CS4272: HW SW Codesign

HW SW Partitioning

Abhik Roychoudhury
School of Computing
National University of Singapore

Modified and augmented from Peter Marwedel’s lecture notes

20/09/2007

Reading

- Section 5.3 of textbook
 - Embedded System Design
 - Peter Marwedel

- Also must read
 - Hardware/software partitioning using Integer programming, by Ralf Niemann
 - URL available from CS4272 webpage.
 - This article has a much better explanation of the same material.

Hardware/Software Codesign

Codesign Tool (COOL) as an example of HW/SW partitioning

- Inputs to COOL:
 1. Target technology
 2. Design constraints
 3. Required behavior

Design constraints refer to constraints on performance, hardware area etc.

We need to clarify the other two terms.
Target Technology

- A graph of nodes --- Nodes denote
 - Hardware components or Processors
 - Memories also present, but
 - mapping of tasks to HW or Proc.
 - Edges denote interconnections --- often in the form of buses

So, Target Tech is

- Hardware Components
 - Possibly of different types
- Set of Processors
- External memory and buses between them.

Behavior

- Hierarchical Task Graphs
- What is a task graph?
 - Typically DAG of tasks
 - Nodes denotes specific tasks in the
 functionality of the system being designed
 - Edges can denote several things
 - Causal dependences, or in more details
 - Communication (with weightage of data being
 communicated)
 - There might exist causal dependence T1 \(\rightarrow\) T2
 without any data being communicated from T1 to T2
- Nodes of hierarchical task graphs can be
 task graphs

Why task graphs?

- Reasonable way to capture repetitive
 reactive behavior
 - Tasks produce output streams from input
 streams (from environment or other tasks).
- Task graphs thus represent a high-level
 behavioral specification of the system.
 - How each task is described depends on who is
 designing it (hardware designer, programmer)
 - Diff. from how each task will be implemented!

Approach

Task graph input

- Input to the partitioning method is a
 hierarchical task graph.
 - At the lowest level (leaves of the hierarchy),
 behavior of each node is specified say in VHDL
 - Alternately in C?
Schematic

- Target Tech.
- VHDL System Spec.
- Design Constraints
- Syntax Graph Model
- C Code Generation
- VHDL Code Generation
- Retargetable Compilation
- High-level Synthesis

Schematic (solving ILP)

- Solving ILP Optimization Problem
- Solution?
 - no
 - Result := ValidPartition
- ValidPartition := Solution found
- Cluster SW nodes
- Refine ILP problem
- SW costs

Partition Refinement

- Denotes “implemented in software”

COOL partitioning algorithm

1. Translation of the behavior into an internal graph model
2. Translation of the behavior of each node from VHDL into C (we assumed task description in VHDL, otherwise this step is not required).
3. Compilation
 - All C programs compiled for the target processor,
 - Computation of the resulting program size,
 - Estimation of the resulting execution time (simulation input data might be required)
4. Synthesis of hardware components:
 - ∀ leaf node, application-specific hardware is synthesized. High-level synthesis sufficiently fast.
5. Flattening of the hierarchy:
 - Granularity used by the designer is maintained.
 - Cost and performance information added to the nodes. Precise information required for partitioning is pre-computed
6. Generating and solving a mathematical model of the optimization problem:
 - Integer programming IP model for optimization. Optimal with respect to the cost function (approximates communication time)
7. Iterative improvements:
 - Adjacent nodes mapped to the same hardware component are now merged.
COOL partitioning algorithm

8. Interface synthesis:
After partitioning, the glue logic required for interfacing processors, application-specific hardware and memories is created.

We now describe step 6 (Integer Programming) in more details.

Integer programming models

- Ingredients:
 - Cost function
 - Constraints

- Cost function: \(C = \sum_{x_i \in X} a_i x_i \) with \(a_i \in \mathbb{R}, x_i \in \mathbb{N} \) (1)

- Constraints: \(\forall j \in J: \sum_{x_i \in X} b_{ij} x_i \geq c_j \) with \(b_{ij}, c_j \in \mathbb{R} \) (2)

Def.: The problem of minimizing (1) subject to the constraints (2) is called an integer programming (IP) problem.
If all \(x_i \) are constrained to be either 0 or 1, the IP problem said to be a 0/1 integer programming problem.

Example

\[
C = 5x_1 + 6x_2 + 4x_3 \\
\]
\[
x_1 + x_2 + x_3 \geq 2 \\
x_1, x_2, x_3 \in \{0, 1\}
\]

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Optimal

On integer programming

- Maximizing the cost function can be done by setting \(C' = -C \).
- Integer programming is NP-complete.
- In practice, running times can increase exponentially with the size of the problem, but problems of some thousands of variables can still be solved with commercial solvers, depending on the size and structure of the problem.
- IP models can be a good starting point for modeling, even if in the end heuristics have to be used to solve them.

Digress: Linear Programming

- Example: Grocery Shopping
 - \(m \) varieties of nutrients (vitamins, protein, …)
 - Need \(b_1 \) units of Nut1, \(b_2 \) units of Nut2, …, \(b_m \) units of Nutm.
 - Can buy \(n \) types of food (milk, bread, beef, …)
 - Each unit of food contains a certain number of units of each type of nutrients.
 - \(a_{ij} \) represents the number of units of the \(i \)th type nutrient contained in one unit of food of the \(j \)th type.

Diagram: Linear Programming

- Milk, bread, fish, Beef, Celery, Ice-cream
- Vitamin A, Vitamin B, Protein
- n, m
Transcript:

Digress: Linear Programming
- Suppose you buy x_1 units of food type 1 and x_2 units of food type 2, and x_n units of food type n. Then for nutrition type of type i it must be the case:

$$a_{i,1} \cdot x_1 + a_{i,2} \cdot x_2 + \ldots + a_{i,n} \cdot x_n \geq b_i$$

Digress: Linear Programming
- $a_{i,1} \cdot x_1 + a_{i,2} \cdot x_2 + \ldots + a_{i,n} \cdot x_n \geq b_i$
- $a_{2,1} \cdot x_1 + a_{2,2} \cdot x_2 + \ldots + a_{2,n} \cdot x_n \geq b_2$
- $a_{i,1} \cdot x_1 + a_{i,2} \cdot x_2 + \ldots + a_{i,n} \cdot x_n \geq b_i$
- $a_{m,1} \cdot x_1 + a_{m,2} \cdot x_2 + \ldots + a_{m,n} \cdot x_n \geq b_m$

Digress: Linear Programming
- $AX \geq b$
- A - $m \times n$ matrix
- X - $n \times 1$ column vector of unknowns.
- b - $m \times 1$ column vector of constants.
- Additional constraints:
 - $x_i \geq 0$ ($j = 1, 2, \ldots, n$)
- Cost function:
 - $z = c_1 \cdot x_1 + c_2 \cdot x_2 + \ldots + c_n \cdot x_n$
 - c_i - the cost of one unit of food type i.

Integer Linear Programming
- Demand in addition:
 - Each x_i should be an integer.
- Solving an ILP problem usually boils down to solving a series of LP problems.
- The General Idea in solving an LP:
 - Feasible solution is a solution that satisfies all the constraints.
 - The set of feasible solutions (for sensible LP problems!) is a convex polyhedron.
 - One of the corner points of the polyhedron is the optimal solution.

Mixed Integer Linear Programming Problem
- Demand the integer-value constraint only for a subset of the variables.
- In principle, LP problems can be solved in polynomial time.
- But ILP problems have only exponential time algorithms at present.
 - NP-complete

Role of ILP in solving co-design problems
- ILP based resource aware compilation – Palsberg and Naik
- http://www.cs.ucla.edu/~palsberg/paper/mpsoc-chapter03.pdf
The Partitioning Problem

Partitioning Problem: Map \(\{A, B, C, D, E, F, G\} \) to \{ASIC, DSP\}.

Possible solution

IP model for partitioning

- Notation:
 - Index set \(I \) denotes task graph nodes.
 - Index set \(L \) denotes task graph node types, e.g. square root, DCT or FFT.
 - Index set \(KH \) denotes hardware component types, e.g. hardware components for the DCT or the FFT.
 - Index set \(J \) of hardware component instances.
 - Index set \(KP \) denotes processors. All processors are assumed to be of the same type.

Cost function:

\[
C = \text{cost(processors)} + \text{cost(memories)} + \text{cost(application specific hardware)}
\]

Constraints

Operation assignment constraints (2)

\[
\forall i \in I \colon \sum_{k \in KH} X_{i,k} + \sum_{k \in KP} Y_{i,k} = 1
\]

All task graph nodes have to be mapped either in software or in hardware. Variables are assumed to be integers. Additional constraints to guarantee they are either 0 or 1:

\[
\forall i \in I \colon \forall k \in KH \colon X_{i,k} \leq 1
\]

\[
\forall i \in I \colon \forall k \in KP \colon Y_{i,k} \leq 1
\]

For all types \(\ell \) of operations and for all nodes \(i \) of this type: if \(i \) is mapped to some processor \(k \), then that processor must implement the functionality of \(\ell \). Decision variables must also be 0/1 variables:

\[
\forall i \in I \colon \forall k \in KP \colon NY_{i,k} \leq 1.
\]
Resource & design constraints

- $\forall k \in KH$, the cost (area) used for components of that type is calculated as the sum of the costs of the components of that type. This cost should not exceed its maximum.
- $\forall k \in KP$, the cost for associated data storage area should not exceed its maximum.
- $\forall k \in KP$ the cost for storing instructions should not exceed its maximum.
- The total cost ($\sum_{k \in KH}$) of HW components should not exceed its maximum.
- The total cost of data memories ($\sum_{k \in KP}$) should not exceed its maximum.
- The total cost instruction memories ($\sum_{k \in KP}$) should not exceed its maximum.

Timing constraints

- Timing constraints
 These constraints can be used to guarantee that certain time constraints are met.

 Execution time of a node in the task graph is variable (implemented in hardware or software).
 This defines execution time of node as a linear expression on our decision variables.
 Using these execution times, we can define start and end times of each node.
 The end time of the sink node in the task graph should be less than pre-defined constant
 \implies overall timing constraint on the design.

Scheduling

- Scheduling / precedence constraints
 - For all nodes v_j and v_k that are potentially mapped to the same processor or hardware component instance, introduce a binary decision variable $b_{j,k}$ with $b_{j,k} = 1$ if v_j is executed before v_k in component k and $= 0$ otherwise.
 - Define constraints of the type
 $\text{end-time of } v_j \leq \text{start time of } v_k$ if $b_{j,k} = 0$
 - Ensure that the schedule for executing operations is consistent with the precedence constraints in the task graph.

Scheduling Constraints

- $b_{1,2,k} + y_{1,k} \geq 1$
- $b_{1,2,k} + y_{2,k} \geq 1$
- $b_{1,2,k} + b_{2,1,k} \geq 1$
- $b_{1,2,k} + b_{2,1,k} + y_{1,k} + y_{2,k} \leq 3$
- $\text{Time}_{j}^{\text{start}} \geq \text{Time}_{k}^{\text{end}} - (\text{Large Const}) \times b_{j,k}$
- $\text{Time}_{k}^{\text{start}} \geq \text{Time}_{j}^{\text{end}} - (\text{Large Const}) \times b_{j,k}$

Example

- HW types H1, H2, and H3 with costs of 20, 25, and 30.
- Processors of type P.
- Tasks T1 to T5.
- Execution times:

<table>
<thead>
<tr>
<th>T</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>12</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>10</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>
Operation assignment constraints (1)

\[
\forall i \in I: \sum_{K \in K} X_{i,k} + \sum_{K \in P} Y_{i,k} = 1
\]

\[
X_{1,1} + Y_{1,1} = 1 \text{ (task 1 mapped to H1 or to P)}
\]

\[
X_{2,2} + Y_{2,1} = 1
\]

\[
X_{3,3} + Y_{3,1} = 1
\]

\[
X_{4,3} + Y_{4,1} = 1
\]

\[
X_{5,1} + Y_{5,1} = 1
\]

Other equations

- Time constraints leading to: Application specific hardware required for time constraints under 100 time units.

\[
\begin{array}{cccc}
T & H1 & H2 & P \\
1 & 20 & 100 \\
2 & 20 & 100 \\
3 & 12 & 10 \\
4 & 12 & 10 \\
5 & 20 & 100 \\
\end{array}
\]

Cost function:

\[C = 20 \#(H1) + 25 \#(H2) + 30 \#(H3) + \text{cost(processor)} + \text{cost(memory)} \]

Operation assignment constraints (2)

- Assume types of tasks are \(\ell = 1, 2, 3, 3, \) and 1.

\[
\forall \ell \in L, \forall T(v_i) = \ell \forall k \in KP: NY_{\ell,k} \geq Y_{i,k}
\]

Result

- For a time constraint of 100 time units and cost(P)<cost(H3):

\[
\begin{array}{cccc}
T & H1 & H2 & P \\
1 & 20 & 100 \\
2 & 20 & 100 \\
3 & 12 & 10 \\
4 & 12 & 10 \\
5 & 20 & 100 \\
\end{array}
\]

Solution (educated guessing):

- T1 \rightarrow H1
- T2 \rightarrow H2
- T3 \rightarrow P
- T4 \rightarrow P
- T5 \rightarrow H1

Separation of scheduling and partitioning

- Combined scheduling/partitioning very complex;
 - Heuristic: Compute approx. time values.
 - Perform partitioning for approx. time values.
 - Perform final scheduling using the above partition.
 - If final schedule does not meet time constraint, go to 1 using a reduced overall timing constraint.

How to get approx time?

- Compute start and end times of each node without the scheduling constraints.
 - Only basic constraints based on topological ordering in the task graph.
 - \(\text{Time}_{i,\text{new}} \geq \sum_{\text{predecessors} j} Y_{j,k} \ast (\text{sw time of } j \text{ on } k) \)
 - Similarly for hardware.
 - \(\text{Time}_{\text{start}} \geq \text{Time}_{\text{end}} + \sum_{j \text{ such that } i \text{ is dominated by } j} Y_{j,k} \ast (\text{sw time of } j \text{ on } k) \)

Compute partitioning with these time values. Then solve the scheduling using the given partition.
Application example

- Audio lab (mixer, fader, echo, equalizer, balance units); slow SPARC processor
- 1 µ ASIC library
- Allowable delay of 22.675 µs (~ 44.1 kHz)

SPARC processor
ASIC (Compass, 1 µ)
External memory

Outdated technology; just a proof of concept.

Running time for COOL optimization

Only simple models can be solved optimally.

Deviation from optimal design

Hardly any loss in design quality.

Running time for heuristic

Final remarks

- COOL approach:
 - shows that formal model of hardware/SW codesign is beneficial; IP modeling can lead to useful implementation even if optimal result is available only for small designs.
 - Other approaches for HW/SW partitioning:
 - starting with everything mapped to hardware; gradually moving to software as long as timing constraint is met.
 - starting with everything mapped to software; gradually moving to hardware until timing constraint is met.
 - Simple approaches like Binary search.

Design space for audio lab

Everything in software: 72.9 µs, 0.5
Everything in hardware: 3.06 µs, 457.9x10^6 J
Lowest cost for given sample rate: 18.6 µs, 78.4x10^6 J

20/09/2007
At most 2 nodes can be implemented in HW ASIC. Each ASIC costs 20 units and each software implementation costs 5 units.

Each task’s HW execution is 8 time units and the SW execution is 60 time units.

Total execution time should be less than 160 time units.

Perform HW-SW partitioning for this task graph.

Exercises

A. Consider a traffic light controller with two different lights each of which must be red when the other is not red. They both start in the red state. When one of them receives a start event, it performs a cycle going from red to green to yellow and back to red. When either light reaches the red state, it tells the other to perform a cycle.

1. Draw the above as a statechart.
2. Identify what features of statechart you found most useful?

B. Event broadcasting allows output of a transition to serve as triggers of transitions in orthogonal components of a system. Can such broadcast go on in an infinite loop? Construct a small example statechart to show that this is possible.

Exercise A

tm(n): a timeout transition triggered after a specified amount of time (n) has passed.

Exercise B