
1

Functionality Debugging

CS 4272
Abhik Roychoudhury

National University of Singapore
Acknowledgment: An earlier Guest Lecture by Tao Wang

The context

System Modeling
UML, Statecharts

Partitioning
ILP based methods are a candidate

Scheduling
Many choices --- aperiodic, periodic

Implementations

Under Implementation

Many aspects
Functionality Validation
Timing Analysis and Validation
Choice of Platforms
Compilation and compiler-guided platform
customization.

Today’s lecture
Functionality Validation

Outline of Material on
Debugging

Introduction
Program Slicing
Testing based Fault Localization
Summary

Introduction

Software
Debugging

Time consuming

Automatic
methods for
syntax errors

String s1 =…

String s2 =…

…

If (s1 == s2)

……Semantic errors?

Software Debugging

Typical Debugging Steps

1. Hypothesize the
cause of the
error

2. Try to confirm it
Observable

error

Error?

Error?

Execution

Error? D

C

B

A

2

Software Debugging

1. Hypothesize the cause of the error

2. Try to confirm it

• Program analysis
• Identify suspicious statements

Software Debugging

Typical Debugging Steps

1. Hypothesize the
cause of the
error

2. Try to confirm it
Observable

error

Error?

Error?

Execution

Error? D

C

B

A

Software Debugging

1. Hypothesize the cause of the error

2. Try to confirm it

• Program analysis
• Identify suspicious statements

• Collect information to
help programmers

Program Analysis for Debugging

What to analyze?
the execution run, Dynamic Analysis
the source code, Static Analysis

How to analyze?
Program Slicing
Testing based Fault Localization

Outline

Introduction
Program Slicing
Testing based Fault Localization
Summary

Program Slicing
b=1;
y=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

3

Program Slicing
b=1;
y=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6 Slicing
Criterion

Data
Dependence

Control
Dependence

Program Slicing
b=1;
y=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6 Slicing
Criterion

Data
Dependence

Control
Dependence

Dependence Graph

Statement

Control / Data
Dependence

A

B

Program Slicing

Statement

Control / Data
Dependence

Slicing Criterion

Program Slicing

Statement

Control / Data
Dependence

Slicing Criterion

Static vs Dynamic Slicing
Static Slicing

source code
statement
static dependence

Dynamic Slicing
a particular execution
statement instance
dynamic dependence
Corresponds naturally to debugging via testing.

4

Static vs Dynamic Slicing

b=1;
If (a>1)

x=1;
else

x=2;
printf (“%d”, x);

1
2
3
4
5
6 Slicing Criterion

Static vs Dynamic Slicing

p.f = 1;
x= q.f;
printf (“%d”, x);

1
2
3

Slicing Criterion

p and q point to
the same object?

Static points-to analysis is always
conservative

b=1;
x=1;
If (a>1){

if (b>1){
x=2;

}
}
printf (“%d”, x);

1
2
3
4
5

6

input: a=2

Program Slice
Static Dynamic

1
2
3
4
5

6

2

6

Formalizing Slicing

Dependence Graphs
Nodes are statements for Static Slicing
Edges are data or control dependencies

For dynamic slicing
The nodes are statement instances.

A statement can be executed many times in a
trace, each execution is a statement instance.

Edges are control/data dep. as before.

Dynamic Dependence Graph
G = (V, E)

V = All statement occurrences for the test input
under consideration.
E = Data and Control dependences between
statement occurrences.

Slicing Criterion
A node in the DDG

Slice computation
Nodes reachable from slicing criterion

Dynamic Data dependences

V := 1;

…

U := V

An edge from a variable usage to the
latest definition of the variable.

A[i] := 1;

…

U := A[j]

Do we consider this data dependence
edge ?

Remember that the slicing is for an input,
so the addresses are resolved

We thus define data dependences
corresponding to memory locations rather
than variable names.

5

Control Dependences

Post-dominated: I,J – nodes in Control Flow Graph

I is post-dominated by J iff all paths from I to EXIT pass through J

I

J

EXIT

I

J

EXIT

YES
NO

Control Dependences

I

U

V

J

EXIT

I not post-dom by J

U, V post-dom by J

Control dependence

I -> J

Dynamic Slice Illustration

0 scanf(“%d”, &A);
1. If (A == 0){;
2 W = X;
3 U = A;
4 }
5 printf(“%d\n”, U);

Criterion: 5,U with input A == 0

Trace: <0,1,2,3,4,5> Slice = {0,1,3,5}

Data dependences encountered 5 -> 3, 1 -> 0

Control dependence encountered 3 -> 1

Computation of dynamic slice

Backward
Execute the program for input
Store the trace during execution
Traverse the trace from the end.

Forward
Execute the program.
Keep track of slices for various possible
criteria --- computes many slices.

Backward Slicing

Run the program for selected input.

Store execution trace.

Set slicing criterion.

Traverse the trace from the slicing criterion to the
beginning of the trace by going through control / data
dependencies.

Forward Dynamic Slicing

No need to store trace.
Execute the program for selected input.
At every step, compute and update the
slice (from among statements seen so
far), for different slicing criteria

Various variables for the current line

6

Comparison

Forward
No need to store
trace

Store slices for many
slicing criteria

Backward
Store trace

Goal-directed,
compute only the
needed slice.

A real-life example

Apache JMeter
Performance Testing tool
43,400 Lines of Code (LoC)
389 Java classes

1. void setRunningVersion(boolean runningVersion){

2. if(runningVersion) {
3. savedValue = value;

}
else{

4. savedValue = "";
}

5 this.runningVersion = runningVersion;

6. System.out.println(savedValue);
}

Dynamic Slicing

a bug from JMeter
should be
savedValue = NULL;

Dynamic Slicing

runningVersion =
false

1. void setRunningVersion(boolean runningVersion){

2. if(runningVersion) {
3. savedValue = value;

}
else{

4. savedValue = "";
}

5 this.runningVersion = runningVersion;

6. System.out.println(savedValue);
} null ?

Dynamic Slice

1. void setRunningVersion(boolean runningVersion)

2. if(runningVersion) {
3. savedValue = value;

}
else{

4. savedValue = "";
}

5 this.runningVersion = runningVersion;

6. System.out.println(savedValue);
} Slicing

Criterion

Testing and Debugging

Two very close software development
activities

Testing Stage

Debugging Stage

Testing
Methods

Debugging
Methods

7

Testing and Debugging

Testing and Debugging techniques can
help each other

Improve testing
Forward Slicing for Regression Testing

Regression Testing

P P
,

Test Suite

Program

T

modify

T

Regression Testing

P
,

T

unaffected affected

Test Suite

Program

Regression Testing

P P
,

Program

T

modify

T
,select

Test Suite

Regression Testing

1. Identify a set of program components affected by
the modified parts

2. Identify T’ of the T to test the affected components

P ,

TT’

Use
Slicing

Forward Slicing for
Regression Testing

a=1;

if (b>1)
y=x+10;

b=2;

1

2
3
4

P

Test 1, b=0 Test 2, b=5
1

2

4

1

2
3
4

8

Forward Slicing for
Regression Testing

a=1;
x=1;
if (b>1)

y=x+10;
b=2;

1

2
3
4

P’

Test 1, b=0 Test 2, b=5
1

2

4

1

2
3
4

Outline

Introduction
Program Slicing
Testing based Fault Localization
Summary

Testing Based Fault
Localization

Use testing to help debugging
Test Suite (test cases)

Program

Failing Runs Successful Runs

Testing Based Fault
Localization

Successful RunFailing Run

Difference:

Bug?

Testing Based Fault
Localization

What to Compare
choice of the Execution Run

Testing Based Fault
Localization

What to Compare
choice of the Execution Run

How to Compare

9

Choice of the Execution Run

Failing run
Select one failing run for comparison
Different failing runs may correspond to
different error causes

Successful Run
A Single successful run, VS
A Set of successful runs

Choice of a Single Successful
Run

The difference can be related to:
1. different inputs
2. the error

The successful run and the failing run should be as
similar as possible

Choose a “good” successful run for comparison

Testing Based Fault
Localization

What to Compare
choice of the Execution Run

How to Compare
statements
branches
potential invariants
variable values

Fault Localization - statement

Statement Coverage for Testing
every statement should be executed at
least once with test cases in the Test Suite
intuition for this Coverage Criteria

Test Suite (test cases)

Program

Successful Runs

Fault Localization - statement

Test Suite (test cases)

Program

Successful RunsFailing Runs

Set of Covered
Statements A B

Fault Localization - statement

Test Suite (test cases)

Program

Successful RunsFailing Runs

Set of Covered
Statements A B

10

Fault Localization - branches

1. v=0;
2. if (x>0)
3. u=5;
4. else
5. u=v;
6.

printf(‘‘%d’’,u);

if (x>=0)

Fault Localization - branches

1. v=0;
2. if (x>0)
3. u=5;

6.
printf(‘‘%d’’,u);

1. v=0;
2. if (x>0)

4. else
5. u=v;
6.

printf(‘‘%d’’,u);

Failing run, x=0 Successful run, x=1

Compare Corresponding
Statement Instances

ProgramProgram

1. while (a){
2. if (b)
3. i++;
4. }

Compare Corresponding
Statement Instances

1. while (a){
2. if (b)
3. i++;
4. }
1. while (a){
2. if (b)
3.

4. }

1. while (a){
2. if (b)
3. i++;
4. }
1. while (a){
2. if (b)
3. i++;
4. }

Execution run Execution run ππ Execution run Execution run ππ’’

1. while (a){
2. if (b)
3. i++;
4. }
1. while (a){
2. if (b)
3.

4. }

1. while (a){
2. if (b)
3. i++;
4. }
1. while (a){
2. if (b)
3. i++;
4. }

Execution run Execution run ππ Execution run Execution run ππ’’

Compare Corresponding
Statement Instances Fault Localization - branches

1. while (a){
2. if (b)
3. i++;
4. }
1. while (a){
2. if (b)
3.

4. }

1. while (a){
2. if (b)
3. i++;
4. }
1. while (a){
2. if (b)
3. i++;
4. }

Execution run Execution run ππ Execution run Execution run ππ’’

11

Choose a Successful Run

diffdiff diffdiff’’

Comparison of Differences Select one
failing run for comparison

Failing Failing ππ Successful Successful ππ’’ Failing Failing ππ Successful Successful ππ’’

Choose a Successful Run

diffdiff diffdiff’’

Comparison of Differences Select one
failing run for comparison

<<

Location of Branches

1. int main(int argc, char **argv)
2. if (argc < 3){
3. printf(“parameter error\n”);
4. return 0;
5. }

6. ….
7. if (m == -1)
8. ….
9. }

TCAS program

check the input

Favor branches
near to the
observable error

Choose a Successful Run

diffdiff diffdiff’’

Comparison of Differences Select one
failing run for comparison

Failing Failing ππ Successful Successful ππ’’ Failing Failing ππ Successful Successful ππ’’

Choose a Successful Run

diffdiff diffdiff’’

Comparison of Differences Select one
failing run for comparison

<<

Summary

Computer-Aided Debugging
Automatically identify suspicious statements

Future Trends
More accurate results
Novel way to use results of existing
methods

12

Tools
Testing

Numerous, Junit for unit testing
Slicing

Several tools for static slicing
Codesurfer, Indus

Dynamic slicing – Jslice
http://jslice.sourceforge.net

More naturally corresponds to debugging, than static
slicing

Fault Localization
Andreas Zeller’s Askigor system

Assignment 2

Debugging using Jslice tool
Dynamic Slicing Tool for Java

Demo of tool
Some description
Hands-on work on slicing/testing.

Slicing for Debugging
Set criterion

Why is output v = 0 at end of program for input a
= 2?

Technique
Compute closure of dynamic data/control dep.

Inspect the slice
Could possibly lead programmer to suspect other
variables/line numbers
Slice again ….

Architecture of JSlice

GUI (a Eclipse plug-in)

Execute the program Select

Kaffe JVM

Instrument

Compact Bytecode Trace Criterion = (Inp, Var, Line#)

Dynamic Slicing

Set of bytecodes

(Stack simulation)Reverse Translate

Class Files

Slice

