherwise.
NY ℓ,k =1 if at least one node of type ℓ is mapped to 

processor k ∈ KP and 0 otherwise.
T is a mapping from task graph nodes to their 

types:
T: I →L
The cost function accumulates the costs:
C = cost(processors) + cost(memories) + 

cost(application specific hardware)
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Constraints

Operation assignment constraintsOperation assignment constraints

∑ ∑
∈ ∈

=+∈∀
KHk KPk

kiki YXIi 1: ,,

All task graph nodes have to be mapped either in 
software or in hardware.
Variables are assumed to be integers. 
Additional constraints to guarantee they are either 0 or 1:

1:: , ≤∈∀∈∀ kiXKHkIi

1:: , ≤∈∀∈∀ kiYKPkIi
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Operation assignment 
constraints (2)

∀ ℓ ∈L, ∀ i:T(vi)= ℓ, ∀ k ∈ KP: NY ℓ,k ≥ Yi,k

For all types ℓ of operations and for all nodes i of this type:
if i is mapped to some processor k, then that processor must 
implement the functionality of ℓ.

Decision variables must also be 0/1 variables:

∀ ℓ ∈L, ∀ k ∈ KP: NY ℓ,k ≤ 1.

∀ ℓ ∈L, ∀ i:T(vi)= ℓ, ∀ k ∈ KP: NY ℓ,k ≥ Yi,k

For all types ℓ of operations and for all nodes i of this type:
if i is mapped to some processor k, then that processor must 
implement the functionality of ℓ.

Decision variables must also be 0/1 variables:

∀ ℓ ∈L, ∀ k ∈ KP: NY ℓ,k ≤ 1.
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Resource & design constraints

• ∀ k ∈ KH, the cost (area) used for components of that type 
is calculated as the sum of the costs of the components of 
that type. This cost should not exceed its maximum.

• ∀ k ∈ KP, the cost for associated data storage area should 
not exceed its maximum.

• ∀ k ∈ KP the cost for storing instructions should not exceed 
its maximum.

• The total cost (Σk ∈ KH) of HW components should not 
exceed its maximum

• The total cost of data memories (Σk ∈ KP) should not exceed 
its maximum

• The total cost instruction memories (Σk ∈ KP) should not 
exceed its maximum

• ∀ k ∈ KH, the cost (area) used for components of that type 
is calculated as the sum of the costs of the components of 
that type. This cost should not exceed its maximum.

• ∀ k ∈ KP, the cost for associated data storage area should 
not exceed its maximum.

• ∀ k ∈ KP the cost for storing instructions should not exceed 
its maximum.

• The total cost (Σk ∈ KH) of HW components should not 
exceed its maximum

• The total cost of data memories (Σk ∈ KP) should not exceed 
its maximum

• The total cost instruction memories (Σk ∈ KP) should not 
exceed its maximum
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Timing constraints

Timing constraints
These constraints can be used to guarantee that 
certain time constraints are met.

Timing constraints
These constraints can be used to guarantee that 
certain time constraints are met.

Execution time of a node in the task graph is 
variable (implemented in hardware or software)

This defines execution time of node as a linear 
expression on our decision variables. 

Using these execution times, we can define start 
and end times of each node.

The end time of the sink node in the task graph 
should be less than pre-defined constant

--- overall timing constraint on the design.

Scheduling

Processor
p1 ASIC h1

FIR1 FIR2

v1 v2 v3 v4

v9 v10

v11

v5 v6 v7 v8

e3 e4

t

p1

v8 v7

v7 v8

or

...

... ...

...

t

c1

or

...

... ...

...e3

e3

e4

e4t

FIR2 on h1

v4 v3

v3 v4

or

...

... ...

...

Communication channel c1
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Scheduling / precedence  
constraints

For all nodes vi1 and vi2 that are potentially mapped to 
the same processor or hardware component instance, 
introduce a binary decision variable bi1,i2,k with
bi1,i2,k=1 if vi1 is executed before vi2 in component k and

= 0 otherwise.
Define constraints of the type
(end-time of vi2) ≤ (start time of vi1) if bi1,i2,k=0

Ensure that the schedule for executing operations is 
consistent with the precedence constraints in the task 
graph.

For all nodes vi1 and vi2 that are potentially mapped to 
the same processor or hardware component instance, 
introduce a binary decision variable bi1,i2,k with
bi1,i2,k=1 if vi1 is executed before vi2 in component k and

= 0 otherwise.
Define constraints of the type
(end-time of vi2) ≤ (start time of vi1) if bi1,i2,k=0

Ensure that the schedule for executing operations is 
consistent with the precedence constraints in the task 
graph.
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Scheduling Constraints
bi1,i2,k + yi1,k ≥ 1
bi1,i2,k +yi2,k ≥ 1
bi1,i2,k + bi2,i1,k ≥ 1
bi1,i2,k + bi2,i1,k + yi1,k +yi2,k ≤ 3

Timei1
start ≥ Timei2

end – (Large Const) * bi1,i2,k

Timei2
start ≥ Timei1

end – (Large Const) * bi2,i1,k
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Example

HW types H1, H2 and H3 with 
costs of 20, 25, and 30.
Processors of type P.
Tasks T1 to T5.
Execution times:

HW types H1, H2 and H3 with 
costs of 20, 25, and 30.
Processors of type P.
Tasks T1 to T5.
Execution times:

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100
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Operation assignment 
constraints (1)

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

X1,1+Y1,1=1 (task 1 mapped to H1 or to P)
X2,2+Y2,1=1
X3,3+Y3,1=1
X4,3+Y4,1=1
X5,1+Y5,1=1

∑ ∑
∈ ∈

=+∈∀
KHk KPk

kiki YXIi 1: ,,
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Operation assignment 
constraints (2)

Assume types of tasks are ℓ =1, 2, 3, 3, and 1.

∀ ℓ ∈L, ∀ i:T(vi)= ℓ ∀ k ∈ KP: NYℓ,k ≥ Yi,k

Assume types of tasks are ℓ =1, 2, 3, 3, and 1.

∀ ℓ ∈L, ∀ i:T(vi)= ℓ ∀ k ∈ KP: NYℓ,k ≥ Yi,k

Functionality 3 to be 
implemented on 

processor if node 4 is 
mapped to it.

20/09/2007 45

Other equations

Time constraints leading to: Application 
specific hardware required for time 
constraints under 100 time units.

Time constraints leading to: Application 
specific hardware required for time 
constraints under 100 time units.

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

Cost function:
C=20 #(H1) + 25 #(H2) + 30 # (H3) + cost(processor) 
+ cost(memory) 
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Result

For a time constraint of 100 time units and cost(P)<cost(H3):For a time constraint of 100 time units and cost(P)<cost(H3):

T H1 H2 H3 P
1 20 100
2 20 100
3 12 10
4 12 10
5 20 100

Solution (educated guessing) :
T1 → H1
T2 → H2
T3 → P
T4 → P
T5 → H1
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Separation of scheduling and 
partitioning

Combined scheduling/partitioning very complex;
Heuristic: Compute approx. time values.

Perform partitioning for approx. time values.
Perform final scheduling using the above partition.
If final schedule does not meet time constraint, 

go to 1 using a reduced overall timing constraint.

Combined scheduling/partitioning very complex;
Heuristic: Compute approx. time values.

Perform partitioning for approx. time values.
Perform final scheduling using the above partition.
If final schedule does not meet time constraint, 

go to 1 using a reduced overall timing constraint.

2nd Iteration

t

specificationspecification
Actual execution time

1st Iteration

approx. execution time

t

Actual execution time

approx. execution time
New specificationNew specification
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How to get approx time?
Compute start and end times of each node 
without the scheduling constraints.

Only basic constraints based on topological ordering in 
the task graph.
Timei

start ≥ Σpredecessors j Yj,k *  (sw time of j on k)
• Similarly for hardware

Timei
start ≥ Timej

end + 
Σ j’∈path(j,i) Yj’,k * (sw time of j’ on k)

where j is the dominator of i in task graph.
(similar constraints for hardware costs).

Compute partitioning with these time values.
Then solve the scheduling using the given partition.
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Application example

Audio lab (mixer, fader, echo, equalizer,
balance units); slow SPARC processor
1µ ASIC library
Allowable delay of 22.675 µs (~ 44.1 kHz)

Audio lab (mixer, fader, echo, equalizer,
balance units); slow SPARC processor
1µ ASIC library
Allowable delay of 22.675 µs (~ 44.1 kHz)

SPARC
processor

ASIC
(Compass,
1 µ)

External 
memory

Outdated technology; just a proof of concept.
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Running time for COOL 
optimization

Only simple models can be solved optimally.
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Deviation from optimal design

Hardly any loss in design quality.
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Running time for heuristic
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Design space for audio lab

Everything in software:  72.9   µs,                0 λ2

Everything in hardware:   3.06 µs, 457.9x106 λ2

Lowest cost for given sample rate: 18.6  µs,    78.4x106 λ2,
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Final remarks

COOL approach:
shows that formal model of hardware/SW codesign is 
beneficial; IP modeling can lead to useful implementation 
even if optimal result is available only for small designs.

Other approaches for HW/SW partitioning:
starting with everything mapped to hardware; gradually 
moving to software as long as timing constraint is met.
starting with everything mapped to software; gradually 
moving to hardware until timing constraint is met.
Simple approaches like Binary search.

COOL approach:
shows that formal model of hardware/SW codesign is 
beneficial; IP modeling can lead to useful implementation 
even if optimal result is available only for small designs.

Other approaches for HW/SW partitioning:
starting with everything mapped to hardware; gradually 
moving to software as long as timing constraint is met.
starting with everything mapped to software; gradually 
moving to hardware until timing constraint is met.
Simple approaches like Binary search.
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Exercise

160 time units

T1

T2

T3 T4

T5
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Exercise
At most 2 nodes can be implemented in 
HW ASIC. Each ASIC costs 20 units and 
each software implementation costs 5 
units.
Each task’s HW execution is 8 time units 
and the SW execution is 60 time units.
Total execution time should be less than 
160 time units.
Perform HW-SW partitioning for this task 
graph.
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Exercises
A. Consider a traffic light controller with two different lights each of 

which must be red when the other is not red. They both start in the 
red state. When one of them receives a start event, it performs a cycle 
going from red to green to yellow and back to red. When either light 
reaches the red state, it tells the other to perform a cycle.

1. Draw the above as a statechart.

2. Identify what features of statechart you found most useful ?

B. Event broadcasting allows  output of a transition to serve as
triggers of transitions in orthogonal components of a system. Can 
such broadcast go on in an infinite loop ? Construct a small example 
statechart to show that this is possible.
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Exercise A

tm(n): a timeout transition triggered after a specified amount of time (n) 
has passed.
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Exercise B


