
MICROARCHITECTURE MODELING FOR

TIMING ANALYSIS OF EMBEDDED

SOFTWARE

LI XIANFENG

(B.Eng, Beijing Institute of Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2005

ACKNOWLEDGEMENTS

I am deeply grateful to my supervisors, Dr. Abhik Roychoudhury and Dr. Tulika

Mitra. I sincerely thank them for introducing me such an exciting research topic

and for their constant guidance on my research. I consider myself very fortunate to

be their first Ph.D. student and because of this I had the privilege to receive their

guidance almost exclusively in my junior graduate years (Some times I feel guilty for

taking them so much time).

I have also benefited from Professors P.S. Thiagarajian, Samarjit Chakraborty

and Wong Weng Fai. They have given me many insightful comments and advices.

Their lectures and seminars not only have been another source of knowledge and

inspirations for me, but also have been excellent examples for how to communicate

scientific thoughts.

The weekly seminars of our embedded systems research group have been a unique

forum for us to exchange ideas. I have learnt a lot by either presenting my own work

or by listening to the talks given by our group members or visiting professors. I will

certainly miss it after I leave our group.

I would like to thank the National University of Singapore for funding me with

research scholarship and for providing such an excellent environment and services. My

thanks also go to the administrative and support staff in the School of Computing,

NUS. Their support is more than what I have expected.

I thank my friends Dr. Zhu Yongxin, Chen Peng, Luo Ming, Shen Qinghua and

Daniel Högberg, with whom I play tennis and badminton. Doing sports has made

my life here more fun and less stressful. I would also miss my other friends and

lab mates Liang Yun, Pan Yu, Kathy Nguyen Dang, Wang Tao, Andrew Santosa,

ii

Marciuca Gheorghita, Mihail Asavoae, Sufatrio Rio, Xie Lei and Wang Zhanqing. Our

discussions, gatherings and other social activities made my stay at NUS enjoyable.

I have special thanks to my parents, my brother and sister for their love and

encouragement. To make me concentrate on my study, they were even trying to

conceal from me a serious illness of my mother when she was suffering it a couple of

years ago.

Most of all, this thesis would not have been possible without the enormous support

of Cailing, my wife. She has sacrificed a great deal ever since I decided to pursue my

Ph.D. study. As an indebted husband, I hope this thesis could be a gift to her, and I

take this chance to make a promise that I will never leave her struggling alone in the

future.

The work presented in this thesis was partially supported by National University

of Singapore research projects R252-000-088-112 and R252-000-171-112. They are

gratefully acknowledged.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

SUMMARY . vii

LIST OF TABLES . ix

LIST OF FIGURES . x

I INTRODUCTION . 1

1.1 Real-time Embedded Systems . 1

1.2 Worst Case Execution Time Analysis 2

1.3 Contributions . 5

1.4 Organization of the Thesis . 7

II OVERVIEW . 9

2.1 Background on Microarchitecture 9

2.1.1 Pipelining . 9

2.1.2 Branch Prediction . 11

2.1.3 Instruction Caching . 15

2.2 A Processor Model . 17

2.3 Our Framework . 20

2.3.1 Program Path Analysis and WCET Calculation 21

2.3.2 Microarchitecture Modeling 25

2.4 Experimental Setup . 27

III RELATED WORK . 30

3.1 WCET Calculation . 30

3.2 Microarchitecture Modeling . 34

3.3 Program Path Analysis . 43

IV OUT-OF-ORDER PIPELINE ANALYSIS 48

4.1 Background . 49

iv

4.1.1 Out-of-Order Execution . 49

4.1.2 Timing Anomaly . 49

4.1.3 Overview of the Pipeline Modeling 51

4.2 The Analysis . 52

4.2.1 Estimation for a Basic Block without Context 52

4.2.2 Estimation for a Basic Block with Context 64

4.3 Experimental Evaluation . 72

4.4 Summary . 75

V BRANCH PREDICTION ANALYSIS 76

5.1 Modeling Branch Prediction . 77

5.1.1 The Technique . 78

5.1.2 An Example . 85

5.1.3 Retargetability . 90

5.2 Integration with Instruction Cache Analysis 92

5.2.1 Instruction Cache Analysis 93

5.2.2 Changes to Instruction Cache Analysis 94

5.3 Experimental Evaluation . 100

5.4 Summary . 109

VI ANALYSIS OF PIPELINE, BRANCH PREDICTION AND IN-
STRUCTION CACHE . 110

6.1 Timing Estimation of a Basic Block in Presence of Branch Prediction 110

6.1.1 Changes to Execution Graph 112

6.1.2 Changes to Estimation Algorithm 113

6.1.3 Handling Prediction of Other Branches 114

6.2 Timing Estimation of a Basic Block in Presence of Instruction Caching115

6.3 Putting It All Together . 116

6.4 Experimental Evaluation . 118

6.5 Summary . 120

v

VII CONCLUSION . 122

7.1 Summary of the Thesis . 122

7.2 Future Work . 124

APPENDIX A — PROOFS FOR THE PIPELINE ANALYSIS AL-
GORITHMS . 126

vi

SUMMARY

Worst Case Execution Times (WCET) of tasks are an essential input to the

schedulability analysis of hard real-time systems. Obtaining the WCET of a program

by exhaustive simulation over all sets of data input is often unaffordable. As an

alternative, static WCET analysis predicts the worst case without actually running

the program. One important yet difficult problem for static WCET analysis is to

model the hardware features which have a great impact on the execution time of

the program. In this thesis, we study the features that are commonly found in high

performance processors but have not been effectively modeled for WCET analysis.

First, we model out-of-order pipelines. This in general is difficult even for a basic

block (a sequence of instructions with single-entry and single-exit points) if some

of the instructions have variable latencies. This is because the WCET of a basic

block on out-of-order pipelines cannot be obtained by assuming maximum latencies

of the individual instructions; on the other hand, exhaustively enumerating pipeline

schedules could be very inefficient. In this thesis, we propose an innovative technique

which considers all possible pipeline schedules but avoids an enumeration on them.

Next, we present a technique for dynamic branch prediction modeling. Dynamic

branch predictions are superior to static branch predictions in terms of accuracy, but

are much harder to model. There are very few studies dealing with dynamic branch

predictions and the known techniques are limited to some relatively simpler schemes.

Our technique can effectively model a variety of dynamic prediction schemes including

the popular two-level branch predictions used in current commercial processors. We

also study the effect of speculative execution (via branch prediction) on instruction

caching and capture it by augmenting an existing instruction cache analysis.

vii

Finally, we integrate the analyses of different features into a single framework. The

features being modeled include an out-of-order pipeline, a dynamic branch predictor,

and an instruction cache. Modeling multiple features in combination has long been

acknowledged as a difficult problem due to their interactions. However, the combined

analysis in our work does not need significant changes to the modeling techniques

for the individual features and the analysis complexity does not increase sharply,

indicating a good extensibility for incorporating more microarchitectural features.

viii

LIST OF TABLES

2.1 The Benchmark Programs . 28

4.1 Accuracy of Out-of-Order Pipeline Analysis 74

5.1 Modeling Gshare Branch Prediction Scheme for WCET Analysis. . . 101

5.2 Observed and Estimated WCET and Misprediction Counts of Gshare,
GAg and Local Schemes. 103

5.3 Combined Analysis of Branch Prediction and Instruction Caching . . 106

5.4 Program Complexity and Processing Time 107

6.1 Combined Analysis of Out-of-Order Pipelining, Branch Prediction and
Instruction Caching . 119

ix

LIST OF FIGURES

2.1 The Speedup of Pipelined Execution 10

2.2 Categorization of Branch Prediction Schemes 12

2.3 Illustration of Branch Prediction Schemes. The branch prediction table
is shown as PHT, denoting Pattern History Table. 13

2.4 Two-bit Saturating Counter Predictor 13

2.5 The Organization of a Direct Mapped Cache 16

2.6 The Block Diagram of the Processor 17

2.7 The Organization of the Pipeline . 19

2.8 The WCET Analysis Framework . 21

2.9 A Control Flow Graph Example . 22

3.1 An Example of Infeasible Paths (by Healy and Whalley) 31

4.1 Timing Anomaly due to Variable-Latency Instructions 50

4.2 A basic block and its execution graph. The solid edges represent de-
pendencies and the dashed edges represent contention relations. . . . 57

4.3 An Example Prologue . 65

4.4 Increase of In-order Execution over Out-of-Order Execution and Over-
estimation for Out-of-Order Execution 73

5.1 Example of the Control Flow Graph 85

5.2 Additional edges in the Cache Conflict Graph due to Speculative Exe-
cution. The l-blocks are shown as rectangular boxes, and the ml-blocks
among them are shaded. 97

5.3 Changes to Cache Conflict Graph (Shaded nodes are ml-blocks) . . . 98

5.4 The Importance of Modeling Branch Prediction: Mispredictions in Ob-
servation and Estimation . 102

5.5 A Fragment of the Whetstone Benchmark 104

5.6 Change (in Percentage) of Cache Misses and Overall Penalties in Com-
bined Modeling to Those in Individual Modelings 105

5.7 Est./Obs. WCET Ratio under Different Misprediction Penalties
and Cache Miss Penalties . 107

5.8 Scalability with Increasing Branch Prediction Table Size and Cache Size108

x

6.1 Execution Graph with Branch Prediction 111

6.2 Overestimations in the Pure Pipeline Analysis and Overestimations in
the Combined Analysis . 120

xi

CHAPTER I

INTRODUCTION

1.1 Real-time Embedded Systems

Today a large portion of computing devices are serving as components of other systems

for the purpose of data processing, control or communication. These computing

devices are called embedded systems. The application domains of embedded systems

are diverse: ranging from mission-critical systems, such as aviation systems, power

plant monitoring systems, vehicle engine control systems, etc, to consumer electronics,

such as mobile phones, mp3 players, etc.

Many of the embedded systems are required to interact with the environment

in a timely fashion and they are called real-time systems. The correctness of such

systems depends not only on the computed results, but also on the time at which

the results are produced. Real-time systems can be further divided into two classes:

hard real-time systems and soft real-time systems. Hard real-time systems do not allow

any violation of their timing requirements. They are typically mission-critical systems

such as vehicle control systems, avionics, automated manufacturing and sophisticated

medical devices. With such systems, any failure to meet their deadlines may cause

disastrous loss. In contrast, soft real-time systems can tolerate occasional misses of

deadlines. For example, in voice communication systems or multimedia streaming

applications, the loss or delay of a few frames may be tolerable. In this thesis, we are

concerned with hard real-time systems.

1

1.2 Worst Case Execution Time Analysis

Typically, a hard real-time system is a collection of tasks running on a set of hardware

resources. Each task repeats periodically or sporadically and can be characterized by

a release time, a deadline, and a computation time. The schedulability analysis is

concerned with whether it is possible to find a schedule for the tasks such that they

all complete executions within their deadlines each time they are released (ready to

execute).

Clearly, to perform schedulability analysis, the computation time for each task

needs to be known a priori. Furthermore, to guarantee that the deadline is met

in any circumstance, the Worst Case Execution Time (WCET) should be used as

input instead of average case execution time. In reality, it may not be possible to

know an exact WCET of a task and a conservative estimate is used. Tight WCET

estimates are of primary importance for schedulability analysis as they reduce the

waste of hardware resources. In this thesis, we study efficient methods for WCET

estimations.

The Worst Case Execution Time to be studied in this thesis is defined as the

maximum possible execution time of a task running on a hardware platform without

being interrupted. There are several points for this definition to be noted. First, a

simplified assumption is made that the task is executed uninterruptedly, while in a

hard real-time system the task may be interrupted, e.g., by a higher priority task.

The impact of interruptions on the execution of a task is another topic and it is

beyond our research scope in this thesis. Second, the WCET is hardware-specific as

the execution time of a task depends on the underlying hardware platform. Last, the

execution time of a task varies with different data input and the WCET should cover

all possible sets of data input.

In general, there are two approaches to determine the WCET of a task, or equiva-

lently, the WCET of a program (as we are now shifting from a multi-tasking context

2

of schedulability analysis to a single task context of WCET determination, we will

use the term program instead of task). The first approach is to obtain the WCET

by simulating or by actually running the program on the target hardware over all

sets of possible data input. However simulation or execution can only examine one

set of data input each time. On the other hand, most non-trivial programs have a

tremendous number of sets of possible data input, rendering an exhaustive simula-

tion over all of them unaffordable. Another approach is to estimate the WCET by

static analysis, which studies the program, derives its timing properties, and makes

an estimation on the WCET without actually running the program. Static WCET

analysis is expected to have the following properties:

• Conservative. The analysis should not underestimate the actual WCET, other-

wise the system which is reported by the analysis as ”safe” may actually fail. For

example, the task is assigned a computation time which is above the reported

WCET but lower than what is required for the actual worst case, resulting in

its deadline being missed in some circumstances.

• Tight. The analysis should be reasonably close to the actual WCET, other-

wise the task will be assigned an unnecessarily long computation time, i.e.,

a computation time no less than the estimated WCET. With the increase of

computational requirement for each task, the promise of schedulability on the

target hardware platform decreases and more powerful and expensive hardware

platform may be needed.

• Efficient. The static analysis should be efficient in both time and space con-

sumption.

Note the first property is compulsory and the other two are desirable.

Since the execution time of a program is affected by two factors: (a) the data input

to the program, and (b) the hardware platform on which the program is running, their

3

effects need to be studied for WCET determination. The first factor mainly affects

the execution path of a program and the second factor affects instruction timing, i.e.,

how long an instruction executes. Correspondingly, static WCET analysis can be

divided into three sub-problems.

The first sub-problem is called program path analysis. It works on either the

source program or the compiled code and derives program flow information such as

what are the feasible paths and infeasible paths that an execution can go through.

Later on, during the search of the worst case execution path, the identified infeasible

paths will be excluded from consideration. Therefore the more infeasible paths are

discovered, the more efficient and accurate the computation of the WCET.

The second sub-problem is called microarchitecture modeling. It is concerned

with instruction timing. Traditionally, the execution time of an instruction is ei-

ther a constant or easy to predict on processors with simple architectures. Modern

processors, however, employ aggressive microarchitectural features such as pipelin-

ing, caching and branch prediction to improve the performance of the applications

running on them. These features, which are designed to speed up the average-case

execution, pose difficulties for instruction timing prediction. Firstly, the execution

time of an instruction is no longer a constant, e.g., a cache miss may result in a much

longer execution time that a cache hit does. Furthermore, the variation of instruction

timing can be highly dynamic, e.g., without detailed execution history information, it

may be unclear whether a cache access is a hit or a miss. Microarchitecture modeling

studies the impact of the microarchitectural features on the executions of instructions.

It provides instruction timing information which later on will be used to evaluate the

costs of the execution paths during the search for the worst case execution path.

The third sub-problem is called WCET calculation. With the program path

information and instruction timing information, the costs of the program paths are

evaluated and the maximum one will be taken as the estimated WCET. In contrast

4

to the simulation approach, where program paths are evaluated individually, static

WCET analysis performs this task more efficiently by simultaneously considering a

set of paths which share some common properties. The correctness of the WCET

calculation (the estimated WCET is not an underestimation to the actual WCET)

relies on the earlier two sub-problems. First, no feasible paths are excluded by the

program path analysis, otherwise the estimated WCET would be an underestimation

in case the worst case execution path is among the excluded ones. Second, instruction

timing estimated by microarchitecture modeling should be conservative, such that

the cost of each program path will not be underestimated. On the other hand, the

tightness of the estimated WCET depends on the first two sub-problems as well: the

more infeasible paths are discovered, the less infeasible paths (which may have longer

execution times than the feasible paths) are to be considered; and the more accurate

the instruction timing, the tighter the estimation of the paths. There has been a few

WCET calculation methods, which are different in the way that program paths are

evaluated and the way instruction timing information is used. We will discuss them

in the related work.

1.3 Contributions

In this thesis, we study microarchitecture modeling for WCET analysis. Our goal is

to develop a framework for microarchitecture modeling which accurately estimates

the timing effects of the three most popular microarchitectural features: instruction

caching, branch prediction and pipelining (in-order/out-of-order). The framework

should have an extensible structure, such that the modeling of more features can be

conveniently incorporated. The contributions of this thesis can be summarized as

follows.

• We propose a technique for out-of-order pipeline modeling. In out-of-order

5

pipelines, an instruction can execute if its operands are ready and the corre-

sponding resource is available, irrespective of whether earlier instructions have

started execution or not. Since out-of-order execution improves processor’s per-

formance significantly by replacing pipeline stalls with useful computations, it

has become popular in high performance processors. The main challenge to

out-of-order pipeline modeling is that out-of-order pipelines exhibit a phenom-

enon called timing anomaly [50], where counterintuitive events may arise. For

example, a cache miss may result in shorter overall execution time of the pro-

gram than a cache hit does, which means assuming a cache miss somewhere

the actual cache access result is not available may be not conservative. Unfor-

tunately, existing techniques largely rely on these conservative assumptions to

make accuracy-performance trade-offs by only considering conservative cases.

In the presence of timing anomalies, such trade-offs are no longer safe. As a

result, all cases need to be examined. However, examining the possible cases

individually could be very inefficient. In this thesis, we address the timing

anomaly problem by proposing a novel technique which avoids enumerating the

individual cases. Our technique is a fixed-point analysis over time intervals,

where multiple cases of an event at a point are represented as an interval. This

way, these cases can be studied in one go, and at the same time the analysis

result obtained is still safe as long as the interval covers all cases.

• We develope a framework for the modeling of a variety of dynamic branch

prediction schemes. The presence of branch instructions introduces control de-

pendencies among different parts of the program. Control dependencies cause

pipeline stalls called control hazards [30]. Current generation processors per-

form control flow speculation through branch prediction, which predicts the

outcome of a branch instruction long before the actual outcome is available.

If the prediction is correct, then execution proceeds without any interruption.

6

Otherwise (known as misprediction), the speculatively executed instructions are

undone, incurring a branch misprediction penalty. If branch prediction is not

modeled, all the branches in the program have to be assumed mispredicted to

avoid underestimation. However, a majority of the branches can be correctly

predicted in reality, which means the estimated WCET will be very pessimistic

if branch prediction is not modeled. In this thesis, we propose a generic and

parameterizable framework by using Integer Linear Programming (ILP). Since

it is integrated with our ILP-based WCET calculation method, it can make

good use of program path information for a tight estimate. Our framework can

model the popular branch prediction schemes, including both global and local

ones [51, 73].

• We propose a framework for combined analyses of the three features: out-of-

order pipelining, branch prediction and instruction caching. The major issue

with the combined analyses of multiple features is the sharp increase of the

analysis complexity due to their interactions. By decomposing the timing ef-

fects of the various features into local timing effects (which affect nearby instruc-

tions) and global timing effects (which affect remote instructions), our combined

analyses are divided into two levels: local analyses and global analyeses. By

doing so, we can keep the analysis at a reasonable complexity, yet we can still

receive good accuracy. The combined analyses of the three features also suggest

that our framework has a good extensibility in the sense that incorporating the

modeling of more microarchitectural features into the existing framework can

be achieved with reasonable effort.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. The next chapter presents an overview of

the approach taken in this thesis. Chapter 3 surveys the literature of WCET analysis.

7

Chapter 4 presents the out-of-order pipeline analysis. Branch prediction analysis is

discussed in Chapter 5, where its integration with an ILP-based instruction cache

analysis is also discussed. The combined analysis the three features is presented in

Chapter 6. Finally, Chapter 7 gives a summary on what have been achieved in this

thesis and points out possible future work.

8

CHAPTER II

OVERVIEW

In this chapter, we provide an overview of the approach taken in this thesis. First,

we give some background information on the three microarchitectural features: out-

of-order pipelining, branch prediction, and instruction caching. Then we introduce a

concrete processor model used in this thesis. Next we present our overall approach

for WCET analysis. Finally, we introduce the experimental setup used throughout

this thesis.

2.1 Background on Microarchitecture

Microarchitecture is the term used to describe the resources and methods used to

achieve architecture specification of processors. Modern processors employ aggres-

sive microarchitectural features such as pipelining, caching and branch prediction to

improve the performance of the applications running on them. The purpose of this

section is to give some background information on the three popular microarchitec-

tural features studied in this thesis.

2.1.1 Pipelining

The execution of an instruction naturally involves several tasks performed sequen-

tially, or in other words, the execution proceeds through several stages. Therefore,

instead of starting the execution of an instruction after the completion of an ear-

lier one, we can overlap the executions of multiple instructions, where each one is

in a particular execution stage at a time. This implementation technique is called

pipelining. Ideally, if the execution which takes T time units to execute is divided

into N pipeline stages with equal latencies, there can be an instruction completing

9

IF EX IF EX IF EX IF EX

IF EX

IF EX

IF EX

IF EX

(a) Unpipelined Execution

(b) Pipelined Execution

Figure 2.1: The Speedup of Pipelined Execution

execution each T/N time units, achieving a speedup of factor N . The speedup of

pipelined execution is illustrated in Figure 2.1. With a two-stage pipeline, the ex-

ecution takes roughly half the execution time of the unpipelined execution for four

instructions. Modern processors have much deeper pipelines and the improvement is

more substantial.

However, the ideal speedup of pipelined execution is often not reached because

there are some events preventing the instructions from proceeding through the pipeline

smoothly. These events are called hazards in the literature [30]. There are three classes

of hazards.

• Structural hazards. Some of the resources needed by an instruction are currently

unavailable, e.g., occupied by another instruction.

• Data hazards. Some of the data operands on which an instruction depends are

currently unavailable, e.g., an operand to be provided by an earlier instruction

is still under computation.

• Control hazards. The next instruction to be executed is currently unknown,

e.g., due to branches or other control flow transfer instructions.

10

Because of these hazards, the execution time of an instruction or a sequence of

instructions is not straightforwardly predictable, resulting in difficulties for timing

analysis. This problem becomes more serious with aggressive pipelining mechanisms

such as out-of-order execution. On an out-of-order pipeline, instructions can proceed

through some of the pipeline stages out of their program order. This rise of complexity

makes the hazards harder to predict. For example, in an out-of-order pipeline, a

structural hazard happening to an instruction might be caused by either an earlier

instruction or a later instruction, while in an in-order pipeline, it can only be caused

by an earlier instruction.

2.1.2 Branch Prediction

The motivation for branch prediction is to address control hazards. When a condi-

tional branch is executed, it computes the address of the subsequent instruction to

be executed. There can be two possible outcomes: taken or not taken. If the branch

outcome is taken, the subsequent execution will be redirected to a target address indi-

cated by the branch instruction, otherwise it is not taken and the execution continues

sequentially. However, the branch outcome is often available somewhere late in the

pipeline, which means the processor does not know what to do between the interval

from the start of the branch instruction to its production of the outcome.

If we do nothing with control hazards and let the processor idly wait for the branch

outcome (the waiting time is called a branch penalty), we will have a significant

performance loss. Hennessy and Patterson [30] have shown that for a program with

a 30% branch frequency and a branch penalty of three clock cycles, their processor

with branch stalls achieves only about half the ideal speedup with pipelining.

In light of this, various techniques have been proposed to reduce branch stalls.

One effort is to reduce the branch penalty by computing the branch outcome and

the target address as early as possible. However, constrained by the inherent nature

11

Branch pred. schemes

Static Dynamic

Local Global

GAg gshare gselect

Figure 2.2: Categorization of Branch Prediction Schemes

of the pipelined execution, the computation of the branch outcome often cannot be

done immediately after or very close to the start of the branch’s execution, thus the

branch stall cannot be completely overcome. In fact, on current processors with deep

pipelines, the branch penalty can be over ten clock cycles.

Another method is to predict the branch outcome before it is available, such that

the processor can continue execution along the predicted direction instead of idly

waiting for the actual outcome. In case the prediction is correct, the branch penalty

is completely avoided, otherwise it is a misprediction and some recovery actions must

be taken to undo the effects of the wrong path instructions. The interval from the time

the wrong path instructions entering the pipeline to the time the execution resuming

on the correct path is called a misprediction penalty. It is the delay compared to the

scenario of a correct prediction and is usually equal to or slightly higher than the

branch penalty.

A variety of branch prediction schemes have been proposed and they can be

broadly categorized as static and dynamic (see Figure 2.2; the most popular cate-

gory in each level is underlined). In a static scheme, a branch is predicted the same

direction every time it is encountered. Either the compiler can attach a prediction

bit to every branch through analysis, or the hardware can perform the prediction

12

BHR

PHT

m

predictionoutcome

(a) GAg

BHR

PHT

m

predictionoutcome

(b) gshare

PC

PHT

n

predictionoutcome

(c) local

PC

XORn

Figure 2.3: Illustration of Branch Prediction Schemes. The branch prediction table
is shown as PHT, denoting Pattern History Table.

11 10 01 00

Predicted Taken Predicted Not Taken

Not Taken Not Taken Not TakenNot Taken

TakenTaken Taken Taken

Figure 2.4: Two-bit Saturating Counter Predictor

using simple heuristics, such as backward branches are predicted taken and forward

branches are predicted non-taken. Static schemes are simple to realize and easy to

model. However, they do not make very accurate predictions.

Dynamic schemes predict the outcome of a branch according to the execution

history. The first dynamic technique proposed is called local branch prediction (il-

lustrated in Figure 2.3(c)), where the prediction of a branch is based on its last few

outcomes. It is called ”local” because the prediction of a branch is only dependent

on its own history. This scheme uses a 2n-entry branch prediction table to store past

branch outcomes, and this table is indexed by the n lower order bits of the branch

address. Obviously, two or more branches with the same lower order address bits

13

will map to the same table entry and they will affect each other’s predictions (con-

structively or destructively). This is known as the aliasing effect. In the simplest

case, each prediction table entry is one-bit and stores the last outcome of the branch

mapped to that entry.

In this thesis, for simplicity of disposition, we discuss our modeling only for the

one-bit scheme. When a branch is encountered, the corresponding table entry is

looked up and used for prediction; and the entry will be updated after the outcome

is resolved. In practice, two-bit saturating counters are often used for prediction, as

show in Figure 2.4. Furthermore, the two-bit counter can be extended to n-bit scheme

straightforwardly. We are aware that subsequent to our work, Bate and Reutemann

[4] have developed techniques to extend the state-of-the art for modeling an n-bit

saturating counter (in each row of the prediction table).

Local prediction schemes cannot exploit the fact that a branch outcome may be

dependent on the outcomes of other recent branches. The global branch prediction

schemes can take advantage of this situation [73]. Global schemes use a single shift

register called branch history register (BHR) to record the outcomes of the n most

recent branches. As in local schemes, there is a branch prediction table in which pre-

dictions are stored. The various global schemes differ from each other (and from local

schemes) in the way the prediction table is looked up when a branch is encountered.

Among the global schemes, three are quite popular and have been widely implemented

[51]. In the GAg scheme (refer to Figure 2.3(a)), the BHR is simply used as an index

to look up the prediction table. In the popular gshare scheme (refer to Figure 2.3(b)),

the BHR is XOR-ed with the last n bits of the branch address (the PC register in

Figure 2.3(b)) for prediction table look-up. Usually, gshare results in a more uniform

distribution of table indices compared to GAg. Finally, in the gselect (GAp) scheme

(not illustrated in Figure 2.3 but can be derived from the gshare scheme), the BHR

is concatenated with the last few bits of the branch address to look up the table.

14

Note that even with accurate branch prediction, the processor needs the target

address of a taken branch instruction. Current processors employ a small branch tar-

get buffer to cache this information. We have not modeled this buffer in our analysis

technique; its effect can be easily modeled via techniques similar to instruction cache

analysis [43]. Furthermore, the effect of the branch target buffer on a program’s

WCET is small compared to the total branch misprediction penalty. This is because

the target address is available at the beginning of the pipeline whereas the branch

outcome is available near the end of the pipeline.

2.1.3 Instruction Caching

Caching in our context is a mechanism used to bridge the gap between a faster

processor and a relatively slower memory. A cache is a small, fast memory close

to the processor that accommodates the most recently accessed code or data in the

memory. If the data item needed by the processor is found in the cache, it is called a

cache hit, otherwise the processor has to get it from the main memory and it is called

a cache miss. The cost of a cache miss is called cache miss penalty. The caching

mechanism is effective thanks to the principle of locality, which says that programs

tend to reuse data and instructions they have used recently. It has been observed that

a program may spend 90% of its execution time on only 10% of the code. Thus, by

storing the recently accessed data in the cache, we will have a high chance of visiting

them again from the cache in the future.

Program instructions and data can be cached either in a single storage, called von

Neumann architecture, or in physically separate storages, called Harvard architecture.

For embedded systems, Harvard architecture is more widely used. This makes it

possible to study instruction caching and data caching separately. In this thesis we

only study instruction caching.

Now we look at the organization of a cache with a simplified view. A cache is

15

tag index offset

tagvalid data

Address:

… … …

Figure 2.5: The Organization of a Direct Mapped Cache

organized in fixed-size blocks, each of which accommodates consecutive data items

located in the memory (called memory blocks). Depending on where a memory block

can be placed in the cache, there are three organization categories.

• If a memory block has only one place to go in the cache, the cache is called

direct mapped.

• If a memory block can be placed anywhere in the cache, the cache is called fully

associative.

• If a memory block can be placed in a restricted set of places in the cache, the

cache is called set associative.

Direct mapped cache and fully associative cache can be viewed as two special cases

of set associative caches. In this thesis, for simplicity of disposition, we will take direct

mapped cache as an example, but our work can be extended to set associative caches.

Figure 2.5 gives a simplified view of the organization of a direct mapped cache. A

direct mapped cache is divided into multiple cache lines. Each cache line has three

portions: a data portion which contains the memory block; a tag portion which is

used to differentiate multiple possible memory blocks mapped to the same cache line;

and a valid bit to indicate whether the cache line contains any valid data. When the

16

IF ID EX WB CM

Branch PredictorInstruction Cache

main memory

five-stage pipeline

Figure 2.6: The Block Diagram of the Processor

processor accesses a data item, it dispatches the address of the data item to the cache.

The address is divided into three fields as shown in Figure 2.5: The index field is used

to determine which cache line to access; the tag field is used to decide whether the

cache line contains the desired data (true if the tag field matches the tag portion of

the corresponding cache line); and the block offset field is used to select the desired

data item from the corresponding cache line. In case the memory block is not in the

cache, access is directed to the main memory, and the memory block fetched from

the main memory will displace the current one from the corresponding cache line.

2.2 A Processor Model

In this section we present the processor model used in this thesis. It is a simplified

version of the SimpleScalar sim-outorder processor model [6], which is in turn based

on [67]. The processor consists of three components: an out-of-order pipeline, a

branch predictor and an instruction cache. The block diagram of the processor and

the interactions among the three components are shown in Figure 2.6.

The pipeline consists of five stages. The interaction between the pipeline and

the instruction cache takes place at the instruction fetch stage (IF on the diagram),

17

where the pipeline dispatches an instruction address to the instruction cache and

the instruction is sent to the pipeline upon a hit, otherwise the instruction will be

fetched from the main memory and the instruction cache is updated accordingly.

The interaction between the pipeline and the branch predictor takes place at two

stages. In the IF stage, the pipeline consults the branch predictor for the subsequent

instruction to be executed. In the WB stage, where computed results are available, the

branch predictor is updated with the branch outcome if the instruction is a conditional

branch. The interaction between the branch predictor and the instruction cache is

indirect (via the pipeline). The content of the instruction cache can be changed by

the branch prediction in the following way: If the branch prediction is incorrect,

the pipeline will execute instructions on the wrong path, which might bring some

instructions into the instruction cache and displace some existing instructions. The

instruction cache does not change the state of the branch predictor because the state

of the branch predictor is only updated by the branch outcomes of the program,

which is independent of the behaviors of both the pipeline and the instruction cache.

Next, we give the organization of the pipeline and explain in more details how an

instruction is executed by this processor.

The pipeline is shown in Figure 2.7. It consists of the following components: an

instruction buffer (I-buffer), which accommodates instructions that have been fetched

from the instruction cache or main memory, but yet to be decoded and executed;

a circular reorder buffer (ROB), which accommodates instructions that have been

decoded, but have not completed execution; several functional units which carry out

the operations specified by the instructions; register files which hold computed results,

including an integer register file and a floating-point register file.

An instruction proceeds through the five-stage pipeline as follows.

1. Instruction Fetch (IF). In this stage, the instruction specified by the the pro-

gram counter is fetched from the instruction cache or memory into the I-buffer.

18

I+1
I

ROB

I-1

headtail

I-4

I-2 I-3

I-buffer

ALU

MULTU

FPU

General
Purpose
Register
File

Floating
Point
Register
File

Figure 2.7: The Organization of the Pipeline

There are several rules dictating the behavior of the IF stage. Instructions en-

ter and leave the I-buffer in program order. If the I-buffer is full, the processor

stops fetching more instructions until the earliest instruction leaves the I-buffer.

2. Instruction Decode & Dispatch (ID). In this stage, the earliest instruction

in the I-buffer is removed from the I-buffer, decoded, and dispatched into the

ROB. The instruction is stored there until it commits (see CM stage). The

instruction decode cannot proceed if the ROB is full or the I-buffer is empty.

3. Instruction Execute (EX). In this stage, an instruction in the ROB is is-

sued to its corresponding functional unit for execution when all its operands

are ready and the functional unit is available. If more than one instruction cor-

responding to a function unit are ready for execution, the earliest instruction

has the highest priority. We assume that the functional units are not pipelined,

that is, an instruction can be issued to a functional unit F only after the previ-

ous instruction occupying F has completed execution. We also assume that the

19

number of instructions issued in a clock cycle is only bounded by the number

of functional units. The EX stage exhibits true out-of-order behavior as an

instruction can start execution irrespective of whether earlier instructions have

started execution or not.

4. Write Back (WB). In this stage, instructions that have finished execution

forward their results to awaiting instructions, if any, in the ROB. If all the

operands of an awaiting instruction become ready, the instruction will be among

the candidates scheduled for execution in the next cycle. We assume that there

is no contention in the WB stage, that is, any instruction who has finished

execution can always write its results back at this stage. Clearly, the WB stage

exhibits out-of-order behavior as well.

5. Commit (CM). This is the last stage where the earliest instruction which has

completed the WB stage writes its output to the register files and frees its ROB

entry. Note that the instructions commit in program order. Therefore, even if

an instruction has completed its WB stage, it still has to wait for the earlier

instructions to commit. We assume at most one instruction can commit each

cycle.

In summary, in this processor model, EX and WB are the pipeline stages where

instructions can proceed out-of-order, but resource contentions (contention for func-

tional units) only happen in the EX stage.

2.3 Our Framework

In this section, we provide an overview of our approach for WCET analysis and mi-

croarchitecture modeling. As mentioned in Section 1.2, there are three sub-problems

for WCET analysis: program path analysis, microarchitecture modeling, and WCET

20

Pipeline
Analysis

Global
BP Analysis

Local
IC Analysis

Local
BP Analysis

Global
IC Analysis

WCET Calculation

Path Analysis

Local Analyses

Global Analyses

Figure 2.8: The WCET Analysis Framework

calculation. Our approach to performing these sub-problems and handling their in-

teractions is illustrated in Figure 2.8. We divide the analyses into two levels: local

analyses and global analyses, depending on whether global program flow information

is needed or not in the respective analysis.

2.3.1 Program Path Analysis and WCET Calculation

The purpose of program path analysis is to identify feasible paths which later on will

be used by WCET calculation. There has been extensive research work in this direc-

tion. Since our focus in this thesis is microarchitecture modeling, we do not propose

new techniques for program path analysis, and the existing program path analysis

techniques may be adopted here. The rest part is mainly for WCET calculation.

WCET calculation evaluates the costs of the program paths and takes the maxi-

mum one as the WCET. In contrast to simulation, where each program path is eval-

uated separately (the major drawback of the simulation approach), WCET analysis

evaluates multiple program paths simultaneously. The key problem is how the pro-

gram paths are grouped for evaluation. There has been an approach proposed by Li

and Malik [40] which uses Integer Linear Programming (ILP) to represent the pro-

gram paths. We adopt their approach for WCET calculation in our work. The idea

21

S

A

B C

D

E

SABDACDACDACDE

3

SACDABDACDACDE

SACDACDABDACDE

SACDACDACDABDE

SABDABDACDACDE

SABDACDABDACDE

SABDACDACDABDE

SACDABDABDACDE

SACDABDACDABDE

SACDACDABDABDE

vB = 1

vC = 3

vB = 2

vC = 2

Figure 2.9: A Control Flow Graph Example

is as follows.

We work on the compiled code of the program. We first construct the Control Flow

Graph (CFG) [1] for the program. The vertices of the graph are basic blocks, each

of which is a sequence of instructions where flow of control can only enter from the

beginning of the basic block and leave from the end. The basic blocks are connected

by directed edges. There is an edge from block B1 to block B2 if and only if B2 can

follow the execution of B1 in some execution sequence. The diagram on the left hand

side of Figure 2.9 gives s simple CFG example.

Suppose the costs (execution times) of the basic blocks are known, then the ex-

ecution time of a path can be calculated by first collecting the execution counts of

the basic blocks on the path, then summing up the terms of the execution counts

weighted by their costs. More formally, given a path P , its execution time TP can be

represented by the following equation.

TP =
N∑

i=1

costi ∗ vi

where costi and vi are the cost and the execution count of block Bi respectively. If

P does not contain block Bi, vi is set to zero.

As mentioned earlier, static analysis evaluates a set of paths (or a segment of a

22

set of paths) at a time. The ILP approach achieves this by exploiting the fact that if

two paths P1 and P2 have the same execution counts for each of their corresponding

basic blocks, that is to say, they only differ in the execution order of the basic blocks,

then their execution time will be the same (under the assumption that the costs of

each basic block in the two paths are identical). From another point of view, the ILP

assigns feasible execution counts to the basic blocks and give them an evaluation.

This assignment actually represents a collection of paths with the same execution

time, hence they need to be evaluated only once by the ILP solver. The right hand

side in Figure 2.9 gives a concrete example. Suppose the loop from A to D iterates

four times. Since there is an ”if-then-else” branch inside the loop, each iteration the

control flow may go through either B or C, thus there can be 16 paths of the program

in total. By assigning one to the execution count of B (vB = 1) and three to the

execution count of C (vC = 3), there can be four paths satisfying this situation and

having the same execution time. These paths are listed in the upper half on the

right hand side. Similarly, with vB = 2 and vC = 2, there are six paths that can be

evaluated together (listed in the lower half on the right hand side).

Above we have discussed in an intuitively way on how program paths are grouped

by ILP for evaluation. Actually, an ILP solver can do an even better job by exploiting

relationships between different groups of paths (sets of execution counts). For details,

please refer to [65, 69]. Formally, the WCET of the program with N basic blocks can

be formulated as the maximization of the following problem.

Time =
N∑

i=1

costi ∗ vi (2.1)

We call Equation 2.1 the objective function. The ILP solver maximizes Time

by trying to assign different execution counts to vi. Obviously, there must be some

constraints on the execution counts that can be assigned. A ready set of constraints

23

come from the control flow information. They are given as follows.

vi =
∑

j

ej→i =
∑

j

ei→j (2.2)

where ei→j is the count of control flow transfer from block Bi to block Bj. Equation 2.2

captures the fact that the execution count of a basic block is equal to the sum of

incoming control flow as well as the sum of outgoing control flow. Furthermore, for

the start and end blocks, which execute exactly once, we have

vstart = vend = 1 =
∑

i

estart→i =
∑

i

ei→end (2.3)

The flow constraints by themselves are not enough. For instance, a program

typically has loops whose iterations must be bounded, but above constraints by no

means give such bounds. The loop bounds can either be derived by the program

path analysis or be provided manually. For example, if we found that the loop in

Figure 2.9 can iterate no more than four times, we add a bound vA ≤ 4 to the existing

constraints. Besides the compulsory loop bounds, some more flow facts discovered

by the program path analysis can be transformed to constraints to further bound the

possible execution count assignment. For example, suppose costB is larger than costC

in Figure 2.9, if the program path analysis finds out that B can only execute a limited

number of times (less than the loop iterations) and this fact is transformed into an

extra constraint, then the ILP solver will not be able to assign vB a loop iteration

count which leads to an unnecessarily overestimated WCET.

WCET calculation works on the scope of the global program, thus it belongs to

the global analyses in our framework in Figure 2.8.

It worth noting that when microarchitecture is modeled, the cost of a basic block

varies under different execution scenarios. In that case, we will identify the timing

events that affect the cost and refine the execution of a basic block into a few sece-

narios, each of which may have a distinct cost and its occurrences will be bounded

by microarchitecture modeling. The objective function will be changed accordingly.

24

2.3.2 Microarchitecture Modeling

Some of the timing effects of the microachitecture are mainly exercised in a local scope,

and their analyses need no much program flow information. Pipelining is a typical

example, where adjacent instructions affect each other, but remote instructions such

as those who have completed execution do not affect instructions currently in the

pipeline. As a result, pipeline analysis is performed at the level of basic blocks with

very limited program flow information taken into account (e.g, a short sequence of

instructions preceding or succeeding the analyzed basic block).

For instruction caching and branch prediction, it is well known that they exhibit

global timing effects in the sense that an earlier cache access or branch instruction

can update the state of the instruction cache or the branch predictor, which will

affect future cache accesses or branch predictions. How long the effect is exercised

is highly dynamic. For example, a cache access to an instruction I may displace

another instruction I ′ from the cache; when I ′ will be visited again depends on the

program path taken from I to I ′. We call the analyses for the global effects global

analyses (”Global IC Analysis” and ”Global BP Analysis” in Figure 2.8). To receive

reasonably accurate results, global program flow information needs to be taken into

account for global instruction cache analysis and global branch prediction analysis.

On the other hand, instruction caching and branch prediction have local effects

– mainly on the pipeline. For example, a cache miss results in a longer latency of

the corresponding pipeline IF stage, and a branch misprediction results in the flush

of the pipeline. We call the analyses for the local effects local analyses (”Local IC

Analysis” and ”Local BP Analysis” 1 in Figure 2.8).

Local analyses. Since pipeline is the place where instructions are executed and the

execution time is accounted, the pipeline analysis is taken as the core of local level

1Note local branch prediction analysis is not the analysis for local branch prediction schemes.

25

analyses, while the local analyses of the other two features, instruction caching and

branch prediction, are incorporated into the pipeline analysis with their effects on the

corresponding pipeline stages being captured (indicated by the arrows from ”Local

IC Analysis” and ”Local BP Analysis” to ”Pipeline Analysis” in Figure 2.8).

Global analyses. The global instruction cache analysis and the global branch pre-

diction analysis are concerned with the occurrences of the timing effects, e.g., cache

misses and branch mispredictions. Li et al. [41, 43] have proposed an ILP-based in-

struction cache analysis which can be conveniently integrated with their ILP-based

WCET calculation. In our global branch prediction analysis, to better exploit the

program flow information, we also use ILP to model the global behavior of branch

prediction (The technical details appears in Chapter 5). Recall in Section 2.2, we have

mentioned that the state of the instruction cache can be affected by the behavior of

the branch prediction. Now we revisit this issue with a perspective of global/local

effects. Clearly, a misprediction, which may affect the cache state, has no impact

on how a cache miss or hit affects the pipeline; rather, by changing the cache state,

it affects whether a future cache access is a hit or a miss. Therefore, an arrow is

drawn from local branch prediction analysis to global instruction cache analysis. In

Chapter 5, we will augment the instruction cache analysis by Li et al. to capture the

branch prediction effect.

Now we show the changes to WCET calculation with microarchitecture modeling

enabled. Since the execution time of a basic block varies with timing events (cache

misses, branch mispreditions) that may happen in its execution, and on the other

hand, the occurrences of the timing events are bounded by global analyses. The

objective function in Equation 2.1 will be changed to the following form.

Time =
N∑

i=1

∑
sc∈SCi

costsci ∗ vsc
i (2.4)

where sc is an execution scenario of block Bi, e.g., it may carry relevant cache state

26

and branch prediction information. The possible execution scenarios of Bi are cap-

tured by the set SCi. For different sc and sc′ of the same Bi, costsci and costsc
′

i are

expected to be different. The occurrences of each sc is bounded by global analy-

ses, such that for an sc which results in a higher costsci than other scenarios, the

corresponding vsc
i will not be assigned an impossibly high count. Note the scenario

mentioned here is generic – we will see concrete scenarios in the respective microar-

chitecture modeling chapters.

In summary, we decompose microarchitecture modeling into two levels: local level

and global level. The local level analyses are concerned with the timing of the analy-

sis units (e.g., basic blocks) by modeling local timing effects, and pipeline analysis is

the core at this level. The global level analyses are concerned with the occurrences

of timing events, and it works on the scale of the whole program. By decomposing

microarchitecture modeling into two levels, the analyses can be performed with rea-

sonably complexity and the microarchitecture modeling can be conveniently extended

when more features are to be modeled.

2.4 Experimental Setup

We will conduct experiments to evaluate our out-of-order pipeline analysis, branch

prediction analysis and the combined analysis of the three features. The experiments

share some commonalities such as the benchmarks used, the methodology, and the

experimental environment.

Benchmarks Table 2.1 lists the benchmark programs used for experiments. These

programs have been used by other researchers for WCET analysis. Among them,

des, dhry, fdct, fft, isort and whet were used by Li et al. [43], and the others are

from the real-time research group at Seoul National University [63]. For some of the

programs, e.g, dhry, fdct, matsum, matmul and fft, their branch conditions are not

27

Program Description
des Data Encryption Standard
dhry Dhrystone benchmark
fdct Fast Discrete Cosine Transform
fft 1024-point Fast Fourier Transformation
fir FIR filter with Gaussian function
isort Insertion sort of 100-element array
ludcmp LU decomposition algorithm
matmul Multiplication of two 10x10 matrices
matsum Summation of two 100x100 matrices
minver Inversion of a floating point matrix
qurt Root computation of quadratic equations
whet Whetstone benchmark

Table 2.1: The Benchmark Programs

dependent on input data, hence they have single execution paths. The program fir

has a single path as well, but it has a relatively complex control flow, which means

that it will be a tough job for program path analysis to derive flow information as

tight as what a simulation can report. The rest programs have multiple execution

paths. To be free of dependence on library calls, the data input is hard-coded into

the program.

Methodology To evaluate the accuracy of our analysis, the estimated result should

be compared against some reference one. Ideally, it should be the actual worst case.

However, as explained earlier, it is often impossible to know the actual worst case.

As an alternative, we use an approximate to the actual worst case by doing an inex-

haustive simulation over some sets of data input which are likely to produce the worst

case. We call the result obtained this way the observed worst case. Correspondingly,

the result produced by our analysis is called the estimated worst case. The relation-

ships of the three values are: observed WCET ≤ actual WCET ≤ estimated WCET.

Finding a set of data input for a good observed worst case is not easy, especially when

timing effects introduced by microarchitectural features come into play. What we do

is to inspect the important parts of a program (with the timing effects in mind), e.g.,

28

the inner loops, to get an idea on how the executions of these important parts are

affected by the data input, then we try to feed the program with a set of data input

which is likely to maximize their execution.

For both the simulation and estimation, we use SimpleScalar [6], a popular ar-

chitectural simulation toolset, for a variety of tasks. Our experiments start with the

source program. The first step is to compile the source program into object code

using the GCC compiler provided by SimpleScalar. This GCC version yields code of

an instruction set architecture (ISA) which is a superset of MIPS ISA [60].

Then, we simulate the object code by using one of the SimpleScalar simulators

with the selected data input. Whichever is used for simulation depends on which

microarchiture features are being modeled. In addition, to match our processor con-

figuration, the simulators are tailored and the parameters are set correspondingly.

Next, we conduct the analysis with a prototype analyzer written by us. It reads

the object code, constructs control flow graphs (CFG), performs local and global mi-

croarchitecture modeling, and formulates an ILP problem by producing an objective

function, a set of flow constraints as well as constraints from microarchitecture mod-

eling. In addition, flow information collected by program path analysis or by user

observation is transformed into an extra set of flow constraints, e.g., loop bounds,

which are called functional constraints.

Finally, the ILP problem is submitted to an ILP solver and the objective function

is maximized by the solver. The produced result will be the estimated worst case. In

our experiments, we use CPLEX [15], a commercial ILP solver for this task.

Environment We run all the experiments on a 1.3 GHz Pentium IV machine with

1-GB main memory. The operating system is Linux-2.4.18. The parameters of the

processor components will be reported together with the experimental results in the

respective chapters.

29

CHAPTER III

RELATED WORK

The importance of Worst Case Execution Time (WCET) analysis has been recognized

by the real-time community and substantial progress has been made over the past fif-

teen years. The earlier work include Kligerman and Stoyenko’s Real-time Euclid [35],

Shaw and Park’s timing schema [66, 58], and Puschner and Koza’s study [61] on the

calculation of WCET and its decidability issue. In the early time WCET analysis was

targeted towards simple hardware, on which the timing of an instruction is constant,

thus no need for microachitecture modeling; and if no much optimization is done

by the compiler, working on the source program would be sufficient. However, with

the advent of modern processors which employ aggressive performance enhancement

features, it is not a feasible option anymore for not doing microarchitecture modeling

and WCET calculation is usually carried out on the compiled code.

In the rest of this section, we review the literature on three topics: program path

analysis, microarchitecture modeling, and WCET calculation. They correspond to

the three sub-problems for WCET analysis introduced in Chapter 1. Since WCET

calculation is directly connected to the aim of the analysis (the WCET of the pro-

gram) and the other two sub-problems are performed to enable and improve WCET

calculation, our review will first cover WCET calculation methods, then the rest two

topics.

3.1 WCET Calculation

There are primarily three WCET calculation methods: timing schema, path-based

calculation, and Implicit Path Enumeration Technique (IPET).

30

���������	
�������
������
���

����������
�����������������

��������������������

�����������������	 �
�����

������������� �
�����

���������������� ���

!����������������� �
�����

"���#

Figure 3.1: An Example of Infeasible Paths (by Healy and Whalley)

Timing Schema. Shaw and Park [66, 58, 57] proposed a tree-based approach called

timing schema. It determines the execution times of program constructs with a

bottom-up traversal of the syntax tree. Once the times of lower level constructs

have been obtained, the time of the higher level construct containing them can be

estimated. The advantage of this approach is that it is very efficient. However,

the local estimation in timing schema cannot account for infeasible paths which are

defined by constraints across multiple constructs. Consider the example in Figure 3.1

(which is from [27]). Clearly, the statements on Line 4 and 7 are mutually exclusive

and any paths across the two statements in the same iteration are infeasible ones.

Timing schema estimates the costs of the two if statements separately, with the

executions of both the two statements on Line 4 and 7 being assumed true. Thus the

estimated worst case for this example will arise from an infeasible path.

Timing schema has been adopted and extended by some other researchers [10, 11,

31, 44, 45, 46]. Lim et al. [44, 45] and Hur et al. [31] have used it for WCET analysis

on RISC processors. In their work, they used new data structures and replaced some

of the operations in the original timing schema with operations which work on these

data structures. Their revised timing schema can better account for timing effects of

the pipelines and the caches. Colin and Puaut [10, 11] have recognized the importance

31

of loop nestings for tight WCET estimates. In their work, a construct is estimated

under the context of its different loop nestings. Because of this, the result for a

construct i is a set of touples < wceti, ln levelj > instead of a single wceti, where

ln levelj is a loop level in which the construct can be located. They have developed

a static analysis tool named Heptane 1.

Path-based Calculation. To better exploit the correlations of different program

parts. Some researchers work on program paths for WCET Calculation [3, 24, 27, 28,

49, 68]. Arnold et al. [3] and Healy et al. [24, 27, 28] search the longest loop paths2

in each loop-nesting level. Infeasible loop paths found by program path analysis are

disregarded (e.g., paths go through both Line 4 and 7 in the program in Figure 3.1).

Furthermore, the longest loop path may only execute a limited number/range of

iterations. In that case, the search continues on finding the next longest path as well

as the iterations in which it can execute. This process terminates when all iterations

are exhausted. Then, the cost of the loop can be calculated by summing up the terms

of the longest paths weighted by their costs. This path-based calculation traverses the

program hierarchically, such that when the cost of an outer loop is under calculation,

the costs of its inner loops are available for use.

Stappert et al. [68] developed another path-based WCET calculation method.

They construct a scope graph – a hierarchical representation of the program. The

longest paths are searched for the scopes. To simplify the work, each scope may be

expanded into some virtual scopes, where the iterations are covered by the same set

of flow facts (flow information derived from programm path analysis). They then

search the longest path in each virtual scope. If the longest path is an infeasible

one, it is discarded and the search continues. Unlike the first path-based calculation,

1http://www.irisa.fr/aces/work/heptane-demo/heptane.html
2A loop path is a control-flow connected sequence of blocks in a loop which starts with the loop

header and terminates at a block with a transition either to the loop head or out of the loop.

32

each virtual scope has a unique longest path applicable to all iterations of the virtual

scope. Thus the cost of a virtual scope is simply the cost of the longest path times

the scope iterations. The WCET of the program can be calculated via a bottom-up

traversal of the scope graph.

Lundqvist and Stenström [49] used cycle-level symbolic simulation technique for

WCET calculation. Symbolic simulation needs to handle two problems: unknown

data values in data-manipulating instructions and unknown conditions in conditional

branches. In the later case, both paths of the branch need to be simulated. Since the

number of feasible paths across the entire program can be substantial, to reduce the

paths maintained for simulation, they apply path merging, which is typically carried

out at the beginning of each loop iteration. The path merging should guarantee that

the execution following the merged path will not lead to a time lower than what

an execution following any of the pre-merged paths can do. Symbolic simulation

can exclude some infeasible paths. For example, if the branch condition evaluated is

known, the false path will not be simulated.

IPET. Li and Malik [40] proposed a technique which considers all paths implic-

itly by using integer linear programming (ILP). Suppose the cost of each basic block

Bi, denoted as costi, is known, and let its execution count be denoted as vi, then

the execution time of a complete program with N basic blocks can be expressed as∑N
i=1 costi ∗ vi. Then the rest of the task is to maximize the value of this function

over all valid combinations of the execution counts. The value of the execution count

vi can take is bounded by the control flow of the program as well as some extra flow

information derived from program path analysis or observed by user. The path enu-

meration is implicit in the sense that each combination of execution counts actually

captures a set of program paths which have the same execution counts for the cor-

responding basic blocks, but the orders in which the basic blocks are executed are

33

different. An example illustrating this is given in Figure 2.9 in the overview chap-

ter. This approach (IPET) differs from the path-based approaches in the following

aspects. First, the paths (implicitly enumerated) in IPET are entire program paths

whereas the paths in most of the path-based approaches are segments of program

paths, e.g., paths within loops. Second, IPET considers a set of paths having the

same combination of execution counts whereas path-based approaches considers a

single path during the longest path search. Last, a path in IPET does not contain

temporal information (the order in which basic block are executed) whereas a path in

path-based approaches specifies a deterministic execution order for the basic blocks

on the path. Note that both approaches can have some optimizations to speed up the

search for the longest path. For example, in a path-based approach, Dijkstra’s algo-

rithm for longest-path search can be used to more efficiently find the longest path in

a loop or a scope [13]; in IPET, the ILP solver can employ very aggressive algorithms

to explore the relationships between different combinations of execution counts (refer

to [65, 69] for more details).

Because of its simplicity and efficiency for path enumeration, the availability of

powerful ILP solvers and a potential for a closer integration with microarchitecture

modeling (will be explained later), the IPET approach has been adopted by some

other researchers including us for WCET calculation [8, 37, 54, 70, 71, 38, 39].

3.2 Microarchitecture Modeling

Microarchitectural features, especially pipelining and caching, have caught a lot of

attention for accurate WCET analysis. We review the various microarchitecture

modeling techniques in this section.

Extended timing schema. Researchers at Seoul National University [31, 44, 45,

46] proposed a technique for modeling RISC processors. They extended timing schema

34

to account for pipeline and cache effects. In their work, the time-bound for a pro-

gram construct in the original timing schema is replaced by a data structure called

worst case timing abstraction (WCTA). It contains a set of elements, each of which

corresponds to a possible worst case path in the program construct. An element in

a WCTA consists of a time-bound for its respective path and a reservation table,

which captures the use of pipeline stages and instruction interactions. When two ad-

jacent constructs are concatenated, path concatenation is realized by concatenating

the reservation tables in the two constructs, where interactions between instructions

across construct borders are modeled. After concatenation, a prune operation may

discard some concatenated reservation tables which can not be the worst case.

To model instruction cache effects, they divide memory accesses in a path of a

construct into three groups: first/last/other references to the cache lines. Cache

hits/misses of the first references need to be resolved with execution information

preceding the path and the last references are needed by paths succeeding it, thus they

are remembered by augmenting the WCTA. When concatenating two paths across

program constructs, the last references are used to resolve some of the hits/misses in

the first references in the later path, and the first/last references of the concatenated

path will be computed from the first/last references of the two concatenating paths.

Their treatment to the combination of the two analyses is simple: just superimpose

cache miss penalties to the execution time obtained from the pipeline analysis, where

instruction cache effects were not considered.

Flow analysis technique. The approach proposed by researchers at Florida State

University [3, 24, 28] is based on flow analysis techniques found in optimizing com-

pilers. The target architecture includes pipelines and instruction caches. They first

perform instruction cache analysis by using a static cache simulator [55, 56]. The

simulator analyzes the program control flow and categorizes instructions into four

35

classes: always hit, always miss, first hit, and first miss. The categorization infor-

mation is associated with loop levels. For example, an instruction I categorized as

always miss for an outer loop L1 might be categorized as first miss for an inner loop

L2. This is to more accurately account for cache behaviors and the WCET.

Next, they perform pipeline analysis by using the cache category information. This

work consists of two steps. First, they perform pipeline analysis for loop paths. To

model the pipeline behavior, the key point is to model its structural hazards and data

hazards. They use two data structures for this purpose. The structural/data hazards

information stored in each path will be used by the path concatenation algorithm.

Next, they perform loop analysis to predict the worst case execution time of a loop.

To avoid the complexity of calculating all combinations of paths, they union the

pipeline effects of the paths for a single iteration of a loop. The union operation

should guarantee conservativeness for safe WCET of the loop.

Last, the timing analyzer predicts the WCET of the program by using the worst

case execution times of the code segments containing loops, function calls etc. Like

timing schema, this is done in a bottom-up manner.

Abstract Interpretation Researchers at Saarland University [22, 71] used abstract

interpretation [14] for instruction cache analysis. The analysis consists of two steps.

The first step is to collect abstract cache states at program points. Intuitively, in an

abstract cache state, each cache line contains a set of memory blocks. They define

two functions: an abstract cache update function, which specifies how an abstract

cache state is updated by a cache access; and a join function, which combines two or

more abstract cache states at program joins. By traversing the program flow, abstract

cache states are updated and joined. In the second stage, the abstract cache states

are used to categorize memory references into four categories: always hit, always miss,

persistent and not classified. The category information will be used for subsequent

36

analysis where cache information is needed.

They have also used abstract interpretation for pipeline analysis [64]. They first

introduce concrete pipeline semantics to model the pipeline behavior and capture

pipeline hazards (structural and data). Instruction executions on the pipeline are

described by updates of concrete pipeline states. A concrete pipeline state describes

the occupancy of the pipeline stages by instructions, resource allocations and states of

some other resources. Based on the concrete pipeline semantics, they build abstract

pipeline semantics, in which an abstract pipeline state is a set of concrete pipeline

states. Update on an abstract pipeline state is realized by updating each of the

contained concrete pipeline states. In some cases, if the update involves some non-

deterministic events (e.g., a load with unknown address), one concrete pipeline state

is split into multiple successor states. If a successor state cannot be determined as

impossible to be the worst case, it has to be kept in the new abstract state. They

claim that in general the number of concrete states in an abstract state is small,

therefore operations on abstract pipeline states are efficient.

In recent years, they have targeted their work to real-life modern processors.

Langenbach et al. [36] modeled Motorola ColdFire-5307, and Heckmann et al. [29]

modeled PowerPC-755, an out-of-order processor.

Integer linear programming. Li et al. [41, 42, 43] used integer linear program-

ming (ILP) for instruction cache modeling and combined it with their ILP-based

WCET calculation method. In their work, the cache behavior is modeled by a set of

graphs called Cache Conflict Graphs (CCG) for a directly mapped instruction cache.

The CCG models flow transfer information among memory blocks3 mapping to the

same cache line. Cache misses are captured as flow transfer between conflicting mem-

ory blocks. Variables and linear constraints are generated from the CCGs and are

3a sequence of instructions in a basic block which map to the same cache line

37

incorporated into the existing ILP problem. This way, the modeling of cache behavior

is tightly coupled with the modeling of program flow. For set associative instruction

caches, an extra set of graphs called Cache State Transition Graphs (CSTG) are

introduced to model their more complicated behaviors. This ILP-based instruction

cache modeling, due to its ability of using more detailed flow information, achieves

good accuracies. On the other hand, its tight integration with WCET calculation

results in an increase in analysis time, especially for set associative caches.

Symbolic simulation Lundqvist and Stenström [49] used cycle-level symbolic sim-

ulation technique for WCET calculation. Microarchitectural features such as caching

and pipelining are modeled during the symbolic execution. The instruction cache

state in the simulation is updated along an execution path and cache states from

multiple paths are merged at a path join. Each cache line in the cache state contains

either a block of program instructions or invalid content (for direct mapped cache).

They have two merge strategies: pessimistic merge and optimistic merge. With the

pessimistic merge, if the contents of the respective cache lines from two different paths

are different, invalid content is assumed for the cache line in the merged cache state.

Optimistic merge is based on the idea that if it is known in advance that one partial

path does not belong to the worst case path, the cache state of this path is simply

ignored by the path merge. In their work, they predict the worst case penalty and

best case penalty that the cache state of each path can incur. For two partial paths

P1 and P2, if the cost of P1 plus its worst case penalty is less than the cost of P2 plus

the best case penalty of P2, then P1’s cache state will be ignored in the merge. For

pipeline modeling, they use pipeline reservation tables to maintain the pipeline state.

A reservation table record when each resource (pipeline stages or register) is released.

With the reservation tables, pipeline hazards (structural and data) can be captured.

During the simulation, the reservation table can be updated for each instruction at

38

a time. For the path merge, the pipeline reservation tables are merged following the

same strategy of cache states merge. The accuracy of this approach depends on how

many infeasible paths can be identified during simulation and how many path merges

can be applied with the optimistic merge.

Other techniques There are some other techniques on the modeling of pipelines

and instruction caches. There are also some work on the modeling of other microar-

chitecture features such as branch prediction, data caching, prefetching etc.

Engblom [16] provides a comprehensive study of various pipelines for WCET

analysis in his doctoral dissertation. His work for pipeline modeling is based on a

concept called timing effects, which reflect the impact of an earlier instruction on sub-

sequent instructions. Formally, given two consecutive instructions I1 and I2, let their

isolated execution times be T (I1) and T (I2) respectively, and let their combined exe-

cution time be T (I1I2), the timing effect is defined as δI1I2 = T (I1I2)−(T (I1)+T (I2)).

Due to pipeline overlap, δI1I2 is often negative and the timing effect is called negative

timing effect. The concept of timing effect can be extended to a sequence of more

than two instructions. A timing effect related to a long instruction sequence is called

long timing effect. If long timing effects are absent or insignificant on a pipeline, then

the execution time of an instruction sequence can be obtained by doing simulation

on its short sub-sequences; otherwise, one either performs extensive simulations on

both its short and long sub-sequences to get a tight estimate or trades accuracy for

performance by ignoring the long time effects. Note a time effect can only be ignored

if it is negative. Ignoring positive timing effects results in underestimation. There-

fore, positive long timing effects pose a problem for this approach. Unfortunately, it

has been observed in his dissertation that out-of-order pipelines exercise positive long

timing effects.

39

Branch prediction started getting attention in recent years. Compared to instruc-

tion caching, dynamic branch prediction [51, 73] is more difficult to model as similar

regular properties for instruction caching do not exist in dynamic branch prediction

schemes. For instance, for some inner loops which can be completely accommodated

by the cache, the accesses except for the first time to an instruction will always be hits

as long as the execution is repeated within the loop. This spatial locality has been

exploited by some techniques which differentiate instruction executions with respect

to their execution contexts such as loop levels and function calls ([3, 24, 28] and the

VIVU approach in [22, 71]). In contrast, spatial locality is not obvious or does not ex-

ist for dynamic branch prediction schemes. For example, a conditional branch which

is repeatedly executed in an inner loop may disturb itself by changing its direction

each time and making itself wrongly predicted. As a result, branch prediction mod-

eling is expected to take more effort. The difficulties for branch prediction modeling

have been discussed by Engblom [17].

To our knowledge, the first detailed branch prediction analysis for WCET was

performed by Colin and Puaut [9]. They modeled the Branch Target Buffer (BTB),

which can be found in a Intel Pentium processor. With the BTB scheme, a branch is

either predicted according to its history in the BTB or is predicted as not taken if it

is absent from the BTB. In their work, the evolution of the BTB state with program

flow is studied and information is collected along with the evolution. Next, with the

collected information, branch instructions are classified according to whether they are

predicted by their history or by default. The classification is connected with correct

predictions/mispredictions in the following way. Since their WCET calculation is

based on timing schema, the worst case path taken in a construct is always the

same path across different iterations, thereby a branch instruction always takes the

same direction on the worst case execution path of the program. Thus, for a branch

predicted by its history, the prediction is correct. For a branch predicted by default,

40

depending on its direction in the worst case path, it can be statically determined

whether it is correctly predicted or mispredicted. Only for a branch whose source

of prediction (by history or by default) is unknown, its prediction is assumed to be

mispredicted for the sake of conservativeness. This way, the timing effects of branch

predictions can be accounted for WCET analysis. It needs to be pointed out that

above disposition takes a simplified view of their work. In fact, due to their extension

to the original timing schema, the worst case path of a construct and the direction of

a branch in it may not be globally unique, rather they are unique only in a specific

loop level. But the rationale behind remains unchanged.

Another work on branch prediction analysis is by Bate and Reutemann [4]. They

modeled bimodal branch predictors. Like Colin and Puaut [9], they tried to classify

branch instructions. The difference is that their classification is based on semantic

context of a branch, rather than using dynamic execution.

Comparison In this part, we compare the various modeling techniques (including

ours).

As for instruction cache analysis, the flow analysis approach and the abstract in-

terpretation approach perform it before WCET calculation; while in the extended

timing schema, integer linear programming and symbolic simulation approaches, in-

struction cache analysis is integrated with WCET calculation. Integrated approaches

have the potential of achieving more accurate results as more program path infor-

mation can be used for cache analysis, but it may have a higher computation cost.

For example, when the ILP approach is used for modeling set associative instruction

caches, very long computation time has been observed. For separated approaches, the

analysis results are general and conservative enough to be applicable to all possible

program paths or to one of a few sets of program paths (when execution context

information is imposed, e.g., loop levels and function calls). This can be viewed as

41

trading accuracy for performance. However, due to its locality, instruction caching

can still be modeled with good accuracy by separated approaches if execution context

information such as loop levels is used to distinguish the accesses of an instruction.

As for pipeline analysis, we compare our work with the various approaches. We

model an out-of-order pipeline [39] where an instruction can be executed in variable

latencies. For such a pipeline, considering only one latency for each instruction such

as the longest one would be unsafe [50]. In contrast, most of the surveyed pipeline

analysis approaches are only applicable to in-order pipelines. In addition, they assume

that an instruction executes with a single latency or implicitly take the longest latency

for estimation. Recently, the abstract interpretation approach has been applied to

out-of-order pipelines [29]. However, as mentioned earlier, the issue is that the pipeline

states are updated against each possible latency when a variable-latency instruction

is encountered, leading to an accumulation of pipeline states along the estimation

process. In case the sequence of instructions to be estimated is not very short and

the pipeline is complex, this approach can result in state space explosion [72]. Our

approach avoids enumerating the individual execution latencies of an instruction by

using an interval to represent the latencies, and it employs an efficient fixed-point

algorithm to iteratively tighten the intervals. Another advantage of our approach is

its convenience for integrating with the analyses of other microarchitectural features.

For example, it can either be integrated with an instruction cache analysis where

cache accesses are classified as hits or misses before pipeline analysis is carried out, or

be integrated with an ILP-based instruction cache analysis, where cache hits/misses

are figured out during WCET calculation (in this thesis, we use the later approach).

In contrast, most of the surveyed approaches have not demonstrated such a flexibility.

42

3.3 Program Path Analysis

Program path analysis studies a number of topics including automatic flow analysis for

infeasible path detection and loop bounding, path annotation methods, source-code

level to compiled-code level flow information translation, interaction with optimiza-

tion compilers etc. Substantial research work has been done in this area.

Automatic flow analysis. Feasible/infeaisble path information is either manually

provided or is explored automatically by flow analysis. The later approach has been

investigated by many researchers.

Altenbernd [2] proposed a method to exclude false paths during the search for

the worst case execution path. His work is a combination of path enumeration with

pruning and symbolic execution. He used branch-and-bound algorithm to perform

the actual path search in the control flow graph.

Ermedahl and Gustafsson [20] used symbolic execution to discover false paths

and loop bounds. They work on abstract semantics of programs. The key concept

is an environment σh
i , which captures the abstract values (split integer intervals)

of variables at a program point i following a specific path h. Rules updating the

environments at program points are generated based on program semantics. If a

variable’s abstract value in σh
i is ⊥, which means empty value, then the path h to i

is an infeasible one.

Lundqvist and Stenström [49] used cycle-level symbolic simulation for WCET

calculation as well as infeasible path detection. In their work, the domain of variable

values is extended with an extra value called unknown. When a conditional branch

is reached and the value of the condition variable is not unknown, then the execution

goes along one path and the execution along the other path is an infeasible one, which

is simply not simulated. In case the condition value is an unknown, both paths need

to be simulated.

43

Liu and Gomez [47, 48] proposed another technique using symbolic evaluation

on partially known input structures. They work on the source-language level. In

contrast to the earlier symbolic execution based techniques, they do not merge paths

from loops. This reduces nondeterminism due to path merge but raises concerns on

time and space complexity. They apply some program language transformations such

as incremental computation and transformation of conditionals to make the analysis

more efficient. In their experiments they observed that the analysis is still feasible

for for inputs sizes in the thousands.

Above symbolic execution based methods need to iterate through the loops many

times, which could be inefficient. Healy et al. [25, 26] implemented techniques to au-

tomatically determine the minimum/maximum number of iterations for loops. They

do so by (1) identifying conditional branches within the loop that can affect the num-

ber of of loop iterations, (2) calculating the range of iterations these branches can

be reached, and (3) calculating the minimum/maximum number of iterations with

the information computed in (2). In another work [27], they developed techniques

for automatic detection of branch constraints. They do so by analyzing the effect

of a variable assignment on a branch and the correlation between the outcomes of

different branches. The fall through or taken frequency of a branch in a loop may also

be calculated by using value range analysis on loop induction variables. The branch

constraints will be used in the subsequent analyses to exclude infeasible paths.

Ferdinand et al. [21] used abstract interpretation to detect infeasible paths. They

call it value analysis, which computes for each processor register an interval of possible

values. If at a conditional branch, the value interval for the branch condition indicates

a deterministic direction, then the path along the other direction is an infeasible one.

Annotation methods. To make use of the feasible/infeasible path information,

there should be methods to describe it.

44

Puschner and Koza [61] proposed a language called MARS-C. They use constructs

like scopes, markers, and loop sequences to describe feasible/infeasible paths.

Park [57] developed a script language called IDL (information description lan-

guage), which is subsequently translated into regular expressions. IDL can capture

some frequent path relationships such as that a statement is executed a certain num-

ber of times, or that two statements are always executed together or they are mutually

exclusive. The major problem is that manipulations on regular expressions, e.g., in-

tersection of two regular expressions, are difficult.

Li and Malik [40] used linear constraints to specify the flow information, which

they called functional constraints. Functional constraints can be used to give loop

bounds, and relationship of execution counts among multiple basic blocks. They have

shown that every IDL information clause in [57] can be transformed into functional

constraints.

Colin and Puaut [9] proposed an annotating method for loops with variant number

of iterations. They used couples of mathematical expressions instead of constants for

inner loops whose iteration numbers are dependent on counter variables of outer loops.

For example, [maxiter, counter] is such a loop bound, where maxiter is the maximum

number of iterations and counter is the loop counter value, both are mathematical

expressions. These expressions are symbolically evaluated by Maple [7]. By using

this annotating method, they have achieved significant accuracy improvement for

programs having inner loops with variant number of iterations.

Engblom and Ermedahl [18] defined a language called flow facts language to de-

scribe complex flow information. They define flow facts for scopes, which are program

segments under some execution context, e.g., a loop or a function call reached from

a path. A flow fact consists of three parts: the name of a scope, a context specifier,

which typically gives the iterations of the scope, and a constraint expression specify-

ing the flow information. For example, a flow fact foo: [1..10] : XA ≤ 2 specifies that

45

a block A in the scope foo cannot execute more than twice in the first ten iterations

of the scope. Depending on the WCET calculation method being used, not all flow

facts can be accurately transformed to path information that can be used for that

WCET calculation.

Translation and compiler support. Program path information is often provided

on the source-program level, but WCET analysis is usually on the compiled-code level.

Thus a translation of the annotations from source-program level to the compiled-code

level is necessary. This is a non-trivial problem because optimizing compilers perform

a lot of code transformations, which makes the mapping between source program

constructs to instructions/basic blocks in the compiled code difficult.

Puschner [62] described a mapping function to translate path information on the

source level to the assembly level. It assumes that the programs are compiled with

moderate optimization. The mapping function traverses the parse tree of the source

program. In each step down the tree it tries to find the corresponding assembly

code by using information about the nesting of constructs, line numbers etc. in the

assembly code. If the mapping fails on a construct, it outputs a warning.

Engblom et al. [19] proposed an approach called co-transformation for supporting

the mapping of execution information from source program to compiled code. They

defined a language called Optimization Description Language (ODL) to characterize

what typical optimizations do. The co-transformation engine can be generated from

the ODL source. To apply their work, the compiler needs to be modified slightly to tell

the transformer what kind of optimizations have been done. As long as the optimiza-

tion types performed by the compiler are described by ODL, the co-transformation

can map the source code constructs to compiled code segments.

Kirner and Puschner [33, 34] developed another transformation method that is in-

tegrated into the compiler. The path information is transformed through all compiler

46

stages. Therefore substantial effort is needed to extend the existing compiler, but is

paid by the ability to supporting strong code optimizations for WCET analysis.

Summary Above discussion covers several issues on program path analysis, which

address the problem of providing program path information for WCET calculation

from different aspects. More accurate program path information is essential for tight

WCET estimates. On the other hand, automated path information derivation tech-

niques and integration with compilers will facilitate WCET analysis and promote its

application. In this thesis, we focus on microarchitecture modeling and do not explore

new program path analysis methods. The existing techniques can be integrated with

our work and this will be part of our future work.

47

CHAPTER IV

OUT-OF-ORDER PIPELINE ANALYSIS

Our aim in this chapter is to obtain a safe and tight WCET estimate for out-of-

order pipelined execution without enumerating possible instruction schedules. Our

technique is inspired by an iterative performance analysis technique for real-time

distributed systems proposed by Yen and Wolf [74], which estimates the execution

time of tasks with data dependencies and resource contentions. For estimating the

WCET of a basic block, we exploit and augment their technique by treating individual

instructions as tasks. Clearly, there are data dependencies between instructions in

a program; resource contention is defined in terms of two instructions requiring the

same functional unit. We then extend our solution for estimating the WCET of a

basic block to arbitrary programs with complex control flows. This extension involves

several steps. First, we apply the timing estimation technique to each basic block.

Next, we bound the timing effects of instructions preceding or succeeding a basic

block. Finally, Integer Linear Programming (ILP) technique is employed on the

control flow graph to estimate the WCET of the entire program.

The rest of this chapter is organized as follows. In the next section we discuss the

difficulties of out-of-order pipeline analysis and present an overview of our approach

for addressing them. In Section 4.2 we present the analysis technique in two steps: in

the first step, we develop the core algorithms for the execution of a basic block without

considering its execution context; and in the next step we extend the algorithms to

handle the issues related to the execution context of a basic block. In Section 4.3 we

experimentally validate the analysis technique. The concluding remarks for out-of-

order pipeline analysis appear in Section 4.4.

48

4.1 Background

4.1.1 Out-of-Order Execution

Modern processors such as the one presented in Section 2.2 employ out-of-order ex-

ecution where the instructions can be scheduled for execution in an order different

from the original program order. In such a processor, an instruction can execute if

its operands are ready and the corresponding functional unit is available, irrespective

of whether earlier instructions have started execution or not. Out-of-order execution

improves processor’s performance significantly as it replaces pipeline stalls (due to

dependencies and/or resource contentions) with useful computations. However, the

out-of-order execution exhibits a phenomenon called timing anomaly 1, which makes

WCET analysis difficult.

4.1.2 Timing Anomaly

The problem of timing anomaly was originally discussed by Lundqvist and Stenström

[50]. Let us consider an instruction I with two possible latencies lmin and lmax such

that lmax > lmin. The variation of latency could due to different reasons: cache

hit/miss for a load instruction, variable number of cycles taken by an arithmetic in-

struction like multiplication etc. Let us assume that the execution time of a sequence

of instructions containing I is gmax (gmin) if I incurs a latency of lmax (lmin). The la-

tencies of the other instructions in the sequence are fixed. A timing anomaly happens

if either (gmax − gmin) < 0 or (gmax − gmin) > (lmax − lmin).

Figure 4.1 illustrates timing anomaly with an example. In the code fragment,

instruction B depends on A, instruction C depends on B, and instruction E depends

on D. Instructions A and E use the MULTU functional unit with latency of 1 ∼ 4

cycles and the other instructions use the single cycle ALU functional unit.

1It has been observed by Langenbach et al. [36] that timing anomaly can also happen to some
in-order processors such as Motorola ColdFire 5307 where a unified cache for instruction/data is
employed.

49

0 1 2 3 5 6 7 8 9 104
Instruction

A mult r3 r1 r2
B add r3 r3 8
C and r3 r3 0xff
D addu r5 r4 8
E mult r5 r5 r6

MULTU

ALU B C

A E

MULTU

ALU D

D

A

B C

E

(c) Instruction A executes 3 cycles

0 1 2 3 5 6 7 8 9 104

(a) Instruction sequence

MULTU 1 ~ 4 cycles
ALU 1 cycle

(d) Instruction A executes 4 cycles(b) Latencies

Figure 4.1: Timing Anomaly due to Variable-Latency Instructions

We illustrate two possible execution scenarios. In the first scenario illustrated in

Figure 4.1(c), instruction A executes for three cycles – cycles 0 − 2. Since A starts

executing at cycle 0, it is ready for execution at cycle 0 or earlier. Therefore at

the beginning of cycle 3, all of B, C, D are ready for execution; all of them are

contending for the ALU. Thus, instructions B and C execute on cycles 3 and 4,

respectively. Instruction D is ready for execution in cycle 3 itself, but it can only be

scheduled for execution in cycle 5 after B and C (which appear earlier in program

order). The overall execution time in this case is 10 cycles. In the second scenario

as illustrated in Figure 4.1(d), A executes for four cycles. Now D is the only ready

instruction in cycle 3 (B and C are still waiting for their operands); D executes in

clock cycle 3 allowing E to start execution in clock cycle 4. The overall execution

time in this case is only eight cycles. Thus, a longer latency of A results in a shorter

overall execution time.

In the presence of timing anomaly, techniques which generally take the local worst

case for WCET estimation no longer guarantee safe bounds. For example, it is not

50

safe to assume that the worst case cache behavior of a sequence of instructions results

from a cache miss in all the instructions. For the same reason, it is not safe to assume

the longest latency for variable-latency arithmetic instructions will lead to the overall

WCET of a program. This prompts the need to consider all possible schedules of

instructions. For a piece of code with N instructions and each of which has K possible

latencies, a naive approach, which examines each possible schedule individually, will

have to consider KN schedules. We now explain the basic idea behind our approach

which allows us to avoid such expensive enumeration.

4.1.3 Overview of the Pipeline Modeling

Given the control flow graph of a program, our WCET analysis method first derives

a WCET estimate for each basic block. Then the basic block estimates are combined

using Integer Linear Programming (ILP) to produce the program’s WCET estimate

(refer to Equation 2.1).

How do we find the WCET estimate for a basic block Bi? This is done by first

considering the basic block’s execution in isolation, that is, starting with an empty

pipeline. We find the WCET estimate without enumerating instruction schedules as

follows. We observe that the worst-case timing behavior of Bi occurs from maximum

resource contention among instructions in Bi, that is, each instruction being delayed

by maximum number of other instructions. We produce very coarse estimates for

the time interval at which instructions in Bi can start/finish execution by initially

assuming that any instruction in Bi can delay the others, except the contentions ruled

out by data dependencies. The estimates allow us to rule out certain contentions –

if the earliest time instruction I is ready for execution occurs after the latest time

at which I ′ finishes, clearly I cannot delay I ′. This allows us to further refine the

estimates, thereby ruling out more contentions. The process continues until a fixed

point is reached. The WCET of the basic block Bi (where Bi’s execution starts with

51

an empty pipeline) is the maximum time between the fetch of Bi’s first instruction

and commit of Bi’s last instruction.

Given the execution time estimate of Bi’s execution starting with an empty

pipeline, how do we find costi, block Bi’s WCET estimate? We observe that the

number of instructions before and after Bi which can affect the timing of Bi’s exe-

cution is bounded by architectural parameters. Accordingly, we extend our timing

estimation technique to operate on basic block with a prologue/epilogue (instructions

before/after Bi which directly affect the timing of Bi). Time intervals for execution of

instructions in prologue/epilogue are estimated conservatively by assuming maximum

possible contentions. We also consider (a) the data dependencies between instructions

in prologue and instructions in Bi, and (b) possible time overlap between instructions

in Bi and instructions prior to Bi. In this way, we find the timing estimate of basic

block Bi for all possible choices of prologue and epilogues. The maximum of these

estimates is costi, the estimated WCET of Bi.

In the preceding, we have given an overview of our modeling technique which

captures the timing effects of out-of-order pipelines. The technical details of this

modeling will be presented in the following sections.

4.2 The Analysis

Our analysis technique is presented in two steps. First, we estimate the execution

time of a basic block in isolation by assuming an empty pipeline at the beginning.

Next, we extend the technique by taking into account the possible initial pipeline

states and context instructions before/after the basic block.

4.2.1 Estimation for a Basic Block without Context

Our effort in this section is to develop an algorithm for estimating the WCET of

a basic block executing on the out-of-order processor pipeline presented in Section

52

2.2. Instructions in a basic block are executed sequentially, that is, there is no non-

determinism in terms of control flow transfer. The main advantage of our approach

is that explicit enumeration of possible instruction schedules is avoided. Thus the

estimation is both time and space efficient. The technical details are presented in the

following order. First, we formulate the problem as an execution graph, which cap-

tures data dependencies and resource contentions — the two major factors dictating

instruction executions. Next, based on the execution graph, we develop an algorithm

which starts with very coarse yet safe estimates, and iteratively refines the estimates

until a fixed point is reached.

Definition 4.1 (Execution Graph). The execution graph for a basic block B under

a pipeline model is defined as

GB = (VB, DEB)

where VB represents all possible combination of instruction identifiers and pipeline

stages for basic block B, and DEB ⊆ VB×VB represents a dependency relation among

nodes. For two nodes u, v ∈ VB, we say that (u, v) ∈ DEB iff v can start execution

only after u has completed execution; this is indicated by a solid directed edge from u

to v in the execution graph. Clearly (u, v) ∈ DEB ⇒ (v, u) 6∈ DEB.

Apart from the dependency relation among nodes in an execution graph (denoted

by solid edges), we also define a contention relation as follows. We do not make

the contention relation part of the execution graph so as to clearly identify what we

mean by “paths” in the exection graph; paths in the execution graph refer to chains

of dependency edges. This will be required in our analysis.

Definition 4.2 (Contention Relation). Let B be a basic block, and GB = (VB, DEB)

be its execution graph. We define a contention relation CEB ⊆ VB ×VB such that for

two nodes u, v ∈ VB, we say that (u, v) ∈ CEB iff

53

• nodes u and v denote the EX stages of two different instructions I and J re-

spectively, and

• instruction I and J can delay each other by contending for a functional unit.

Our definition of contention relation is symmetric, that is, (u, v) ∈ CEB ⇒ (v, u) ∈

CEB. We will often show the contention between u and v as an undirected dashed

edge in the execution graph.

We now explain the nodes, dependencies and contentions captured in an execu-

tion graph in details. This will also clarify how the dependency and the contention

relations can be computed.

Let CodeB = I1 . . . In represent the sequence of instructions in a basic block B.

Then each node v ∈ VB is represented by a tuple: an instruction identifier and a

pipeline stage denoted as stage(instruction id). For example, the node v = IF (Ii)

represents the fetch stage of the instruction Ii. If basic block B contains n instructions,

then |VB| = n×P where P is the number of stages in the pipeline. Each node in the

execution graph is associated with the latency of the corresponding pipeline stage. In

our processor pipeline, all pipeline stages except EX have single cycle latency.

Our definition of dependency edges includes dependencies due to resource con-

straints and pipelined execution in addition to traditional data dependencies. We

consider:

• Dependencies among pipeline stages of the same instruction. This is because

an instruction must proceed from the first stage to the last last stage in order,

for example, ID(Ii) must follow IF (Ii).

• Dependencies due to in-order execution in IF, ID, and CM pipeline stages.

That is, different instructions should proceed through these pipeline stages in

program order, for example, IF (Ii+1) can only start after IF (Ii).

54

• Dependencies due to resource constraints as in full I-buffer or ROB. For example,

assuming I-buffer has two entries, there will be no entry available for IF (Ii+2)

before the completion of ID(Ii) (which removes Ii from the I-buffer). Therefore,

there should be a dependency edge ID(Ii) → IF (Ii+2). Similarly, with a 4-entry

ROB, there should be a dependency edge CM(Ii) → ID(Ii+4) because CM(Ii)

frees up the entry occupied by Ii in the ROB. Note that we can draw these edges

as both the I-buffer and the ROB are allocated and freed in program order.

• Data dependencies among instructions. If instruction Ii produces a result that

is used by instruction Ij, then there should be a dependency edge WB(Ii) →

EX(Ij).

The above summarizes the dependencies; we now describe the contention rela-

tion among nodes in the execution graph of a basic block B. We define contention

relation CEB among the EX stages of different instructions utilizing the same FU

for execution. This is because contention can only happen in the EX stage with

our pipeline model. For two instructions Ii, Ij in basic block B (i 6= j) we define

(EX(Ii), EX(Ij)) ∈ CEB iff

1. instructions Ii and Ij utilize the same functional unit,

2. there is no path from EX(Ii) to EX(Ij) or from EX(Ij) to EX(Ii) in the

execution graph GB, and

3. |i− j| < ROB size

The second condition ensures that there is no dependency between the two nodes,

i.e., they can indeed contend for a functional unit. The final condition simply excludes

the possibility of two far-away nodes contending with each other. For example, if the

ROB has four entries then clearly instructions Ii and Ii+4 cannot coexist in the ROB.

Note that the contention between two instructions obeys the following rules.

55

• If two instructions contend for a functional unit in the same clock cycle, the

earlier instruction (according to program order) gets access to the functional

unit, and

• Once an instruction gets access to a functional unit, it runs to completion

without getting pre-empted.

Given two instructions Ii, Ij (where i < j, i.e. Ii appears earlier in program order)

contending for a functional unit, suppose Ij becomes ready earlier than Ii. This is

possible since Ii may be delayed due to data dependencies. Instruction Ij thus starts

executing ahead of Ii. Meanwhile Ii may receive its operands and get ready. However,

Ii now has to wait for the function unit to be free, that is, until Ij completes. This

is how instructions later in the program order can delay the execution of an earlier

instruction.

Figure 4.2 shows an example of execution graph. This graph is constructed from

a basic block with five instructions as shown in Figure 4.2(a). In Figure 4.2(b), the

edges WB(I1) → EX(I3), WB(I2) → EX(I5), and WB(I4) → EX(I5) reflect data

dependencies. The other solid edges capture dependencies due to the structure of the

pipeline and resource constraints. The dashed edges represent contention relations.

The contention relation between EX(I1) and EX(I4) implies: (a) if instructions I1

and I4 are both ready to execute and the functional unit MULTU is free, then EX(I1)

will be issued for execution as it is from an earlier instruction and thus has higher

priority; and (b) if EX(I4) has already started execution before EX(I1) is ready,

then EX(I4) will be allowed to complete and thereby delay EX(I1). Our execution

graph is similar to the dynamic dependency graph among instructions of Fields et al.

[23]. In their work, the dependency graph is obtained from a concrete simulation run,

that is, a trace of dynamic instructions. Therefore, the actual resource contentions

exercised in that particular run are known and the nodes are annotated with the

execution latency as well as the wait time for a functional unit. They study how

56

IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

IF(I2) ID(I2) EX(I2) WB(I2) CM(I2)

IF(I3) ID(I3) EX(I3) WB(I3) CM(I3)

IF(I4) ID(I4) EX(I4) WB(I4) CM(I4)

IF(I5) ID(I5) EX(I5) WB(I5) CM(I5)

I1: mult r6 r10 4
I2: mult r1 r10 r1
I3: sub r6 r6 r2
I4: mult r4 r8 r4
I5: add r1 r1 r4

(a) Code Example

(b) Execution Graph of the Code

Figure 4.2: A basic block and its execution graph. The solid edges represent depen-
dencies and the dashed edges represent contention relations.

57

much each instruction can be delayed (the slack) without increasing the execution

time of the run. Our execution graph is static and all possible resource contentions

between instructions are represented for the purposes of static analysis.

Problem Definition Let B be a basic block consisting of a sequence of instructions

CodeB = I1 . . . In and let GB = (VB, DEB) be its execution graph. Estimating the

WCET of B can be formulated as finding the maximum (latest) completion time of

the node CM(In) assuming that IF (I1) starts at time zero. Note that this problem

is not equivalent to finding the longest path from IF (I1) to CM(In) in the execution

graph (taking the maximum latency of each pipeline stage). The execution time of

a path in the execution graph is not a summation of the latencies of the individual

nodes because of two reasons.

• The total time spent in making the transition from ID(Ii) to EX(Ii) is depen-

dent on the contentions from other ready instructions.

• The initiation time of a node is computed as the max of the completion times

of its immediate predecessors in the execution graph. This models the effect of

dependencies, including data dependencies.

A Related Problem Given the problem formulated as an execution graph, we

propose an iterative algorithm to estimate the WCET of a sequence of instructions.

The basic structure of our algorithm is inspired by a performance analysis technique

for real-time distributed systems [74] which analyzes a system consisting of several

periodic tasks represented by task graphs. Each task consists of a partially ordered set

of processes, and each process has lower and upper bounds on its computation time.

The hardware architecture consists of a set of Processing Elements (PE) connected via

communication edges. Processes are allocated to the PEs and priorities are assigned

among the processes assigned to the same PE. A process P is scheduled to execute on

58

a processor E if (1) all of P ’s predecessors have completed execution, and (2) no higher

priority process in running on E. P can possibly preempt a lower priority process

to start execution; on the other hand, P may itself get preempted by higher priority

processes during its execution. The algorithm estimates the worst case completion

time of all the tasks.

The problem addressed by Yen and Wolf’s algorithm is similar to our analysis

problem in some key aspects. The similarities include the fact that the execution

graph in our problem is similar to the task graph considered in [74]; both these

graphs capture data dependencies between nodes. Furthermore there are resource

contentions between the nodes and contending nodes are assigned priorities. However,

there are some significant differences as well. First of all, [74] captures periodic tasks

whereas the instructions in our execution graph are not periodic. More importantly, in

[74] a higher priority process hp may delay a lower priority process lp by preemption;

but lp cannot delay hp. However, in our problem, it is possible for a lower priority

instruction (appearing later in program order) li to delay the execution of a higher

priority instruction hi. As there is no preemption, if li is executing when hi becomes

ready, then li is allowed to complete the execution and it delays the execution of

hi. Such differences make the computation of the response time of a node v – the

time when all of v’s predecessors have completed execution to the time v completes

execution – different in our problem.

Notations Before we discuss our WCET estimation method, we explain the no-

tations used in our estimation algorithm. In the following, u, v denote nodes in the

execution graph of the basic block B being analyzed.

• tready
v : Ready time of node v is defined as the time when all its predecessors

have completed execution.

• tstart
v : Start time of node v is defined as the time when it starts execution.

59

Except for nodes corresponding to EX stages, tstart
v = tready

v . A node EX(Ii)

may not be able to start execution when it becomes ready if another instruction

is using the corresponding functional unit, or some higher priority instructions

(earlier than Ii in program order) are also ready. Therefore, tstart
v ≥ tready

v .

• tfinish
v : Finish time of a node v is defined as the time when it completes execu-

tion. Pipeline stages other than EX need only one cycle to execute. Therefore,

tfinish
v = tstart

v + 1. For EX stage, we add the minimum (maximum) latency of

the functional unit to tstart
v when we compute its earliest (latest) finish time.

• separated[u, v]: If the executions of the two nodes u and v cannot overlap,

then separated[u, v] is assigned to true; otherwise, they might overlap and it is

assigned to false.

• instr id(v): The instruction id corresponding to a node v.

• early contenders(v): Contending instructions that appear earlier in program

order, i.e., the set of nodes u s.t. (u, v) ∈ CEB and instr id(u) < instr id(v).

Recall that that CEB denotes the contention relation among the nodes in the

execution graph of basic block B.

• late contenders(v): Contending instructions that appear later in program or-

der, i.e., the set of nodes u s.t. (u, v) ∈ CEB and instr id(u) > instr id(v).

• min latv, max latv: Minimum and maximum execution latencies of node v.

Summary of our method As mentioned earlier, our problem is not equivalent to

finding the longest path in the execution graph due to resource contentions and de-

pendencies. We account for the timing effects of the dependencies by using a modified

longest path algorithm that traverses the nodes in topologically sorted order. This

topological traversal ensures that when a node is visited, the completion times of all

60

its predecessors are known. To model the effect of resource contentions, we conserva-

tively estimate an upper bound on the delay due to contentions for a functional unit

by other instructions. A single pass of the modified longest path algorithm computes

loose bounds on the lifetime of each node. These bounds are used to identify nodes

with disjoint lifetimes. These nodes are not allowed to contend in the next pass of

the longest path search to get tighter bounds. These two steps repeat till either there

is no change in the bounds or a pre-defined number of iterations have elapsed.

separated[., .] = false; step = 0;1

foreach node v ∈ V do2

earliest[tstart
v] := 0; earliest[tfinish

v] := min latv;3

latest[tstart
v] := ∞; latest[tfinish

v] := ∞;

repeat4

LatestTimes(G); EarliestTimes(G);5

foreach u, v ∈ V do6

if earliest[tready
v] ≥ latest[tfinish

u] then7

separated[u, v] = true;

if earliest[tready
u] ≥ latest[tfinish

v] then8

separated[u, v] = true;

step := step + 1;9

until separated[., .] are unchanged or step > limit;

WCET = latest[tfinish
CM(In)]; /* In is the last instruction of the basic block */10

Algorithm 1: WCET Estimation for Execution Graph G = (V, DE)

Estimation Algorithm Algorithm 1 gives the outline for computing the WCET

given an execution graph G = (V, DE) corresponding to a basic block. The top

level algorithm iteratively performs two operations: timing bounds computation and

separations analysis. The first operation is done by LatestTimes and EarliestTimes,

which compute the upper and lower timing bounds of the nodes. The second opera-

tion is done by re-assigning the values of separated[u, v] for all nodes u, v. Basically,

we find out pairs of nodes (u, v) whose lifetimes are guaranteed to not overlap; for

these nodes we set separated[u, v] to true. How do we find out pairs of nodes with

61

latest[tready
IF (I1)] := 0; /* I1 is the first instruction of the basic block */1

foreach node v ∈ V in topologically sorted order do2

latest[tstart
v] := latest[tready

v];3

Slate := late contenders(v)
⋂

{u | ¬separated[u, v] ∧ earliest[tstart
u] <4

latest[tready
v]};

if Slate 6= φ then5

latest[tstart
v] :=6

min
(
maxu∈Slate

(
latest[tfinish

u]
)

, latest[tready
v] + max latv − 1

)
;

Searly := early contenders(v)
⋂

{u | ¬separated[u, v]} ;7

if Searly 6= φ then8

tmp :=9

min
(
maxu∈Searly

(
latest[tfinish

u]
)

, latest[tstart
v] + |Searly| ×max latv

)
;

latest[tstart
v] := max

(
tmp, latest[tstart

v]
)
;10

latest[tfinish
v] := latest[tstart

v] + max latv ;11

foreach immediate successor w of v do12

latest[tready
w] = max(latest[tready

w], latest[tfinish
v]);13

Algorithm 2: LatestTimes(G = (V, DE))

earliest[tready
IF (I1)] := 0; /* I1 is the first instruction of the basic block */1

foreach node v ∈ V in topologically sorted order do2

earliest[tstart
v] := earliest[tready

v];3

Slate := late contenders(v)
⋂

{u | ¬separated[u, v] ∧ latest[tstart
u] <4

earliest[tready
v] < earliest[tfinish

u]};
Searly := early contenders(v)

⋂
{u | ¬separated[u, v] ∧ latest[tstart

u] ≤5

earliest[tready
v] < earliest[tfinish

u]};
S := Slate

⋃
Searly;6

if S 6= φ then7

earliest[tstart
v] := max

(
maxu∈S

(
earliest[tfinish

u]
)

, earliest[tready
v]

)
;8

earliest[tfinish
v] := earliest[tstart

v] + min latv ;9

foreach immediate successor w of v do10

earliest[tready
w] = max(earliest[tready

w], earliest[tfinish
v]);11

Algorithm 3: EarliestTimes(G = (V, DE))

62

non-overlapping lifetimes? In our problem, given two nodes u and v in the execu-

tion graph, we simply set separated[u, v] to true if earliest[tready
u] ≥ latest[tfinish

v] or

earliest[tready
v] ≥ latest[tfinish

u].2 Thus, the tighter the time intervals obtained, the

more are the pairs of nodes that can be identified as separated. On the other hand,

the more the number of separated pairs identified, the tighter are the timing intervals

computed in subsequent iterations due to lesser number of competing nodes.

Algorithm 2 computes the latest ready, start, and finish times for each node of

the execution graph. The latest start time of node v, denoted as latest[tstart
v], is

computed according to (a) its latest ready time latest[tready
v] (which is obtained from

the latest finish times of its predecessors), and (b) its contenders. We first consider

the delay of v’s start time by contenders later in program order. Note that the start

time of node v can be delayed by at most one late contender. Obviously, a late

contender u ∈ late contenders(v) cannot delay v after v is ready (since v has higher

priority). Therefore, late contenders who do not satisfy the condition earliest[tstart
u] <

latest[tready
v] are excluded. We also exclude the contenders who have been identified

to be separated from v (i.e., whose lifetimes cannot overlap with v). The delay from

a late contender u is bounded by u’s latest finish time latest[tfinish
u]. In addition,

u cannot delay v by more than its maximum latency; thus, we have another bound

latest[tready
v] + max latv − 1 where max latu = max latv is the maximum latency of

the contended functional unit. The minimum of the two bounds is taken.

Apart from the delay due to late contenders of node v, we also need to estimate

the delay in v’s start time due to its early contenders. Note that the early contenders

appear before v in program order. So in the worst case, all of them, except those

proved to be separated from v (i.e., not overlapping with v’s lifetime), can contend

with v and delay its start time. This is captured on Lines 7–10 of Algorithm 2. First,

2There exist more sophisticated techniques for finding nodes with disjoint lifetimes in a graph
e.g. see [52]. In our experiments we found that our simplified approach for identifying separated
nodes substantially increases the efficiency of our WCET analysis.

63

it is obvious that the delay due to early contention cannot be beyond the time when

all contenders have completed execution, so

tstart
v ≤ max

u∈Searly

(
latest[tfinish

u]
)

On the other hand, the maximum delay is also bounded by |Searly| ×max latx where

each early contender executes for its maximum latency.

The latest finish time of v is obtained by simply adding the maximum latency of

the functional unit to latest[tstart
v] (Line 11). This is because an instruction cannot

get preempted once it has started execution on a functional unit. The immediate

successors of v get their latest ready times updated if v’s latest finish time is higher

than the current approximation of their latest ready times (Lines 12–13). In this way

the LatestTimes algorithm estimates the latest ready/start/finish times of each node

in the execution graph.

Similar to the algorithm LatestTimes, the EarliestTimes algorithm (see Algo-

rithm 3) computes the earliest ready, start, and finish times of all nodes in the exe-

cution graph. The main difference is that we allow a node u to contend and thereby

delay the earliest start time of a node v only if the contention can be guaranteed. A

formal proof for the correctness of the algorithms is given in Appendix A.1.

4.2.2 Estimation for a Basic Block with Context

In the last section, our technique for estimating the WCET of a basic block Bi is based

on the simplifying assumptions that execution of instructions outside Bi does not

interact with Bi’s execution and the initial pipeline state is empty. This is, however,

an unrealistic assumption. In this section, we extend our technique to consider the

instructions preceding and succeeding Bi.

The execution context of a basic block Bi is defined in terms of the instructions

that directly affect the timing of Bi’s execution. To model the execution time of a

basic block Bi, we need to consider (1) contentions and data dependencies among

64

CM(I-5)

IF(I-4) ID(I-4) EX(I-4) WB(I-4) CM(I-4)

IF(I-3) ID(I-3) EX(I-3) WB(I-3) CM(I-3)

IF(I-2) ID(I-2) EX(I-2) WB(I-2) CM(I-2)

IF(I-1) ID(I-1) EX(I-1) WB(I-1) CM(I-1)

(d) Execution Graph of the Code

IF(I0) ID(I0) EX(I0) WB(I0) CM(I0)

IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

prologue

body

WB(I-5)EX(I-5)ID(I-5)IF(I-5)

Figure 4.3: An Example Prologue

instructions prior to Bi and instructions in Bi, and (2) contentions between instruc-

tions in Bi and instructions after Bi
3. The instructions before (after) a basic block

Bi that directly affect the execution time of Bi constitute the contexts of Bi and are

called the prologue (epilogue) of Bi. For example, assuming a 2-entry I-buffer and a

4-entry ROB, at most (4+2)-1 = 5 instructions can be in the pipeline when Bi enters

the pipeline. Similarly, due to the 4-entry ROB, at most 4-1=3 instructions after Bi

can contend with instructions in Bi. Of course, a basic block Bi may have multiple

prologues and epilogues corresponding to the different paths along which Bi can be

entered or exited. To capture the effects of contexts, our analysis constructs execution

graphs corresponding to all possible combinations of prologues and epilogues. Each

execution graph consists of three parts: the prologue, the basic block itself (called the

body) and the epilogue.

3Here, we only consider contentions but not dependencies because data dependencies between Bi

and instructions after Bi cannot affect the execution time of Bi.

65

/* I1 is the first instruction in the basic block latest[tready
IF (I1)] := 0 */;

foreach node v ∈ prologue do1

shaded[v] := false;2

if paths(v, IF (I1)) 6= φ then3

shaded[v] := true;4

latest[tfinish
v] := −maxπ∈paths(v,IF (I1))

∑
x∈nodes(π) min latx; /* Equation 4.25

*/
latest[tstart

v] := latest[tfinish
v]−min latv; latest[tready

u] := latest[tstart
u];6

/* I−p is the instruction just before the prologue */
latest[tready

CM(I−p)] := −maxπ∈paths(CM(I−p),IF (I1))

∑
x∈nodes(π) min latx − 1;7

foreach node v ∈ prologue in topologically sorted order where shaded[v] = false do8

latest[tready
v] := max{u|u→v}

(
latest[tfinish

u]
)
;9

latest[tready
v] := max

(
latest[tready

v], latest[tready
CM(I−p)]

)
;10

latest[tstart
v] := latest[tready

v] + max latv − 1; /* conservative late contention */11

Searly := early contenders(v) ;12

if Searly 6= φ then13

tmp :=14

min
(
maxu∈Searly

(
latest[tfinish

u]
)

, latest[tstart
v] + |Searly| ×max latv

)
;

latest[tstart
v] := max

(
tmp, latest[tstart

v]
)
;15

latest[tfinish
v] := latest[tstart

v] + max latv;16

Algorithm 4: Estimation of latest times of prologue nodes

66

Time Intervals for Prologue Nodes Figure 4.3 shows a prologue with 5 instruc-

tions preceding the body. We need to estimate the time intervals of the start/ready/finish

of prologue nodes in order to compute their effects on body nodes. As the execution

context of the prologue itself is not clear, we conservatively estimate the time intervals

as follows. We set the ready time of IF (I1) to 0 and then we derive the time intervals

of the nodes in prologue with respect to the ready time of IF (I1). Algorithm 4 shows

the computation of latest ready, start, and finish times of the nodes in the prologue.

First, we observe that certain nodes in prologue (shaded in Figure 4.3) have at least

one path to the node IF (I1) where I1 is the first instruction in the body, that is, the

basic block being analyzed. The latest finish time of a shaded prologue node is clearly

bounded by latest[tready
IF (I1)] = 0. Let u be a node in prologue with a path to IF (I1).

Consider any path π connecting v and IF (I1), and let nodes(π) be the nodes in π

appearing between v and IF (I1). Clearly

latest[tfinish
v] ≤ latest[tready

IF (I1)]−
∑

x∈nodes(π)

min latx (4.1)

where min latx is the minimum latency of node x. That is, the finish time of shaded

prologue node v cannot be later than the right-hand-side expression in Inequality 4.1

even assuming an ideal execution where each node along the path from v to IF (I1)

(a) becomes ready immediately at the completion of execution of its predecessor, (b)

starts execution as soon as it becomes ready (i.e., there is no delay due to contention)

and (c) executes as fast as possible by taking the minimum latency. Clearly, Inequality

4.1 holds for all paths between v and IF (I1). Therefore, for any shaded prologue node

v (i.e. a node with a path to IF (I1)) we can estimate the latest finish time of v as

latest[tfinish
v] ≤ maxπ∈paths(v,IF (I1))

 latest[tready
IF (I1)]−

∑
x∈nodes(π)

min latx

 (4.2)

where paths (v, IF (I1)) is the set of paths between v and IF (I1) in the execution

graph with prologue/epilogue. Since we compute the time intervals for prologue

67

nodes relative to ready time of IF (I1) we can set latest[tready
IF (I1)] = 0 in Inequality 4.2;

this is shown on Line 5 of Algorithm 4. In this way we compute the latest finish times

of prologue nodes which have a path to IF (I1). Given the latest finish times, it is

straightforward to estimate the latest start and ready times of these nodes (Line 6 of

Algorithm 4).

For the rest of prologue nodes (unshaded nodes in Figure 4.3), the latest time

calculation is similar to Algorithm 2 with some modifications (see Lines 8–16 of

Algorithm 4). First, the processing of the nodes proceed in topologically sorted order.

Thus, each of the unshaded nodes, when visited, has at least one predecessor node

whose latest finish time has already been computed. Ready time of an unshaded node

is estimated as the maximum of the finish times of its immediate predecessors (Line 9

of Algorithm 4). However, we still have not accounted for the immediate predecessors

that belong to the pre-prologue part. This effect is conservatively estimated on Line

10 of Algorithm 4. We observe that all pre-prologue nodes should have completed

execution by the time the commit stage of the last pre-prologue instruction (CM(I−p)

where p is the length of the prologue) is ready. Since CM(I−p) has a path to IF (I1),

its latest ready time can be computed easily (Line 7 of Algorithm 4). We bound

the ready time of the unshaded prologue nodes by the ready time of CM(I−p) to

take care of the dependencies from the pre-prologue nodes. Latest start time of an

unshaded prologue node is estimated conservatively from the latest ready time by

taking into account the effect of contentions. First, we conservatively assume that

late contention is always present. By definition, at most one late contender can delay

an instruction. For early contenders, we do not need to look beyond the prologue

as (1) all the pre-prologue nodes have completed execution by the ready time of the

node CM(I−p) and (2) the ready time of the prologue nodes have been bounded by

the ready time of CM(I−p) on Line 10. The maximum delay due to early contenders

is estimated in a manner similar to Algorithm 2 (Lines 13–15 of Algorithm 4).

68

Earliest times of prologue nodes do not affect the WCET estimation significantly.

Therefore, we conservatively assume earliest ready, start, and finish times of the

prologue nodes as −∞.

Time intervals for epilogue nodes Time intervals for epilogue nodes are initial-

ized and iteratively tightened almost the same way as Algorithms 2 and 3 except for

one difference: for the EX epilogue nodes which are from the last ROB size − 1

instructions, they may have late contenders beyond the epilogue, therefore we con-

servatively assume maximum late contentions for each of them when latest times are

estimated.

Time intervals for body nodes Given the time intervals for prologue and epi-

logue nodes, the timing estimation of body nodes (i.e., the nodes in the basic block

we are analyzing) still follows Algorithms 2 and 3. The only difference is that the

dependencies and contention from the prologue nodes and late contentions from the

epilogue nodes are taken into account in the estimation process.

Overlapped execution For a basic block Bi with instructions I1, . . . , In the exe-

cution time estimate of Bi can be calculated as the time between the fetch of I1 to

the commit of In, that is, tfinish
CM(In)− tready

IF (I1). However, this definition does not produce

tight timing estimates. This is because the execution of two or more successive basic

blocks have some overlap due to the presence of the pipeline.

Definition 4.3. The overlap δ between a basic block Bi and its preceding basic block

Bj is the period during which instructions from both the basic blocks are in the pipeline,

that is

δ = tfinish
CM(I0) − tready

IF (I1) (4.3)

where I0 is the last instruction of block Bj and I1 is the first instruction of block Bi.

69

We want to avoid duplicating the overlap in time estimates of successive basic

blocks. Therefore, we calculate the execution time estimate of a basic block with a

given context as follows.

Definition 4.4. For a basic block Bi with instructions I1, . . . , In executed under a

context (prologue and epilogue) ctx, its estimated execution time, denoted as costctxi ,

is the interval from the time when the instruction immediately preceding the basic

block has finished commit to the time when its last instruction has finished commit,

that is

costctxi = tfinish
CM(In) − tfinish

CM(I0) (4.4)

where I0 is the instruction immediately prior to Bi.

Note that the first basic block of the program does not have any preceding in-

structions. As a special case, we calculate its execution time as the time between the

fetch of its first instruction and commit of its last instruction.

Now, we estimate costctxi for basic block Bi with respect to the time at which

the first instruction I1 of Bi is fetched, i.e. tready
IF (I1) = 0. Thus costctxi = tfinish

CM(In) − δ.

We can conservatively estimate costctxi by finding the largest value of tfinish
CM(In) and the

smallest value of δ. The largest value of tfinish
CM(In) is simply the quantity latest[tfinish

CM(In)],

calculated by our LatestTimes algorithm. The smallest value of the overlap δ is

obtained from the following theorem.

Theorem 4.1.

δ ≥ min
u

u→IF (I1)

 max
π∈paths(u,CM(I0))

∑
x∈nodes(π)

min latx

+ min latCM(I0) (4.5)

Proof. Let u be the node among IF (I1)’s immediate predecessors with the longest

(maximum) finish time. Then,

tready
IF (I1) = tfinish

u (4.6)

70

Clearly,

tready
CM(I0) ≥ tfinish

u +

 max
π∈paths(u,CM(I0))

∑
x∈nodes(π)

min latx

 (4.7)

This is because CM(I0) can become ready only after its predecessors along the paths

from u have executed. Therefore,

tfinish
CM(I0) ≥ tfinish

u +

 max
π∈paths(u,CM(I0))

∑
x∈nodes(π)

min latx

+ min latCM(I0) (4.8)

From Equations (4.6) and (4.8), we get:

tfinish
CM(I0) − tready

IF (I1) ≥

 max
π∈paths(u,CM(I0))

∑
x∈nodes(π)

min latx

+ min latCM(I0) (4.9)

By the definition of overlap, the above Equation can be re-written as

δ ≥

 max
π∈paths(u,CM(I0))

∑
x∈nodes(π)

min latx

+ min latCM(I0)

≥ min
u

u→IF (I1)

 max
π∈paths(u,CM(I0))

∑
x∈nodes(π)

min latx

+ min latCM(I0) (4.10)

Above we have proved that the overlap is lower-bounded by the right hand side of

Inequality 4.5, which will be used as the estimated minimum overlap. The complete

proof for the correctness of the estimation for a basic block with context can be found

in Appendix A.2.

Putting it all together Note that costctxi is obtained for a specific prologue and a

specific epilogue of Bi. Since a basic block in general has multiple choices of prologues

and epilogues, they might result in different estimates. So, we estimate Bi’s execution

time under all possible combinations of prologues and epilogues, denoted as CTXi,

and costi = maxctx∈CTXi
(costctxi), where costi is the WCET of Bi used in the WCET

71

objective function given by Equation 2.1,

Time =
N∑

i=1

costi ∗ vi

This objective function is maximized over the constraints on vi given by control flow

equations, loop bounds and user-provided infeasible flow information. This is done

by using an Integer Linear Programming solver like CPLEX.

4.3 Experimental Evaluation

In this section, we evaluate the accuracy of our estimation technique with twelve

benchmarks listed in Table 2.1. Most of them contain variable-latency arithmetic

instructions; few exceptions are des, isort and matsum, which do not contain any

variable-latency arithmetic instructions.

The pipeline configuration for our experiments is as follows. It has a 4-entry I-

buffer and an 8-entry ROB and it contains the following variable latency functional

unit types: (a) an integer multiplication unit with 1 ∼ 4 cycle latency, (b) a floating

point add unit with 1 ∼ 2 cycle latency, and (c) a floating point multiplication

unit with 1 ∼ 12 cycle latency. In addition, the processor has an integer ALU unit

and a load/store unit, each with one cycle latency. Note that we assume single-cycle

latency for load/store unit because we have not modeled data cache. Since instruction

caching and branch prediction has not been modeled so far, we simply assume every

instruction fetch takes a single clock cycle and every branch instruction is correctly

predicted, e.g., there is no pipeline stall caused by the two events.

The chart in Figure 4.3 compares in-order execution with out-of-order execution.

For each benchmark, we give two bars. The first bar (lighter shade in Figure 4.3)

denotes the following ratio

(Obs WCETin−order −Obs WCETout−of−order) / Obs WCETout−of−order

72

0

0.1

0.2

0.3

0.4

0.5

0.6

des dhry fdct fft fir isort ludcmp matmul matsum minver qurt whet

in-order estimation

Figure 4.4: Increase of In-order Execution over Out-of-Order Execution and Over-
estimation for Out-of-Order Execution

where Obs WCETin−order (Obs WCETout−of−order) is the observed WCET for in-

order (out-of-order) pipelined execution. The second bar (darker shade in Figure 4.3)

denotes the overestimation due to our analysis method for out-of-order execution,

that is, the ratio

(Est WCETout−of−order −Obs WCETout−of−order) / Obs WCETout−of−order

where Est WCETout−of−order is the estimated WCET produced by our analysis method.

Why do we compare these two sets of bars for each benchmark? This is to investigate

whether our out-of-order pipeline analysis can be replaced by a a simple, but pes-

simistic WCET analysis which considers in-order execution. Clearly, such an analysis

would produce safe WCET estimates, we are trying to find out how tight such esti-

mates will be. In Figure 4.3 we show that even the observed WCET for in-order exe-

cution Obs WCETin−order is appreciably larger than Est WCETout−of−order, the esti-

mated WCET produced by our method. Clearly, any analysis developed for in-order

73

Obs. Est. Analysis Solving
Program WCET WCET Ratio Time(sec.) Time(sec.)
des 52181 68218 1.31 0.76 0.01
dhry 121018 143633 1.19 2.35 0.01
fdct 9131 10503 1.15 0.12 0.01
fft 1087963 1268466 1.17 0.27 0.01
fir 43958 56104 1.28 0.79 0.01
isort 45763 60507 1.32 0.09 0.01
ludcmp 10682 14013 1.31 0.34 0.01
matmul 14181 18398 1.30 0.04 0.01
matsum 100813 111111 1.10 0.04 0.01
minver 6527 8550 1.31 0.99 0.01
qurt 1769 2200 1.24 0.72 0.01
whet 890104 1031485 1.16 0.96 0.01

Table 4.1: Accuracy of Out-of-Order Pipeline Analysis

pipelines will produce an estimated WCET Est WCETin−order > Obs WCETin−order.

Thus, Est WCETin−order, the estimation produced a simplified analysis of in-order

pipelines, will be substantially larger than our estimated WCET Est WCETout−of−order.

This serves as an experimental validation of the need for an analysis method like ours.

Table 4.1 presents the observed WCET (column Obs. WCET) and the estimated

WCET (column Est. WCET), as well as the ratio of the estimated WCET to the

observed WCET. The estimated WCET is not far from the observed WCET for most

benchmarks specially considering the fact that the difference between actual and

observed WCET is unknown. There are mainly two reasons for the overestimation.

(1) The bounds on execution counts of basic blocks in the estimation are often higher

than the actual execution counts during simulation (overestimation from program

path analysis). (2) The WCET estimation algorithm for the basic blocks introduces

some amount of pessimism (overestimation from pipeline analysis). The pipeline

analysis time and ILP solving time (counted in seconds) for the benchmarks are

given by the last two columns. As we can see, both the pipeline analysis and the ILP

solving take very little time.

74

4.4 Summary

Timing anomalies appearing in out-of-order processors complicate Worst Case Exe-

cution Time (WCET) analysis by invalidating the assumption that local worst case

always lead to global worst case. On the other hand, an exhaustive enumeration of

all possible local cases is anticipated to be quite inefficient. In this chapter, we have

modeled an out-of-order processor pipeline for WCET analysis. The key idea behind

our approach is to avoid exhaustive enumeration by bounding the time intervals at

which the events in pipelined execution can occur. We have implemented our tech-

nique and experimentally validated its estimation accuracy against several standard

benchmark programs used by other WCET research groups.

75

CHAPTER V

BRANCH PREDICTION ANALYSIS

In this chapter, we study another popular microarchitectural feature: branch predic-

tion. Branch prediction is used to address control hazards [30] on pipelined processors.

If a prediction is correct, the corresponding control hazard is overcome, otherwise a

misprediction penalty is incurred. Apart from misprediction penalties, branch pre-

diction also exerts indirect effects on the performance of other microarchitectural

features, such as instruction cache. As the processor caches instructions along the

mispredicted path, the instruction cache content is modified by the time the branch is

resolved. This prefetching of instructions can have both constructive and destructive

effects on cache performance and hence on WCET.

Clearly, we cannot assume perfect branch prediction for the purposes of WCET

analysis. This assumption may result in an incorrect WCET (i.e., lower than the

actual value), particularly, when a hard-to-predict conditional statement (if-then-else)

is present inside a loop body and contributes substantially to a program’s WCET.

Alternatively, certain works assume that all branches in a program are mispredicted.

This pessimism results in significant overestimation of the WCET as branch prediction

accuracy is quite high for loop control branches.

Our effort in this chapter is to develop techniques to bound the occurrences of

mispredictions and to model its interactions with an instruction cache. To dedicate

to this task, we do not consider pipeline effects here. Thus all the variations on the

execution times of basic blocks are merely caused by mispredictions and cache misses.

The integration with pipeline modeling will be discussed in the next chapter.

We propose an Integer Linear Programming (ILP) based framework to model

76

branch prediction as well as its interaction with the instruction cache. We use ILP

because the global nature of the behavior of branch prediction requires global pro-

gram path information, which can be provided by the ILP based WCET calculation

method used by us. Our branch prediction modeling is generic and parameteriz-

able with respect to the currently used branch prediction schemes. Effects of branch

misprediction on cache performance are integrated into our framework by extending

previous work on instruction cache modeling [43]. Based on the branch prediction

scheme and cache organization, our modeling derives linear constraints from the con-

trol flow graph of a program. These constraints are fed to an ILP solver for computing

an upper bound on the program’s execution time.

The rest of this chapter is organized as follows. In the next section we study

dynamic branch prediction mechanisms for our modeling purpose. Then we present

the modeling technique in Section 5.1. In Section 5.2 we show the combined analysis of

branch prediction and instruction caching. In Section 5.3 we show by experimentation

that our technique yields tight estimates. We conclude this chapter in Section 5.4.

5.1 Modeling Branch Prediction

In this section, we discuss the modeling of dynamic branch prediction schemes for

WCET analysis. Recall that dynamic schemes make predictions according to the

execution history. They commonly use a branch prediction table to store past branch

outcomes and make predictions according to the stored information. They differ in

the ways the prediction table being indexed. For the GAg scheme, a shift register

called branch history register (BHR) which stores the the outcomes of n most recent

branches is used as the index to the prediction table; the entry indexed by the BHR

will provide the prediction and will be updated by the outcome of current branch.

For the local scheme, the prediction table is indexed by the n lower order bits of the

branch address. Some other schemes such as gshare and gselect use a combination of

77

the BHR and the address of the branch as index to the prediction table (details were

given in Section 2.1.2). Our technique to be presented can model all above mentioned

dynamic schemes.

5.1.1 The Technique

Issues in modeling branch prediction We proceed to examine the difficulties in

modeling branch prediction for worst case execution time analysis. So far, microar-

chitectural features such as pipelining and instruction caching have been modeled for

WCET analysis. In the presence of these features, the execution time of an instruc-

tion may depend on the past execution trace. For pipelining, these dependencies are

typically local. That is, the execution time of an instruction may depend only on the

past few instructions which are still in the pipeline. To model instruction caching

and branch prediction, global analysis is required. This is because the effect of an

instruction’s execution on caches and branch predictors could affect the execution of

remote instructions. However, there are two significant differences between the global

analysis of the instruction caching and of branch prediction.

Both instruction caching and branch prediction maintain global data structures

that record information about the past execution trace, namely the cache and the

branch prediction table. For instruction caching, a given instruction can reside only

in one row of the cache: if it is present, it is a cache hit; otherwise, it is a cache miss1.

Local branch prediction is quite similar – outcomes of a given branch instruction are

stored only in one fixed entry of the prediction table where predictions are made.

However, for global branch prediction schemes, a given branch instruction may use

different entries of the prediction table at different points of execution. Given a branch

instruction I, a global branch prediction scheme uses the history HI (which is the

outcome of the last few branches before arriving at I) to decide the prediction table

1To be precise, in associative caches, an address can be present in only one cache set.

78

entry. Because it is possible to arrive at I with various histories, the prediction for I

can use different entries of the prediction table at different points of execution.

The other difference between instruction caching and branch prediction model-

ing is obvious. In the case of instruction caching, if two instructions I and I ′ are

competing for the same cache entry, then the flow of control either from I to I ′ or

from I ′ to I will always cause a cache miss. However, for branch prediction, even if

two branch instructions I and I ′ map to the same entry in the prediction table, the

flow of control between them does not imply correct or incorrect prediction. Their

competition for the same entry may have constructive or destructive effect in terms

of branch prediction, depending on the outcome of the branches I and I ′.

For ease of discussion, we take GAg, a global branch prediction scheme described

in Section 2.1.2, as a modeling example. However, our modeling is generic and not

restricted to GAg (as will be shown in Section 5.1.3). In fact, the default scheme in

our experiments is the more popular gshare scheme.

Control Flow Graph (CFG) The starting point of our analysis is the control

flow graph of the program, from which we can derive program flow constraints, as

described in Section 2.3.1.

Defining WCET In Section 2.3.1, the WCET is defined as Equation 2.1 under

the assumption that the cost of a basic block is a constant. Now in the presence

of branch prediction, the cost of a basic block under a misprediction is higher than

its cost under a correct prediction. Thus the WCET should be modified to reflect

this difference. Suppose the cost of Bi under the correct prediction is costi and a

misprediction penalty is bmp, then the cost under the misprediction is costi + bmp.

Let bmi be the misprediction count of Bi (thus Bi is correctly predicted vi − bmi

79

times). The objective function for the total execution time of the program becomes:

Time =
N∑

i=1

(costi ∗ (vi − bmi) + (costi + bmp) ∗ bmi)

The first term is the sum of execution times under correct predictions and the second

term is the sum of execution times under mispredictions. The WCET objective

function can be written as the following form.

Time =
N∑

i=1

(costi ∗ vi + bmp ∗ bmi) (5.1)

To find the worst case execution time, we need to maximize the above objective

function. For this purpose, we need to derive constraints on bmi.

Introducing History Patterns To predict the direction of the branch in Bi, first,

the index into the prediction table is computed. In the case of GAg, this index is

the outcome of the last k branches before Bi is executed and recorded in the Branch

History Register (BHR) with k bits. Thus, if k = 2 and the last two branches are taken

(1) followed by not taken (0), then the index will be 10. We define annotated execution

counts and misprediction counts vπ
i and bmπ

i , corresponding to the execution of Bi

with BHR = π when Bi is reached. Similarly, eπ
i→j denotes the number of times the

edge ei→j is passed with BHR = π at the beginning of basic block Bi

bmπ
i ≤ vπ

i ; ei→j =
∑

π eπ
i→j; bmi =

∑
π bmπ

i ; vi =
∑

π vπ
i .

For each Bi and history π, we find out whether it is possible to reach Bi with

history π. This information can be obtained via a terminating least fixed point

analysis on the control flow graph. Clearly, if it is not possible to reach Bi with π,

then eπ
i→j = vπ

i = bmπ
i = 0.

Control flow among history patterns To provide an upper bound on bmπ
i , we

first define constraints on vπ
i (since bmπ

i ≤ vπ
i). This is done by modeling the change

in history along the control flow graph.

80

Definition 5.1. Let label(i → j) be an annotation on an edge i → j of the CFG,

which is given a value according to the following rules:

label(i → j) = U if i → j implies unconditional flow

1 if i → j implies branch at i is taken

0 if i → j implies branch at i is non-taken

Definition 5.2. Let π be a history pattern with k bits (the width of the Branch

History Register) at Bi. It is composed of the sequence of outcomes of the most recent

k branches with the latest outcome at the rightmost bit. The change in history pattern

along i → j is given by:

Γ(π, i → j) = π if label(i → j) = U

left(π, 0) if label(i → j) = 0

left(π, 1) if label(i → j) = 1

where left(π, 0) (left(π, 1)) shifts pattern π to the left by one bit (the old leftmost

bit is therefore discarded) and puts 0 (1) as the rightmost bit.

Now, Bi can execute with history π only if there exists Bj executing with history π′

such that Γ(π′, j → i) = π. Note that for any such incoming edge j → i, there can be

two history patterns π′ such that Γ(π′, j → i) = π. For example, if label(j → i) = 1,

then Γ(011, j → i) = Γ(111, j → i) = 111. Therefore, from the inflows of Bi’s

execution with history π we get:

vπ
i =

∑
j

∑
π′

π = Γ(π′,j→i)

eπ′

j→i

Similarly, from the outflows of Bi’s execution with history π, we get:

vπ
i =

∑
j

eπ
i→j

81

Repetition of a history pattern Let us assume a misprediction of the branch in

Bi with history π. This means that certain blocks (perhaps Bi itself) were executed

with history π such that the outcomes of these branches created a prediction different

from the current outcome of Bi. Thus, to model mispredictions, we need to capture

repeated occurrences of a history π during the program’s execution. For this purpose,

we define pπ
i j.

Definition 5.3. Let Bi and Bj be two basic blocks with branch instructions and π be

a history pattern. Then pπ
i j is the number of times a path is taken from Bi to Bj s.t.

• π never occurs at a node with a branch instruction between Bi and Bj.

• If Bi 6= start block, then π occurs at Bi

• If Bj 6= end block, then π occurs at Bj

Intuitively, pπ
i j denotes the number of times control flows from Bi to Bj s.t. the

πth row of the prediction table is only used for branch prediction at Bi and Bj, and

is never accessed in between. In these scenarios, the outcome of Bi may cause a

misprediction at Bj. Furthermore, pπ
start i (pπ

i end) models the number of times the

π th row of the prediction table is looked up for the first (last) time at Bi.

When the πth row is used for branch prediction at Bi, either the πth row is used

for the first time (denoted by pπ
start i) or the πth row was used for branch prediction

last time in some block Bj 6= Bstart. Similarly, for every use of the πth row of the

prediction table at Bi, either it is the last use (denoted by pπ
i end) or it will be used

the next time in Bj 6= Bend. Since vπ
i denotes the number of times Bi uses the πth

row of the prediction table, we have:

vπ
i =

∑
j

pπ
j i =

∑
j

pπ
i j

82

Also, there can be at most one first use, and at most one last use of the π th row of

the prediction table during program execution. Therefore, we get:

∑
i

pπ
start i ≤ 1 and

∑
i

pπ
i end ≤ 1

Introducing branch outcomes To model mispredictions, we not only need to

model the repetition of history patterns, but also branch outcomes. A misprediction

occurs on differing branch outcomes for the same history pattern. Therefore, we

partition the paths contributing to the count pπ
i j based on the branch outcome at

Bi: pπ,1
i j and pπ,0

i j, which denote the execution count of those paths that begin with

the outgoing edge of Bi labeled 1 (i.e., outcome 1) and 0, respectively. By definition:

pπ
i j = pπ,1

i j + pπ,0
i j

∑
j pπ,1

i j = eπ
i→k and

∑
j pπ,0

i j = eπ
i→l

where label(i → k) = 1 and label(i → l) = 0. In other words, i → l and i → k are

the outgoing edges of basic block Bi with labels 0 and 1, respectively.

Modeling mispredictions For simplicity of exposition, let us assume that each

row of the prediction table contains a one-bit prediction: 0 denotes a prediction that

the branch will not be taken, and 1 denotes a prediction that the branch will be taken.

However, our technique for estimating mispredictions is generic. It can be extended

if the prediction table maintains more than one bit per entry. In particular, a recent

work [4] has modeled a n-bit saturating counter (in each row of the prediction table).

Recall that bmπ
i denotes the number of mispredictions of the branch in Bi when

it is executed with history pattern π. There can be two scenarios in which Bi is

mispredicted with history π:

• Case 1: Branch of Bi is taken

Since the actual control flow will go through the taken edge i → k, we denote

83

the misprediction count of this case as emπ
i→k. Obviously, emπ

i→k ≤ eπ
i→k. On

the other hand, when a branch at Bi is mispredicted as not taken, the prediction

in row π of the prediction table must be 0 (not taken). This is possible only if

another block Bj is executed with history π and outcome 0 and history π never

appears between Bj and Bi. The total number of such inflows into Bi is at most∑
j pπ,0

j i. Combine above observations, we have:

emπ
i→k ≤ min

(
eπ

i→k,
∑

j

pπ,0
j i

)
(5.2)

• Case 2: Branch of Bi is not taken

Since the actual control flow will go through the not taken edge i → l, we denote

the misprediction count of this case as emπ
i→l. Following the reasoning in Case

1, we have the following bound on emπ
i→l:

emπ
i→l ≤ min

(
eπ

i→l,
∑

j

pπ,1
j i

)
(5.3)

Thus, the misprediction count bmπ
i is the sum of the two cases:

bmπ
i = emπ

i→k + emπ
i→l (5.4)

Additionally, let emi→j be the misprediction count for control flow transfers along

the edge i → j under all branch histories, we can bound it by the following equation2:

emi→j =
∑

π

emπ
i→j (5.5)

Putting it all together We have derived linear inequalities on vi (execution count

of Bi) and bmi (misprediction count of Bi). We now maximize the objective function

(denoting the execution time of the program), subject to these constraints using an

(integer) linear programming solver. This gives an upper bound of the program’s

WCET.

2This is unnecessary here, but the variables and constraints will be useful in the next chapter

84

Bstart

B1

B2

Bend

(100)
v1

00 = 1; m1
00 = 0

v1
01 = 99; m1

01 = 1

(1)

(100)
v2

00 = 1; m2
00 = 1

v2
10 = 99; m2

10 = 2

U

0 1

01

(1)

Figure 5.1: Example of the Control Flow Graph

5.1.2 An Example

In this part, we illustrate our WCET estimation technique with a simple example.

Consider the control flow graph in Figure 5.1. The start and end blocks are called

Bstart and Bend respectively. All edges of the graph are labeled. Recall that the

label U denotes unconditional control flow and the label 1 (0) denotes control flow by

taking (not taking) a conditional branch. We assume that a two-bit history pattern

is maintained i.e., the prediction table has four rows for the four possible history

patterns: 00, 01, 10, 11. Also, each row of the prediction table contains one bit to

store the last outcome for that pattern: 0 for not taken and 1 for taken.

Flow constraints and loop bounds The start and end nodes execute only once.

Hence

vstart = vend = 1 = estart→1 = e2→end + e1→end

From the inflows and outflows of blocks 1 and 2, we get:

v1 = estart→1 + e2→1 = e1→2 + e1→end

v2 = e1→2 = e2→end + e2→1

85

Furthermore, the edge 2 → 1 is a loop, and its bound must be given. In our method,

this bound is either computed offline or provided by the user. Let us consider a loop

bound of 100. Then,

e2→1 < 100

Defining WCET Let us assume a branch misprediction penalty of three clock

cycles. The WCET of the program is obtained by maximizing:

Time = 2vstart + 2v1 + 4v2 + 2vend + 3bm1 + 3bm2

assuming tstart = t1 = 2, t2 = 4 and tend = 2. Recall that ti is the execution time of

block i (assuming perfect prediction); bmi is the number of mispredictions of block i.

There are no mispredictions for executions of start and end blocks, since they do not

have branches.

Introducing History Patterns We find out the possible history patterns π for

each basic block Bi via static analysis of the control flow graph. The initial history at

the beginning of program execution is assumed to be 00. In our example, the possible

history patterns for the different basic blocks are as follows:

Bstart: {00}

B1: {00, 01}

B2: {00, 10}

Bend: {00, 01, 11}

We now introduce the variables vπ
i and bmπ

i : the execution count and mispredic-

tion count of block i with history π.

86

vstart = v00
start = 1 bmstart = 0

v1 = v00
1 + v01

1 bm1 = bm00
1 + bm01

1

v2 = v00
2 + v10

2 bm2 = bm00
2 + bm10

2

vend = v00
end + v01

end + v11
end = 1 bmend = 0

bm00
1 ≤ v00

1 bm01
1 ≤ v01

1

bm00
2 ≤ v00

2 bm10
2 ≤ v10

2

We also define variables of the form eπ
i→j as follows (by using the set of patterns

possible at each basic block):

estart→1 = e00
start→1

e1→2 = e00
1→2 + e01

1→2 e1→end = e00
1→end + e01

1→end

e2→1 = e00
2→1 + e10

2→1 e2→end = e00
2→end + e10

2→end

Control flow among history patterns We now derive the constraints on vπ
i

based on the flow of the pattern π. Let us consider the inflows and outflows of block

1 with history 01. From the inflows we get:

v01
1 = e00

2→1 + e10
2→1

Note that the inflow from block start to block 1 is automatically disregarded in this

constraint since it cannot produce a history 01 when we arrive at block 1. Also, for

the inflows from block 2 the history at block 2 can be either 00 or 10. Both of these

patterns produce history 01 at block 1 when control flows via the edge 2 → 1 i.e.,

Γ(00, 2 → 1) = Γ(10, 2 → 1) = 01 from Definition 5.2.

From the outflows of the executions of block 1 with history 01 we have:

v01
1 = e01

1→2 + e01
1→end

Constraints for inflows/outflows of block 1 with history 00, block 2 with history 00,

and block 2 with history 10 are derived similarly.

87

Repetition of history pattern To model the repetition of a history pattern along

a program path, variables pπ
i j are introduced (refer to Definition 5.3). We now

present the constraints for the pattern 01. Corresponding to the first and last occur-

rence of the history pattern 01, we get:

p01
start 1 ≤ 1 and p01

1 end ≤ 1

Corresponding to the repetition of the pattern 01, the constraints are as follows:

Exec. with Inflow from last Outflow to next

pattern 01 occurrence of 01 occurrence of 01

v01
1 = p01

1 1 + p01
start 1 = p01

1 1 + p01
1 end

Similarly, we provide constraints for the other patterns.

Introducing branch outcomes For each pπ
i j, we define the variables pπ,0

i j and

pπ,1
i j via the equation pπ

i j = pπ,0
i j + pπ,1

i j. More importantly, we relate pπ
i j variables

to eπ
i→j variables via pπ,0

i j and pπ,1
i j. For example we have p10,1

2 2 + p10,1
2 end = e10

2→1 in

Figure 5.1. In our simple example, we only derive trivial constraints in this category.

In general, a sum of pπ,1
i j (or pπ,0

i j) variables equals an eπ
i→j variable.

Modeling mispredictions Let us now derive the constraints for bm01
1 , the num-

ber of mispredictions of block 1 with history 01. For this, we consider two cases

corresponding to the outcome of the branch at block 1.

• Case 1: The branch at block 1 is taken, and the last branch using the 01 row

of the predictor table is not taken.

The number of times the branch at block 1 under history 01 is taken is e01
1→end.

The number of times the last branch (before arriving at block 1) using the 01

row of the predictor table is not taken is p01,0
start 1 + p01,0

1 1. Note that the other

88

block (block 2) is not considered since block 2 cannot be reached with pattern

01.

Thus, the misprediction count em01
1→end for this case is

em01
1→end ≤ min

(
e01
1→end, p01,0

start 1 + p01,0
1 1

)
• Case 2: The branch at block 1 under history 01 is not taken, and the last

branch using the 01 row of the predictor table is taken. This happens em01
1→2

times where

em01
1→2 ≤ min

(
e01
1→2, 0

)
= 0

Note that 0 appears in above formula as in this particular example, no earlier

branch using the 01 row of the predictor table with outcome taken can reach

block 1.

By combining the above two cases, we get the misprediction number for bm01
1 :

bm01
1 = em01

1→end + em01
1→2

Other misprediction constraints are:

bm00
1 = em00

1→end + em00
1→2

≤ min
(
e00
1→end , p00,0

start 1

)
+ min

(
e00
1→2 , 0

)
bm00

2 = em00
2→1 + em00

2→end

≤ min
(
e00
2→1 , p00,0

1 2

)
+ min

(
e00
2→end , 0

)
bm10

2 = em10
2→1 + em10

2→end

≤ min
(
e10
2→1 , p10,0

start 2

)
+ min

(
e10
2→end , p10,1

2 2

)
They correspond to the constraints on bmπ

i in Section 5.1.1. Maximizing the

objective function with respect to all these constraints gives the program’s WCET.

The execution counts of basic blocks as well as their misprediction counts com-

puted by the ILP solver are given in Figure 5.1.

89

5.1.3 Retargetability

We now discuss how our modeling can be used to capture the effects of various

local and global branch prediction schemes. Our modeling of branch prediction is

independent of the definition of the prediction table index, so far called the history

pattern π. All our constraints only assume the following: (a) the presence of a global

prediction table, (b) the index π into this prediction table, and (c) every time the

π th row is looked up for branch prediction, it is updated subsequent to the branch

outcome. These constraints continue to hold even if π does not denote the history

pattern (as in the GAg scheme).

In fact, the different branch prediction schemes differ from each other primarily

in how they index into the prediction table. Thus, to predict a branch I, the index

computed is a function of: (a) the past execution trace (history) and (b) the address of

the branch instruction I. In the GAg scheme, the index computed depends solely on

the history and not the branch instruction address. Other global prediction schemes

(gshare, gselect) use both the history and the branch address, while local schemes use

only the branch address.

To model the effect of other branch prediction schemes, we only alter the meaning

of π, and show how π is updated with the control flow (the Γ function of Defin-

ition 5.2). This of course affects the possible prediction table indices that can be

looked up at a basic block Bi. No change is made to the linear constraints (parame-

terized w.r.t. possible prediction table indices at each basic block) described in the

previous subsection. These constraints then bound a program’s WCET (under the

new branch prediction scheme).

Other global schemes We now discuss two other global prediction schemes: gshare

and gselect [51, 73]. In gshare, the index π used for a branch instruction I is defined

90

as

π = historym ⊕ addressn(I)

where m,n are constants, n ≥ m, ⊕ is XOR, addressn(I) denotes the lower order n

bits of I’s address, and historym denotes the most recent m branch outcomes (which

are XOR-ed with higher-order m bits of addressn(I)). The updating of π due to

control flow is modeled by the function:

Γgshare(π, i → j) = Γ(historym, i → j)⊕ addressn(j)

where i → j is an edge in the control flow graph, addressn(j) is the least significant

n bits of the branch instruction in basic block j, and Γ is the function on the history

patterns described in Definition 5.2.

The modeling of the gselect prediction scheme is similar. Here, the index π into

the prediction table is defined as:

π = historym • addressn(j)

where m and n are some constants and • denotes concatenation. The updating of π

due to control flow is given by function Γgselect

Γgselect(π, i → j) = Γ(historym, i → j) • addressn(j)

Again, i → j is an edge in the control flow graph and Γ is the function described in

Definition 5.2.

Local prediction schemes In local schemes, the index π into the prediction table

for predicting the outcome of instruction I is π = addressn(I). Here, n is a con-

stant and addressn(I) denotes the least significant n bits of the address of branch

instruction I.

Updating of the index π due to control flow is given by Γlocal(π, i → j) =

addressn(j). Here, i → j is an edge in the control flow graph and addressn(j) is

91

the least significant n bits of the last instruction in basic block j. If block j contains

a branch instruction I, it must be the last instruction of j. Thus, the least significant

n bits of the address of I are used to index into the prediction table (as demanded by

local schemes). If j does not contain any branch instruction, then the index computed

is never used to lookup the prediction table. Clearly, since each block j always uses

the same index π into the prediction table, index π is used at basic block j if and

only if π denotes the least significant n bits of the address of the branch instruction

of block j (if any).

5.2 Integration with Instruction Cache Analysis

Our branch prediction analysis is a Integer Linear Program (ILP) based approach.

In this section, we will show how to integrate it with another ILP based instruction

cache analysis. The key point for combined analysis of multiple microarchitectural

features is to capture their interactions. In the context of branch prediction and

instruction caching, the interaction is unidirectional. The speculative execution via

branch prediction can alter the behavior of the instruction cache, i.e., instructions

can be prefetched into or displaced from the cache due to speculative execution.

On the other hand, the instruction cache does not change the branch prediction

outcome as an cache access does not access or change the state of the branch predictor.

This indicates that our branch prediction technique needs not to be changed in the

combined analysis.

To discuss the combined analysis, we first review on the instruction cache analysis

technique proposed by Li et al. [43]. Then we make modifications to it to take into

account the effect of speculative execution.

92

5.2.1 Instruction Cache Analysis

We recapitulate the earlier instruction cache modeling [43]. A basic block Bi is

partitioned into ni l-blocks3 denoted as Bi.1, Bi.2, . . . , Bi.ni
. Let cmi.j be the total

cache misses for l-block Bi.j and cmp be the constant denoting the cache miss penalty.

Then, the total execution time is:

Time =
N∑

i=1

(costi × vi + bmp× bmi +

ni∑
j=1

cmp× cmi.j) (5.6)

For simplicity of exposition, let us assume a direct mapped cache. For each cache

line c, a Cache Conflict Graph (CCG) Gc [43] is constructed. The nodes of Gc are

the l-blocks mapped to c. An edge Bi.j Bu.v exists in Gc iff there exists a path in

the CFG s.t. control flows from Bi.j to Bu.v without going through any other l-block

mapped to c. In other words, there is an edge between l-blocks Bi.j to Bu.v if Bi.j can

be present in the cache when control reaches Bu.v.

Let ri.j u.v be the execution count of the edge between l-blocks Bi.j and Bu.v in

a CCG. Now, the execution count of l-block Bi.j equals the execution count of basic

block Bi. Also, at each node of the CCG, the inflow equals the outflow and both

equal the execution count of the node. Therefore,

vi =
∑
u.v

ri.j u.v =
∑
u.v

ru.v i.j (5.7)

The cache miss count cmi.j equals the inflow from conflicting l-blocks in the CCG

(whether two l-blocks are conflicting or non-conflicting is statically determined by

portions of their instruction addresses, which are used as tags in cache line). Thus,

we have:

cmi.j =
∑
u.v

Bu.v conflicts Bi.j

ru.v i.j (5.8)

3A line-block, or l-block, is a sequence of instructions in a basic block that belong to the same
instruction cache line.

93

5.2.2 Changes to Instruction Cache Analysis

Effects of speculative execution on caching WCET analysis as described in

the previous section does not take into account the effect of branch misprediction on

instruction cache performance. When a branch is predicted, instructions are fetched

and executed from the predicted path. If all the branches are predicted correctly, then

the analysis described in previous section will give accurate results. Now, consider a

branch that is mispredicted. The processor will fetch and execute instructions along

the mispredicted path till the branch is resolved. There can be two scenarios during

mispredicted path execution: (1) there is no cache miss, and (2) there is at least one

cache miss. In the first scenario, the misprediction has no effect on the instruction

cache. However, in the second scenario, the instruction cache content is modified

when the processor resumes execution from the correct path. Various studies have

concluded that depending on the application, this wrong-path prefetching can have

a constructive or a destructive effect on the instruction cache’s performance [12, 59].

Our goal here is to model this wrong-path cache effect for WCET analysis.

We make two standard assumptions. First, we assume that the processor allows

only one unresolved branch at any point of time during execution. Thus, if another

branch is encountered during speculative execution, the processor simply waits till

the previous branch is resolved. We also assume that the instruction cache is blocking

(i.e., it can support only one pending cache miss). This is indeed the case in almost

all commercial processors.

We introduce some notations for the subsequent parts. We use [Bi.j] to denote

the cache line to which l-block Bi.j maps. The shorthand Bi.j
∼= Bu.v is used to

denote that l-blocks Bi.j and Bu.v map to the same cache line. Thus Bi.j
∼= Bu.v iff

[Bi.j] = [Bu.v].

The effects of speculation on instruction cache performance can be categorized as

follows:

94

1. An l-block Bi.j misses during normal execution since it is displaced by another

l-block Bu.v
∼= Bi.j during speculative execution (destructive effect).

2. An l-block Bi.j hits during normal execution, since it is pre-fetched during spec-

ulative execution (constructive effect).

3. A pending cache miss of Bi.j during speculative execution along the wrong path

causes the processor to stall when the branch is resolved. How long the stall

lasts depends on the portion of cache miss penalty which is masked by the

branch misprediction penalty. If the speculative fetching is completely masked

by branch penalty, then there is no delay incurred.

The last situation cannot be simply deemed constructive or destructive, although

a delay often happens in that case. The cost of the delay may be offset later by a

cache hit to the l-block.

The following changes to the Cache Conflict Graph (CCG) capture both the con-

structive and destructive effects of speculative execution on cache.

Additional nodes in Cache Conflict Graph We add all the l-blocks fetched

along the mispredicted path to their respective cache conflict graphs. Given a con-

ditional branch b, its actual outcome X (not taken or taken, denoted as 0 and 1,

respectively) and misprediction penalty bmp (a constant number of clock cycles), we

can identify the set of l-blocks accessed along the mispredicted path, called Spec(b,X).

Clearly, the cost of executing the blocks in Spec(b, X) cannot exceed bmp. If one or

more blocks cause cache misses, then not all the l-blocks in Spec(b, X) can execute.

Those l-blocks executed along the mispredicted path are called ml-blocks and are an-

notated with the corresponding basic block containing the branch instruction and the

actual outcome. For example, if Bi.j ∈ Spec(b, X), then the corresponding ml-block

is denoted by Bb,X
i.j . Note that it is possible to have multiple ml-blocks corresponding

95

to an l-block. For an l-block Bi.j, all its ml-blocks are added to the CCG of the cache

line it maps to.

Additional edges in Cache Conflict Graph We now need to add additional

edges in the cache conflict graphs. Given a CCG, we add edges between ml-blocks

and the normal l-blocks; we also add edges between ml-blocks. For an ml-block Bb,X
i.j ,

we add edges to/from all the other l-blocks Bu.v in the CCG of cache line [Bi.j] and

their corresponding ml-blocks as follows:

1. Bu.v Bb,X
i.j if there exists a path from Bu.v to Bi.j through branch b that does

not contain any other l-block mapped to [Bi.j]. This models the flow from the

last normal use of the cache line to the ml-block.

2. Bb,X
i.j Bb,X

u.v if Bu.v is the next use of the cache line [Bi.j] in Spec(b, X) after

Bi.j. This models the flow from the ml-block to the next possible use of the

cache line along the mispredicted path.

3. Bb,X
i.j Bu.v if there exists a path from branch b with outcome X to Bu.v that

does not contain any other l-block mapped to [Bi.j].

4. In addition, in case 3, if the path to Bu.v goes through branch b′ and Bu.v ∈

Spec(b′, Y) (b′ can be the same as or different from b), then we also add Bb,X
i.j

Bb′,Y
u.v . The edges in cases 3 and 4 model the flow from the ml-block to the next

possible use of the cache line after the branch is resolved.

Figure 5.2 illustrates these cases. The shaded rectangles are the ml-blocks and the

unshaded ones are the normal l-blocks. The third and fourth type of edges require

some explanation. If there are multiple l-blocks along the speculative path that map

to a particular cache line, then we conservatively add outgoing edges from all of them

to the first use of the cache line in the correct path (or another speculative path).

This is because any one of these l-blocks can be in the cache when the branch is

96

b

b’

b

X~ X

X

Y

Case 2

Case 3

Case 4

Case 1
~ X

���������
���������
���������

���������
���������
���������

���������
���������
���������
��������� ���������

������������������
���������

���������
���������
���������

���������
���������
���������

Figure 5.2: Additional edges in the Cache Conflict Graph due to Speculative Exe-
cution. The l-blocks are shown as rectangular boxes, and the ml-blocks among them
are shaded.

resolved; exactly which one will be in the cache when the branch is resolved depends

on the exact values of bmp, cmp and the execution time of the individual basic blocks.

Figure 5.3 illustrates the modifications to the CCG with an example. The control

flow graph is shown in Figure 5.3(a). Let us assume that l-blocks B0.1, B1.2 and B3.1

belong to the same cache line. Then, the original CCG for that cache line is shown

in Figure 5.3(b). A dummy start node and an end node are added to each CCG to

make the initial and terminal flow equations correct.

The modifications to the CCG due to wrong-path prefetching is shown in Fig-

ure 5.3(c). We add two ml-block B2,1
3.1 and B3,0

1.2 corresponding to the mispredictions

at node B2 and node B3, respectively. Note that we do not add any node correspond-

ing to a 0 outcome at branch B2 and a 1 outcome at branch B3. This is because

with a 0 outcome at branch B2, the mispredicted path fetches basic block B2 which

does not contain any l-block that maps to the cache line, and similarly for B3 with

outcome 1. Among the additional edges, B1.2 B2,1
3.1 and B3.1 B3,0

1.2 belong to the

first type. The edges B2,1
3.1 B3.1 and B2,1

3.1 B2,1
3.1 belong to the third and fourth

type respectively.

97

0

1

2

3

4

S

E

S

1.2 3.1

0.1 0.1

1.2 3.1

E

1 0

1 0

(a) (b) (c)

U

U

3.1(2,1)

1.2(3,0)

Figure 5.3: Changes to Cache Conflict Graph (Shaded nodes are ml-blocks)

Figure 5.3 shows the modeling of the constructive effect of wrong path prefetching.

In the original CCG, there is an edge B1.2 B3.1 and that is the only path between the

two nodes. Therefore, every time control reaches from B1.2 to B3.1, it is a cache miss.

In the modified CCG in Figure 5.3(c), there is another path from B1.2 to B3.1 via the

ml-block B2,1
3.1 . First, there is no cache miss along B2,1

3.1 B3.1 as they are physically

the same l-block. Second, the cache miss along B1.2 B2,1
3.1 is partially masked by

the branch misprediction delay. Thus, this kind of prefetching is constructive to the

execution.

Additional constraints on ml-blocks The execution count of a normal l-block

is equal to the execution count of the basic block it belongs to. However, for an

ml-block Bb,X
i.j , this count is dependent on the number of mispredictions at branch b

where the actual outcome is X (X is 0 or 1). To derive this execution count, note

that the number of ml-blocks missed due to a single misprediction is
⌈

bmp
cmp

⌉
where

bmp (cmp) denotes branch misprediction penalty (cache miss penalty). In accordance

98

with most modern processors, we assume bmp < cmp and therefore
⌈

bmp
cmp

⌉
= 1. This

assumption is, however, not required, and our modeling can be easily extended. Given

bmp < cmp, a single misprediction can result in at most one cache miss along the

mispredicted path. Let Spec(b, X) = 〈Bu1.v1 , . . . , Buk.vk
〉. Therefore, the execution

count of the ml-block Bb,X
ui.vi

is:

bmX
b −

i−1∑
l=1

cmb,X
ul.vl

where bmX
b is the number of mispredictions at branch b with outcome X (obtained

from the modeling of branch prediction) and cmb,X
ul.vl

is the number of cache misses for

the ml-block Bb,X
ul.vl

. Constraints on cmb,X
ul.vl

are obtained from the CCG as shown in

Equation 5.8 (refer to page 93). Constraints on bmX
b are obtained from our modeling

of branch prediction described in Section 5.1.1.

Objective function The objective function is:

Time =
N∑

i=1

(costi × vi + bmp× bmi +

ni∑
j=1

cmp× cmi.j)

+
∑

Cond. branch b
X∈0,1

mp delay(b, X) (5.9)

The three subterms of the first term are the ideal execution time, the branch

penalty and the cache penalty, respectively. The last term, mp delay(b, X) is the de-

lay that the processor has waited for pending cache misses (arising during mispredic-

tions) after mispredictions have been resolved. As the assumption bmp < cmp holds,

the criteria for such a delay to happen are: (a) a cache miss happens during a mispre-

diction, and (b) this cache miss is not completely masked by the misprediction (still

pending when the branch is resolved). Recall that Spec(b, X) = 〈Bu1.v1 , . . . , Buk.vk
〉.

We define:

99

mp delay(b, X) =
k∑

i=1

(cmb,X
ui.vi

× delayb,X
ui.vi

)

delayb,X
ui.vi

= cmp− (bmp−
i−1∑
l=1

costul.vl
)

where costul.vl
is the ideal execution time of the l-block Bul.vl

. Also, delayb,X
ui.vi

is the

delay introduced due to the cache miss of Bui.vi
along the mispredicted path of branch

b (where the actual outcome is X). This delay is not a constant, as part of the cache

miss penalty cmp can be masked, depending on the location of the cache miss in the

mispredicted path.

5.3 Experimental Evaluation

In this section we experimentally evaluate our branch prediction analysis as well as

the combined analysis with instruction caching.

Since we want to examine the effects of instruction caching and branch predic-

tion, we exclude the impact of other factors, such as pipelining, data caching, data

dependencies, etc. In our experiments, we assume a perfect processor pipeline with

no stalls due to data dependencies. This allows each instruction to take a fixed num-

ber of clock cycles to execute. The only timing overhead is introduced by instruction

cache misses and branch mispredictions of conditional branches.

We use the same set of benchmarks as in Chapter 4, and we compare our esti-

mation against the simulation on SimpleScalar. Our analyzer is parameterized with

respect to the prediction scheme, the predictor table size, the misprediction penalty,

the cache configuration and the cache miss penalty. The default parameters in our

experiments are as follows: (1) branch prediction scheme is gshare; (2) the two-bit

branch history is XOR-ed with the four least significant bits of the branch address;

(3) the branch misprediction penalty and cache miss penalty are five and 10 clock

cycles respectively; (4) the instruction cache is a 1k direct-mapped cache with 16

100

Program Obs. WCET Est. WCET Ratio
des 53047 58022 1.09
dhry 128420 131024 1.02
fdct 2513 2513 1.00
fft 219192 229406 1.04
fir 29412 33145 1.12
isort 47120 47251 1.00
ludcmp 9250 9731 1.05
matmul 15084 15184 1.01
matsum 101821 101821 1.00
minver 6259 6653 1.06
qurt 1296 1536 1.19
whet 537125 571615 1.06

Table 5.1: Modeling Gshare Branch Prediction Scheme for WCET Analysis.

cache lines, and each line has 64 bytes. Experiments on the impact of changing the

parameters are reported later in the section.

We first justify the need of modeling branch prediction. Figure 5.4 shows the

correct predictions and mispredictions in observation as well as in estimation. On

chart (a), we can see that for the majority of the benchmarks, more than eighty per-

cent of the branches are correctly predicted, which means if we do not model branch

predictions, these dominantly correct predictions will be pessimistically taken as mis-

predictions. On chart (b), we can see that our analysis indeed captures considerable

correct predictions.

The results of branch prediction modeling are reported in Table 5.1. It shows

the observed WCET (column Obs. WCET) obtained from SimpleScalar and the

estimated WCET (column Est. WCET) obtained from our ILP based technique.

We use the popular gshare prediction scheme in these experiments. We also evaluate

the accuracy of our estimation technique by presenting the ratio of the estimated

WCET over the observed WCET in the Ratio column in Table 5.1.

Table 5.2 gives the detailed results for the three branch prediction schemes: gshare,

GAg and local. Note the WCETs are in clock cycles while mispredictions are in counts.

101

simulation estimation
program correct mispred correct mispred
des 0.77 0.23 0.37 0.63
dhry 0.86 0.14 0.7 0.3
fdct 0.86 0.14 0.86 0.14
fft 0.77 0.23 0.58 0.42
fir 0.87 0.13 0.46 0.54
isort 0.96 0.04 0.96 0.04
ludcmp 0.64 0.36 0.59 0.41
matmul 0.82 0.18 0.8 0.2
matsum 0.98 0.02 0.98 0.02
minver 0.46 0.54 0.34 0.66
qurt 0.78 0.22 0.38 0.62
whet 0.88 0.12 0.67 0.33

(a) Observation

(b) Estimation

0

0.2

0.4

0.6

0.8

1

1.2

des dhry fdct fft fir isort ludcmp matmul matsum minver qurt whet

correct mispred

0

0.2

0.4

0.6

0.8

1

1.2

des dhry fdct fft fir isort ludcmp matmul matsum minver qurt whet

correct mispred

Figure 5.4: The Importance of Modeling Branch Prediction: Mispredictions in Ob-
servation and Estimation

102

WCET
Pgm. gshare GAg local

Obs. Est. Obs. Est. Obs. Est.
des 53047 58022 52942 58006 54207 57671
dhry 128420 131024 127425 129385 126405 127035
fdct 2513 2513 2508 2508 2493 2493
fft 219192 229406 225932 249747 229552 229665
fir 29412 33145 31177 34617 29622 33337
isort 47120 47251 46185 47741 47135 47246
ludcmp 9250 9731 9265 9715 9265 9715
matmul 15084 15184 15179 15179 15064 15064
matsum 101821 101821 101826 101826 101806 101806
minver 6259 6653 6254 6631 6199 6631
qurt 1296 1536 1256 1461 1391 1461
whet 537125 571615 571580 571610 571570 571580

Mispredictions
Pgm. gshare GAg local

Obs. Est. Obs. Est. Obs. Est.
des 574 1519 553 1509 806 1438
dhry 2603 3170 2404 2800 2200 2406
fdct 8 8 7 7 4 4
fft 3094 5140 4442 9205 5166 5193
fir 183 770 536 1074 225 820
isort 391 400 204 596 394 399
ludcmp 105 119 108 116 108 116
matmul 204 224 223 223 200 200
matsum 203 203 204 204 200 200
minver 122 150 121 146 110 146
qurt 25 72 17 57 44 57
whet 3752 10650 10643 10649 10641 10643

Table 5.2: Observed and Estimated WCET and Misprediction Counts of Gshare,
GAg and Local Schemes.

103

L0: j = 1;
L1: for (i = 1; i <= n4; i += 1) { /* 3450 */
L2: if (j == 1)
L3: j = 2;
L4: else
L5: j = 3;

L6: if (j > 2)
L7: j = 0;
L8: else
L9: j = 1;

L10: if (j < 1)
L11: j = 1;
L12: else
L13: j = 0;
L14: }
�

�

�

�

�

(a) Source Code Segment

Itr. Paths
(1) L2 L3 L6 L9 L10 L13
(2) L2 L5 L6 L7 L10 L11
(3) L2 L3 L6 L9 L10 L13
(4) L2 L5 L6 L7 L10 L11
 . .
 . .
 . .
(2n-1) L2 L3 L6 L9 L10 L13
(2n) L2 L5 L6 L7 L10 L11

(b) Paths in Loop

L3 = 1725 (1a)
L5 = 1725 (1b)

L7 = 1725 (2a)
L9 = 1725 (2b)

L11 = 1725 (3a)
L13 = 1725 (3b)

(c) Linear Constraints

Figure 5.5: A Fragment of the Whetstone Benchmark

Difficulty in Exploiting Temporal Path Information One reason for the over-

estimation of misprediction counts is the aggregate nature of the ILP approach. The

ILP approach only allows us to provide linear constraints on basic block execution

counts. However, path information (even if provided by the user) cannot be exploited

by the ILP solver. For example, let us study a program segment of the whet bench-

mark given in Figure 5.5. Figure 5.5(a) is a loop body with loop iteration counts

annotated. There are three if-then-else constructs embedded in the loop body.

By taking a closer look, we can figure out that the outcomes of these branches are

not dependent on the input data. The paths the loop body can take in each iteration

is given in Figure 5.5(b). We can see there are only two paths and they alternate

during the iterations. However, this temporal information cannot be fed into the

ILP solver. Instead, the ILP solver uses the constraints in Figure 5.5(c) to implicitly

consider any path satisfying these constraints. All such paths are considered in the

ILP solver’s quest to maximize branch predictions (leading to overestimation).

So far, we have presented the experimental results for branch prediction modeling.

104

-15

-10

-5

0

5

10

15

20

matsum matmult fdct fft dhry whet

pe
rc

en
ta

ge

change of cache misses
change of overheads

Figure 5.6: Change (in Percentage) of Cache Misses and Overall Penalties in Com-
bined Modeling to Those in Individual Modelings

We now discuss the integrated modeling of instruction caching and branch prediction.

First, we illustrate the importance of combined modeling of cache and speculation

for WCET analysis by comparing it against a naive technique which models both

caching and speculation but ignores the cache-speculation interaction. Figure 5.6

shows this comparison with benchmarks for which we can find the actual WCET

(and the corresponding cache miss and branch misprediction overheads).

The first group of bars indicate the percentage increase/decrease in cache misses

due to the effect of branch prediction on cache behavior. For matmult and fdct,

there are more cache misses in the combined modeling than in the naive modeling,

indicating that the destructive effects of speculation are more significant than the

constructive effects. For other programs, the constructive effects outperform the

destructive effects, thereby decreasing the number of cache misses. The second group

of bars shows the percentage change in total timing overhead of cache misses and

branch mispredictions due to cache-speculation interaction. The timing overhead

shows similar behavior as cache misses. The results show that if naive modeling is

used (i.e., the effect of branch prediction on caching is not modeled), the WCET

105

Pgm. WCET Mispred Cache miss
Obs. Est. Ratio Obs. Est. Obs. Est.

des 87436 96437 1.10 574 1460 3255 3497
dhry 218684 232523 1.06 2603 2514 8125 9639
fdct 8798 8803 1.00 8 8 626 626
fft 219428 229651 1.04 3094 5139 21 25
fir 65223 67370 1.03 183 370 3506 3451
isort 48685 48836 1.00 391 400 107 109
ludcmp 11328 13612 1.20 105 115 192 383
matsum 105504 105917 1.00 203 203 307 409
matmul 25155 25679 1.02 204 215 945 975
minver 8279 9461 1.14 122 140 183 279
qurt 1925 2242 1.16 25 73 57 63
whet 545544 581557 1.06 3752 10580 765 986

Table 5.3: Combined Analysis of Branch Prediction and Instruction Caching

can either be overestimated (as the downward bars indicate), or, more seriously, be

underestimated (as the upward bars indicate).

The results for combined modeling of instruction caching and branch prediction

are given in Table 5.3. Note that the numbers for the WCET columns are in processor

cycles while the Mispred. and Cache miss columns denote misprediction and cache

miss counts. As we can see from the ratio column, most benchmarks have tight

estimated bounds.

Modern processors have deep pipelines and an increasing gap between processor

speed an memory latency. Deeper pipelining leads to a larger misprediction penalty

(in terms of clock cycles). The increasing processor-memory speed gap results in a

longer cache miss penalty. Due to this trend of hardware advancement, we examine

the accuracy of our WCET analysis with more aggressive parameters by doubling

the bmp (from the default five clock cycles to 10 clock cycles) and the cmp (from 10

clock cycles to 20 clock cycles). From the chart in Figure 5.7 we can see that for each

benchmark, the Est/Obs WCET ratio does not change significantly under different

penalty settings. This indicates that the accuracy of our analysis can be applied to

processors with high misprediction penalties and/or cache miss penalties.

106

program bmp=5,cmp=10 bmp=10,cmp=10 bmp=5,cmp=20 bmp=10,cmp=20
des 1.09 1.15 1.1 1.17
dhry 1.29 1.34 1.34 1.38
fdct 1 1 1 1
fft 1.05 1.06 1.05 1.06
fir 1.09 1.16 1.07 1.13
isort 1 1 1 1
ludcmp 1.2 1.22 1.3 1.33
matmul 1.01 1.01 1.01 1.01
matsum 1 1 1 1
minver 1.14 1.18 1.19 1.23
qurt 1.16 1.35 1.15 1.37
whet 1.06 1.12 1.06 1.12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

des dhry fdct fft fir isort ludcmp matmul matsum minver qurt whet

bmp=5,cmp=10 bmp=10,cmp=10

bmp=5,cmp=20 bmp=10,cmp=20

Figure 5.7: Est./Obs. WCET Ratio under Different Misprediction Penalties and
Cache Miss Penalties

Program Complexity Time (seconds)
Bytes Blocks Branches Analysis Solving

des 3776 59 23 1.21 1.68
dhry 3144 98 34 1.47 2.48
fdct 5744 20 9 0.06 0.02
fft 2472 29 19 0.10 0.09
fir 3848 70 39 1.44 1.47
isort 152 7 4 0.02 0.01
ludcmp 5152 65 44 0.49 0.13
matmul 264 7 3 0.01 0.01
matsum 192 5 2 0.01 0.01
minver 6672 109 74 1.69 3.80
qurt 1944 33 20 0.76 0.63
whet 2512 40 22 0.40 0.55

Table 5.4: Program Complexity and Processing Time

107

(a) Scalability w.r.t. predictor table size

0

0.5

1

1.5

2

2.5

3

16 32 64 128 256 512 1k

Number of predictor table entries

S
ol

vi
ng

 ti
m

e
(in

 s
ec

on
ds

)

(b) Scalability w.r.t. cache size

0

0.5

1

1.5

2

2.5

3

32 X 8 32 X 16 32 X 32 32 X 64 32 X 128 32 X 256

Cache size (cache line bytes X cache lines)

S
ol

vi
ng

 ti
m

e
(in

 s
ec

on
ds

)

fft

dhry

des

whet

Figure 5.8: Scalability with Increasing Branch Prediction Table Size and Cache Size

Finally, we look at the performance of the analysis. The complexities of the pro-

grams and their solving times are given in Table 5.4. The complexity of a program is

presented by its size in terms of bytes, its number of basic blocks as well as its condi-

tional branches. This is only an approximate measure of the complexity. The column

Analysis gives the times that our analyzer takes for performing control flow analy-

sis, branch prediction modeling and the ILP problem formulation; and the Solving

column gives the ILP solving times by CPLEX. Here, the gshare scheme is used with

the default parameters used earlier. As we can see, the analysis times and ILP solving

times of all benchmarks are within seconds.

We now consider the variation of ILP solution time for some benchmarks with

larger predictor table sizes (the gshare scheme) and cache sizes. In Figure 5.8(a),

the branch prediction table sizes vary from 16 to 1024 entries. Recall that in gshare,

the branch instruction address is XOR-ed with the global branch history bits. In

practice, the gshare scheme uses a smaller number of history bits than address bits,

and XORs the history bits with the selected portion of the address [51]. The number

of history bits is usually small as the correlation among remote branches is very weak

in most cases. In our case, the history is two bits. Figure 5.8(a) shows that the ILP

solving times do not change substantially. The reason is that with a fixed history

size and an increased prediction table size, the number of cases where two or more

108

branches have the same pattern starts to decrease. Since the constraints for each

individual pattern are independent of the other patterns, the complexity of the ILP

problem largely depends on how many branches can execute with the same pattern.

Thus, ILP solution time does not increase significantly with the increase in size of

the branch prediction table.

Figure 5.8(b) shows the solving times when the instruction cache size is varied.

Again, we observe that the solving time does not change substantially. One of the

reasons is that the constraints for each cache line is independent of the other cache

lines. Thus, increasing the number of cache lines does not change the structure of the

ILP problem.

5.4 Summary

In this chapter, we presented a framework to model dynamic branch predictions for

WCET analysis. Our modeling can be targeted to various dynamic branch prediction

schemes (which are used in both general-purpose and embedded processors [32, 53]).

This ILP-based modeling is conveniently integrated with the ILP-based program path

analysis. We also extended the branch prediction modeling to a combined analysis

of branch prediction and instruction caching. The destructive/constructive effects of

branch prediction on cache behavior are captured uniformly. Using our technique, we

have obtained tight timing estimates for benchmark programs under various branch

prediction schemes. This technique also scales up with regard to the increased size of

the two hardware features: branch prediction table with larger size or larger instruc-

tion cache.

109

CHAPTER VI

ANALYSIS OF PIPELINE, BRANCH

PREDICTION AND INSTRUCTION CACHE

We have studied out-of-order pipelines for WCET analysis in Chapter 4 and branch

prediction as well as its interaction with instruction caches in Chapter 5. In this

chapter we integrate the timing effects of branch prediction and instruction caches

with our out-of-order pipeline modeling. To achieve this, we need to study the impact

of instruction caches and branch prediction on the pipeline. This involves changes in

our estimation algorithm as well as the execution graph for each basic block (since a

branch misprediction may execute additional code speculatively). These changes are

now described.

The rest of this chapter is organized as follows. First we describe how the WCET

estimation of a basic block is affected by branch prediction (Section 6.1), and instruc-

tion cache (Section 6.2). Then, in Section 6.3 we describe the ILP formulation for

WCET estimation of the whole program in presence of pipeline, cache and branch

prediction. In Section 6.4 we show by experimentation that the combined analysis

yields tight estimates. We conclude this chapter in Section 6.5.

6.1 Timing Estimation of a Basic Block in Pres-

ence of Branch Prediction

Clearly, if a branch is predicted correctly, then our pipeline analysis does not require

any modification. However, a branch misprediction results in instructions along the

wrong path being executed in the pipeline (without commit) and flushed out after

the branch is resolved. This involves changes in the execution graph of a basic block.

110

IF(I-1) ID(I-1) EX(I-1) WB(I-1) CM(I-1)

IF(Ib) ID(Ib) EX(Ib) WB(Ib) CM(Ib)

(a) Original execution graph

IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

IF(I-1) ID(I-1) EX(I-1) WB(I-1) CM(I-1)

IF(Ib) ID(Ib) EX(Ib) WB(Ib) CM(Ib)

(b) Modifications due to branch misprediction

IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

IF(I’) ID(I’) EX(I’) WB(I’)

prologue

body

prologue

body

wrong
path

Figure 6.1: Execution Graph with Branch Prediction

Before describing these changes, we make the following assumptions.

Assumptions First, we assume that the processor allows only one unresolved branch

at any point of time during execution. Thus, if another branch is encountered during

speculative execution, the processor simply waits till the previous branch is resolved.

Second, we assume that the outcome of a branch is resolved upon the completion of

its WB stage. If it is a misprediction, the wrong path instructions are flushed out

and the processor resumes execution along the correct path immediately. Last, we

assume that the branch prediction takes place at the end of the fetch stage. That is,

the target address is available at the end of the fetch stage irrespective of whether

a branch is predicted as taken or non-taken. In reality, this is easy for a non-taken

prediction; but for a taken prediction, extra resources, such as branch target buffer,

are needed to achieve this goal [30].

111

6.1.1 Changes to Execution Graph

We now describe the changes to the execution graph of a basic block in order to

account for instructions executed due to branch misprediction; these instructions are

also referred to as wrong path instructions. In particular, we discuss the changes to

execution graph nodes, dependency relation and contention relation among nodes.

Consider the execution graph of a basic block B with a body, a prologue and an

epilogue. If the last instruction of the prologue is a branch b, we include instructions

along the mispredicted path of b; otherwise no change is made to the execution graph.

A fragment of an execution graph without misprediction is shown in Figure 6.1(a)

and the modified execution graph fragment due to the misprediction of branch b is

shown in Figure 6.1(b).

Additional nodes in the execution graph A mispredicted branch brings the

instructions along the wrong path into the pipeline. In order to capture their effect

on the execution of normal instructions, we construct nodes corresponding to these

wrong path instructions in the execution graph. Given a conditional branch b and

its actual outcome X (non-taken or taken, denoted as 0 and 1, respectively), we

can identify the maximum sequence of wrong path instructions that can enter the

pipeline, called Spec(b, X). The length of this sequence is bounded by two factors.

• |Spec(b, X)| ≤ ROB size + IBuffer size where ROB size is the size of the

re-order buffer and the IBuffer size is the size of the Instruction fetch buffer

• If another conditional branch b′ is encountered along the wrong path, then the

sequence Spec(b, X) is terminated at b′.

In Figure 6.1(b), the shaded nodes are the wrong path nodes (only one instruction is

drawn for simplicity). There are no CM nodes for wrong path instructions as these

instructions are not allowed to commit.

112

Changes to dependency relation Due to the changes in the execution graph

nodes, the nodes can now be categorized as (a) prologue nodes (b) wrong path nodes

(c) body nodes (this is the basic block being analyzed) and (d) epilogue nodes. The

dependency edges among the nodes in each category are drawn as usual. However,

the dependency edges among nodes in different categories require some explanation.

First, we observe that the lifetimes of the wrong-path nodes and body nodes are

disjoint. Hence we do not draw any dependency edges between wrong path nodes

and body nodes. Instead we add a dependency edge between WB(b) and IF (I1)

where b is the branch in the prologue whose misprediction we are considering, and I1

is the first instruction in the basic block being analyzed. This reflects the fact that

instructions in the correct path (the body nodes) are fetched after the mispredicted

branch is resolved. The dependency edges between the prologue and body nodes

are drawn as usual, that is, they are not affected by the insertion of the wrong path

nodes. This is because we do not make any assumptions about when the mispredicted

branch is resolved.

Changes to contention relation Contention relation among prologue, body and

epilogue nodes remain unchanged. We also consider contention of prologue and wrong

path nodes in the estimation algorithm. Contention of body and wrong path nodes

are not considered since the body nodes and wrong path nodes are guaranteed to

have disjoint lifetimes.

6.1.2 Changes to Estimation Algorithm

As before, we use Algorithm 4 to estimate latest times of prologue nodes; earliest

times of prologue nodes are conservatively estimated to −∞. We still use Algorithm

2 to estimate the latest times and the Algorithm 3 to estimate the earliest times of the

body and epilogue nodes in the modified execution graph. For the wrong path nodes,

we use Algorithms 2, 3 to estimate the latest/earliest times but with one important

113

change. We observe that the wrong path nodes are flushed after branch b is resolved.

Therefore, the latest ready, start, and finish times of all the wrong path nodes are

additionally bounded by latest[tfinish
WB(b].

6.1.3 Handling Prediction of Other Branches

So far we have discussed how to handle a mispredicted branch at the end of the

prologue (i.e., if the last instruction before the current basic block is a mispre-

dicted branch). However, the prologue and epilogue can contain multiple conditional

branches if the basic blocks are too small. One possibility is to consider both the

scenarios (correct and misprediction) for these conditional branches. However, this

would require considering a large number of possibilities and is clearly very inefficient.

We observe that only the last conditional branch in the prologue has significant

impact on the execution time of a basic block. Therefore, for this branch, we consider

both the correct prediction and the misprediction scenarios and compute the execu-

tion time of the basic block accordingly. This leads to two possible WCET estimates

of the basic block under the two scenarios.

We avoid enumerating correct/wrong prediction of other branches in the prologue

or epilogue (i.e. any branch in the prologue or epilogue apart from the last branch

of prologue) as follows. Consider any such branch b in the prologue or epilogue. We

modify the execution graph such that correct as well as wrong prediction of b is con-

sidered. This is done by defining the special edge from the WB(b) to the IF stage of

the first instruction along the correct path as a conditional edge. This conditional

edge is considered during the estimation of the latest times; but it is ignored in the

estimation of earliest times. Similarly, all the wrong path nodes due to misprediction

of b and their contentions are also considered to be conditional. They are considered

during latest times calculations but are ignored for earliest times calculations. The in-

tuition behind this approach is to take both possibilities of prediction (correct/wrong

114

prediction) into account so as to compute safe upper and lower bounds.

6.2 Timing Estimation of a Basic Block in Pres-

ence of Instruction Caching

We now perform combined analysis of pipelining, branch prediction and instruction

caching. In our earlier discussions, we have assumed that there is no instruction

cache and each instruction fetch takes a single clock cycle. We now discuss how we

can capture the effects of instruction cache misses.

Given a cache configuration, a basic block Bi can be partitioned into a fixed

number of memory blocks, with instructions in each memory block being mapped to

the same cache line (cache accesses of instructions other than the first one in a memory

block are always cache hits). Let the memory blocks be denoted as Bi.1, Bi.2, . . . , Bi.ni
,

where ni is the number of memory blocks in Bi; a cache scenario of Bi is defined as

a mapping of hit or miss to each of the memory blocks of Bi.

Now we study the changes to be made to the estimation of Bi under a particular

cache scenario ω. First, it is obvious that the instruction cache only affects the

latency of the instruction fetch (IF) stage, but does not affect data dependencies or

contentions, thus no changes need to be made to the execution graph. Second, there

is a slight change to the estimation algorithm. Recall when instruction cache was

not modeled, the IF stage was assigned a single-cycle latency. Now the latency of IF

stage is determined by the cache access result of an instruction. If it is a hit, then a

single cycle is assigned; if it is a miss, a cache miss penalty, N is assigned; otherwise

the access result is unknown and an interval [1, N] is assigned, which covers both

possibilities.

Note that for the context instructions (prologue and epilogue) of Bi we do not

distinguish their cache scenarios. In other words, we conservatively assume the cache

access results of the first instructions of the memory blocks in prologue/epilogue

115

are unknown. Thus, we assign the interval [1, N] to the IF stage of each of those

instructions. This policy is based on the observation that cache hits/misses in context

instructions do not affect the execution time of Bi significantly.

In the preceding, we have clarified how to account for timing effects of instruction

cache if we know the cache scenario, that is, whether the memory blocks of a basic

block is in the cache. In reality, we need to consider all possible cache scenarios

and bound the number of occurrences of the different cache scenarios under which a

basic block may be executed. We accomplish this via Integer Linear Programming.

In particular, we introduce ILP variables to capture the number of occurrences of

any basic block Bi under (a) correct/wrong prediction of the preceding branch (b) a

specific cache scenario to denote hit/miss of memory blocks of Bi. Constraints are

imposed on these ILP variables to bound their values, thereby obtaining an estimate

of the program’s WCET.

6.3 Putting It All Together

We now describe the ILP formulation which integrates our analyses of pipelining,

instruction caching and branch prediction. Let B1, . . . , BN be the set of basic blocks

of the program whose WCET we are estimating. Now the execution of Bi is associated

with the prediction of its preceding branch and its cache scenario. We denote the

set of possible cache scenarios at Bi as Ωi. For the possible cache scenarios Ωi of Bi,

the number of cache scenarios can be 2ni in the worst case, where ni is the number

of memory blocks of Bi. However, constrained by the program control flow, only a

few scenarios are possible in reality. For better accuracy and less analysis time, it is

necessary to exclude those infeasible ones. This can be achieved by a preprocessing

step. The preprocessing traverses the program control flow graph by propagating and

updating the cache states; at the entry of each basic block, distinct cache scenarios

are collected. The preprocessing terminates until no new scenarios are found at any

116

basic block.

Considering the possible cache scenarios and correct/wrong prediction of the pre-

ceding branch for a basic block, the ILP objective function denoting a program’s

WCET is now written as follows. Note that Ωi denotes the set of possible cache

scenarios at Bi.

Time =
N∑

i=1

∑
j→i

∑
ω∈Ωi

(
costcω

j→i × ecω
j→i + costmω

j→i × emω
j→i

)
(6.1)

where costcω
j→i is the WCET of Bi executed under the following contexts: (1) Bi

is reached from a preceding block Bj (2) the branch prediction at the end of Bj is

correct or Bj does not have a conditional branch (3) Bi is executed under a cache

scenario ω ∈ Ωi; ecω
j→i is the number of times that Bi is executed under these contexts.

Similarly, costmω
j→i is the WCET of Bi executed under the following contexts: (1) Bi

is reached from a preceding block Bj (2) the branch at the end of Bj is mispredicted

(3) Bi is executed under a cache scenario ω ∈ Ωi; emω
j→i is the number of times that

Bi is executed under these contexts.

Using our out-of-order pipeline analysis in Chapter 4 as well as the extensions

proposed in Section 6.1 and Section 6.2, we can estimate the WCET of a basic block

provided the correct/wrong prediction of the preceding branch and the cache scenario

is known. In other words, we can estimate costcω
j→i and costmω

j→i as constants. We

now need to develop constraints to bound the ILP variables ecω
j→i and emω

j→i.

In Chapter 5, we have proposed an ILP-based branch prediction modeling tech-

nique, which can bound correct branch predictions and misprdictions. For instance,

the count of mispredictions of a basic block Bi along one edge i → j was denoted as

a variable emj→i and was bounded by constraints (5.2)-(5.5) in Section 5.1.1. The

correct predictions along the same edge, which was not explicitly defined in Chapter

5, can be straightforwardly defined as ecj→i = ej→i − emj→i.

Now we observe that ecω
j→i and emω

j→i are refined forms of ecj→i and emj→i where

block Bi’s executions are further distinguished with cache scenarios at Bi. This leads

117

to the following equations.

ecj→i =
∑
ω∈Ωi

ecω
j→i; emj→i =

∑
ω∈Ωi

emω
j→i (6.2)

On the other hand, with the ILP-based instruction cache modeling by Li et al. [43]

as well as our modification to it in Section 5.2, we can further bound the occurrences

of cache scenarios by relating them to the cache hits/misses of memory blocks. Recall

in Section 5.2, the cache miss count for a memory block Bi.k was denoted as cmi.k

(cache hit count for Bi.k, which was not explicitly defined, can be straightforwardly

defined as chi.k = vi − cmi.k, where vi is the execution count for both the basic block

Bi and the memory block Bi.k). Since a cache scenario ω of Bi is an assignment of hit

or miss to each of Bi’s memory blocks, we can partition Ωi, the set of possible cache

scenarios at Bi as

Ωi = Ωh
i.k ∪ Ωm

i.k Ωh
i.k ∩ Ωm

i.k = φ

Ωh
i.k (Ωm

i.k) is the set of those cache scenarios in Ωi in which memory block Bi.k results

in a hit (miss). Given Ωi, the sets Ωh
i.k and Ωm

i.k can be computed straightforwardly.

We can now state the following.

chi.k =
∑

ω∈Ωh
i.k

∑
j→i

(
ecω

j→i + emω
j→i

)
; cmi.k =

∑
ω∈Ωm

i.k

∑
j→i

(
ecω

j→i + emω
j→i

)
; (6.3)

With constraints in Equations 6.2 and 6.3, ecω
j→i and emω

j→i can be effectively

bounded.

Finally, the objective function in Equation 6.1 can be maximized by the ILP

solver subject to (1) the control flow constraints, (2) the branch prediction modeling

constraints, (3) the instruction cache modeling constraints, and (4) the constraints

presented in this section.

6.4 Experimental Evaluation

In this section, we evaluate the accuracy of our estimation technique for the same

benchmarks used in the earlier chapters. The configurations of the pipeline, the

118

Program WCET Ratio Analysis Solving
Obs. Est. time (sec.) time (sec.)

des 70342 89402 1.27 1.57 2.48
dhry 178033 224300 1.26 3.22 3.80
fdct 14635 15368 1.05 0.30 0.06
fft 1213159 1385034 1.14 1.21 0.21
fir 50600 64305 1.27 2.40 1.66
isort 46492 61733 1.33 0.13 0.01
ludcmp 12560 16143 1.29 1.24 0.27
matmul 15198 19097 1.26 0.05 0.01
matsum 101655 111758 1.10 0.04 0.01
minver 8518 11032 1.30 2.43 4.27
qurt 2147 2767 1.29 1.36 0.81
whet 890353 1063710 1.19 1.19 0.86

Table 6.1: Combined Analysis of Out-of-Order Pipelining, Branch Prediction and
Instruction Caching

instruction cache and the branch predictor are the same as in the earlier chapters

except for the branch predictor no branch misprediction penalty is explicitly given.

This is because the misprediction penalties are now accounted for by the pipelined

execution, and how long a misprediction of a branch b lasts is dependent on when

WB(b) completes, which means the misprediction penalties are no longer constants

(as assumed in Chapter 5).

The experimental results are given in Table 6.1. As the ratio column indicates,

the combined analysis yields tight estimations. To further illustrate the effectiveness

of the technique for the combined analysis, we compare the overestimation to that in

the pure pipeline modeling in Figure 6.2. It clearly shows that the combined analysis

does not produce significantly more overestimation than the pure pipeline modeling

does. This justifies our modifications to the pipeline analysis algorithms which take

into account mispredictions and cache misses. We also observed that for some of the

benchmarks such as des, fdct, and fft, the overestimation in the combined analysis

is even less than the pure pipeline modeling. This can be explained that with the

occurrences of cache misses and branch mispredictions in the pipelined execution,

119

Pure Pipeline Analysis Combined Analysis
des 0.31 0.27
dhry 0.19 0.26
fdct 0.15 0.05
fft 0.17 0.14
fir 0.28 0.27
isort 0.32 0.33
ludcmp 0.31 0.29
matmul 0.3 0.26
matsum 0.1 0.1
minver 0.31 0.3
qurt 0.24 0.29
whet 0.16 0.19

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

des dhry fdct fft fir isort ludcmp matmul matsum minver qurt whet

O
ve

re
st

im
at

io
n

Pure Pipeline Analysis Combined Analysis

Figure 6.2: Overestimations in the Pure Pipeline Analysis and Overestimations in
the Combined Analysis

instructions might have lower chances to contend with each other. For example,

with a cache miss, it might be possible to determine by our estimation algorithms

that for an instruction I preceding the cache miss and another one I ′ following it,

separated[EX(I), EX(I ′)] = false, which means I and I ′ cannot contend with each

other in any case. This fact might not hold without the cache miss. As we learned

from Chapter 4, less contentions can lead to more accurate estimates.

On the other hand, indicated by the Analysis time and Solving time columns,

the combined analysis can be performed very efficiently. For example, the increase of

ILP solving time to that in the branch prediction analysis (refer to Table 5.4) is not

very significant. This is because the main difference between the combined analysis

and branch prediction analysis is how the cost of a basic block is determined, while

the differences between the ILP problems in the two analyses are not so substantial.

6.5 Summary

This chapter presents a combined analysis of out-of-order pipelining, branch predic-

tion and instruction caching. We achieve this by studying the timing effects of branch

120

prediction and instruction caching on the pipeline, and we extend the pipeline analysis

algorithms to capture these effects. For branch prediction, we add additional nodes

and edges corresponding to speculatively executed code into the execution graph,

and make slight changes to the estimation algorithms to take care of the difference of

speculative execution. For instruction caching, the changes made to pipeline analysis

is even more straightforward: the only change is that the original single-cycle laten-

cies of the instruction fetches are changed to latencies corresponding to cache hits,

cache misses or both possibilities. The insignificant modifications made to the pure

pipeline analysis suggest a good extensibility of our pipeline analysis framework.

121

CHAPTER VII

CONCLUSION

This chapter concludes the thesis. In Section 7.1 we summarize the contribution of

this thesis and in Section 7.2 we discuss some future directions.

7.1 Summary of the Thesis

Worst Case Execution Time (WCET) prediction has been a fundamental problem for

hard real-time systems. Typically, the WCET of a task is hard to predict by running

the task because all possible sets of data input have to be evaluated to guarantee that

the worst case is covered. As a result, static Worst Case Execution Time analysis,

which predicts the maximum running time of the program without actually running

it, has become a promising alternative approach and extensive research has been

conducted in this direction. In general, it consists of three subtasks: (1) program

path analysis, which identifies feasible/infeasible program paths; (2) microarchitec-

ture modeling, which models the timing effects of hardware features to determine

instruction timing; and (3) WCET calculation, which calculates the WCET of the

program with program path information and instruction timing information. Among

them, microarchitecture modeling has become an increasingly important yet difficult

task mainly because modern processors have employed aggressive microarchitectural

features for the quest of higher performance.

In this thesis, we study the core microarchitectural features of modern processors,

namely out-of-order pipelines, dynamic branch predictions and instruction caching.

We have developed a microarchitecture modeling framework which models the above

three features in combination. The framework consists of two levels: the local level

122

analyses estimate the worst case execution time of a basic block under a specific

execution context, while the global level analyses are responsible for identifying exe-

cution contexts for basic blocks and bounding the occurrences of these contexts. This

way, we can estimate the WCET of the whole program by summing up the execution

times of basic blocks under different execution contexts. Under this framework, we

have developed analytical techniques for the individual microarchitectural features

and have proposed a method for combining all them together.

First, for out-of-order pipelines, we have proposed an innovative technique to

address a phenomenon called timing anomaly [50]. In the presence of timing anomaly,

techniques which generally take the local worst case for WCET estimation no longer

guarantee safe bounds. This prompts the need to consider all possible local cases

and their subsequent executions. However, a naive approach which enumerates the

possible cases individually is often expensive in terms of both the analysis time and

resource needs. Our technique avoids enumeration for individual cases. The key point

of this technique is a fixed-point analysis of time intervals at which the instructions can

enter/leave the pipeline stages. Experimental results have shown that this technique

yields accurate results and works efficiently.

Second, for dynamic branch predictions, we have proposed an Integer Linear Pro-

gramming based framework to bound branch mispredictions. The branch prediction

analysis is integrated with the ILP based WCET calculation. We follow this strategy

because branch prediction exhibits a strong global nature, that is, the prediction is

based on the executions of earlier branches whose distance to current branch could be

either near or far away. As a result, global program flow information is needed, which

can be provided by the ILP based WCET calculation. This ILP-based framework is

parameterized and can be straightforwardly targeted to a variety of branch prediction

schemes. Apart from branch prediction modeling, we have also studied the effect of

speculative execution (via branch prediction) on instruction caching. The effect is

123

captured by modifications to an existing ILP based instruction cache analysis [43].

Last, we have combined the analyses of the three features: out-of-order pipelines,

branch prediction and instruction caching. We do so by studying the timing effects of

branch prediction and instruction caching on the pipeline and making modifications

to the pure pipeline analysis algorithms to capture their effects. The modifications

are not substantial and the combined analysis works efficiently, suggesting a good

extensibility of our framework for modeling more microarchitectural features.

7.2 Future Work

We have identified the following directions to be pursued in the future.

Integration with program path analysis There has been substantial program

path analysis work in the literature. By excluding infeasible paths with the help of

program path analysis, the accuracy of WCET analysis can be significantly improved.

We will try to adopt some program path analysis techniques into our framework.

Data cache analysis Data cache is another important feature in current proces-

sors. Unlike instruction cache, whose behavior is only determined by the program

flow, the behavior of data cache is affected by both the program flow and data values.

As a result, techniques which exploit control flow information for instruction cache

analysis are not sufficient in the context of data cache; and we need to develop new

methods to model it.

Analysis for real-life processors We would like to extend our work to real-life

superscalar processors which essentially have the three components we have addressed.

Working on a real-life processor is more challenging and the experience of working on

it may inspire us with new ideas or improvements to existing ones.

124

WCET optimization Its purpose is to reduce the estimated WCET by program

transformation. There has been some research activities in this direction. Zhao et

al. [76, 75] optimize the WCET of a program by code positioning or by optimizing the

worst case path using compiler optimizations like path duplication and loop unrolling.

Bodin and Puaut [5] propose a WCET-oriented static branch prediction algorithm

for processors supporting compiler-directed branch prediction.

Integrating the timing analyzer with the compiler Timing analyzer needs

both high level source code information and low level object code information. For

example, the analyzer users may want to give program path information at the source

code level and want the compiler to transform it into object code level representation.

The compiler can also yield its results of data flow analysis for the timing analyzer,

such as loop bounds or infeasible paths. The key issue for integrating the timing

analyzer with the compiler is to develop a standard interface between the two par-

ties, such that when the timing analyzer is targeted to a new compiler, both the

modifications to the compiler and the timing analyzer are minimal and can be easily

done.

125

APPENDIX A

PROOFS FOR THE PIPELINE ANALYSIS

ALGORITHMS

In Chapter 4, we have presented how the algorithms (Algorithm 1, 2, 3 and 4) produce

estimates for the worst case costs of the basic blocks. Intuitively, they start with

conservative timing intervals for the executions of instructions and iteratively tighten

the intervals until a fixed-point is reached. In this appendix, we give a formal proof for

their correctness, that is, the calculated intervals indeed cover all possible execution

times of instructions and the worst case costs of basic blocks are not underestimated.

A.1 Proofs for the Context-Free Estimation

In this section we prove the correctness for the algorithms in Section 4.2.1 where

we do not consider the execution context of a basic block. We want prove that the

estimated WCET for a basic block is no less than any possible execution times of

that basic block by showing that the latest times and earliest times calculated by

Algorithm 2 and Algorithm 3 for the execution graph nodes are indeed the upper and

lower bounds of their corresponding execution times.

Lemma A.1. Let u and v be two contending nodes in the execution graph with

u ∈ late contenders(v), and let Slate be the set of late contenders of v computed

by Algorithm 2. If in a particular run, u delays v, and the relationship of the ex-

ecution times with the calculated earliest and latest times by our algorithms is that

126

∀w ∈ {u, v},

earliest[tready
w] ≤ tready

w ≤ latest[tready
w]

earliest[tstart
w] ≤ tstart

w ≤ latest[tstart
w]

earliest[tfinish
w] ≤ tfinish

w ≤ latest[tfinish
w] (A.1)

then u ∈ Slate, which means the actual late contender delaying v is in the calculated

set of late contenders.

Proof. Since u is a late contender delaying v, tstart
u < tready

v < tfinish
u . Now we prove

the lemma in two steps. First, we show that separated(u, v) = false. By definition,

separated(u, v) = true must satisfy the following inequalities

earliest[tready
u] ≥ latest[tfinish

v] ∨ earliest[tready
v] ≥ latest[tfinish

u]

Now we prove that neither of them can be true. With tready
u < tready

v and (A.1),

earliest[tready
u] ≤ tready

u < tready
v < tfinish

v ≤ latest[tfinish
v]

Similarly,

earliest[tready
v] ≤ tready

v < tfinish
u ≤ latest[tfinish

u]

Combine the above two, separated(u, v) = false.

Second, we show that earliest[tstart
u] < latest[tready

v]. This is true because

earliest[tstart
u] ≤ tstart

u < tready
v ≤ latest[tready

v]

Therefore, following the calculation of Slate in Algorithm 2, u ∈ Slate.

Lemma A.2. Let v be a node in the execution graph and let Searly be its early con-

tenders computed by Algorithm 2. If in a particular run, the actual early contenders

delaying v are S ′
early, and the inequalities in (A.1) are true for v and S ′

early here, then

S ′
early ⊆ Searly, which means the actual early contenders delaying v are included in

the set of early contenders calculated by Algorithm 2.

127

Proof. Since every u ∈ S ′
early is an early contender delaying v, tready

u < tfinish
v and

tready
v < tfinish

u . With (A.1), we have

earliest[tready
u] ≤ tready

u < tfinish
v ≤ latest[tfinish

v]

and

earliest[tready
v] ≤ tready

v < tfinish
u ≤ latest[tfinish

u]

which means separated(u, v) = false. Thus u ∈ Searly and S ′
early ⊆ Searly.

Theorem A.3. For every node v in the execution graph, the following relationship

between the actual execution times of v and its earliest/latest times calculated by

Algorithms 2 and 3 in each iteration of Algorithm 1 is true.

earliest[tready
v] ≤ tready

v ≤ latest[tready
v] (A.2)

earliest[tstart
v] ≤ tstart

v ≤ latest[tstart
v] (A.3)

earliest[tfinish
v] ≤ tfinish

v ≤ latest[tfinish
v] (A.4)

Proof. We prove it by induction. Assume (A.2 - A.4) are true for all nodes in previous

iterations and for the nodes earlier than v in topologically sorted order in current

iteration. We show that (A.2 - A.4) are also true for v in current iteration.

Obviously, the base case is true since the latest times are initialized as ∞ and

earliest times are initialized as 0 or minimum latencies (for finish events). For the

induction case, we take the latest times for discussion.

For v’s ready time, let its predecessors be DE(v) = {u | (u, v) ∈ DE}, then

tready
v = maxu∈DE(v)

(
tfinish
u

)
. On the other hand, by Algorithm 2 (Lines 12 - 13),

latest[tready
v] = maxu∈DE(v)

(
latest[tfinish

u]
)
. By induction, ∀u ∈ DE(v), tfinish

u ≤

latest[tfinish
u], therefore

tready
v = max

u∈DE(v)

(
tfinish
u

)
≤ max

u∈DE(v)

(
latest[tfinish

u]
)

= latest[tready
v]

128

For v’s start time, let the late contender delaying v, if any, be w and its delay to

v be d1 cycles; let the early contenders delaying v, if any, be S ′
early and their delays

to v be d2 cycles (note d1 must happen before d2 as w can only delay v by starting

execution before v is ready). Then tstart
v = tready

v + d1 + d2. For d1,

tready
v + d1 ≤ min

(
tfinish
w , tready

v + max latv − 1
)

According to Lemma A.1, w ∈ Slate, along with the induction assumption, we can

derive the following from above inequality

tready
v + d1 ≤ min

(
max

u∈Slate

(
latest[tfinish

u]
)
, latest

[
tready
v

]
+ max latv − 1

)
which means

tready
v + d1 ≤ latest[tstart

v]′ (A.5)

where latest[tstart
v]′ is the intermediate latest start time computed on Line 6 in Al-

gorithm 2. Next, for d2, suppose each u ∈ S ′
early delays v for du cycles (where

du ≤ max latu = max latv). Then d2 =
∑

u∈S′early
du ≤

∣∣S ′
early

∣∣ ×max latv. Accord-

ing to Lemma A.2, S ′
early ⊆ Searly. Thus

d2 ≤ |Searly| ×max latv (A.6)

Now we examine tstart
v under two cases: d2 = 0 and d2 > 0.

In the first case, tstart
v = tready

v + d1, and according to (A.5), tstart
v ≤ latest[tstart

v]′.

Compare to the latest[tstart
v] calculated on Line 10 in Algorithm 2, tstart

v ≤ latest[tstart
v].

In the second case, one implication is that tstart
v cannot be later than the finish

time of the last one who delays v, thus

tstart
v ≤ maxu∈S′early

(
tfinish
u

)
Since S ′

early ⊆ Searly and tfinish
u ≤ latest[tfinish

u] (by induction), we can derive from

above inequality the following

tstart
v ≤ maxu∈Searly

(
latest

[
tfinish
u

])
(A.7)

129

On the other hand, by applying (A.5) and (A.6),

tstart
v = tready

v + d1 + d2

≤ latest[tstart
v]′ + d2

≤ latest[tstart
v]′ + |Searly| ×max latv (A.8)

Combine (A.7) and (A.8),

tstart
v ≤ min

(
maxu∈Searly

(
latest

[
tfinish
u

])
, latest[tstart

v]′ + |Searly| ×max latv
)

(A.9)

in which the right hand side corresponds to tmp on Line 9 in Algorithm 2. Compare

to latest[tstart
v] calculated on Line 10, tstart

v ≤ latest[tstart
v].

For v’s finish time, suppose v executes for latv (≤ max latv) cycles, tfinish
v ≤

latest[tfinish
v] simply because

tfinish
v = tstart

v + latv

≤ latest[tstart
v] + max latv

Thus we have proved that the latest times calculated by Algorithm 2 indeed

provide upper bounds for the actual execution times of the nodes in the execution

graph. Similarly, we can prove that the earliest times calculated by Algorithm 3

indeed provide lower bounds.

With Theorem A.3, we can claim that the WCET of a basic block estimated by the

algorithms (1, 2 and 3) in Section 4.2.1 is a safe upper bound of the possible execution

times of that basic block. This is because the estimated WCET is latest
[
tfinish
CM(In)

]
,

which by Theorem A.3 is no less than the actual execution time, tfinish
CM(In).

130

A.2 Proofs for the Context-Inclusive Estimation

In this section we prove the correctness for the algorithms in Section 4.2.2 where we

take the execution context of a basic block into account. We want to prove that the

estimated WCET for a basic block is no less than any possible execution times of

that basic block. Recall the execution time is estimated as latest
[
tCM(In)

]finish − δ.

If we can show that latest
[
tCM(In)

]finish
is not underestimated and δ, the overlap, is

not overestimated, then the estimated execution time is correct. The correctness of

overlap estimation has been guaranteed by Theorem 4.1. Therefore we only need to

prove the correctness of the estimation of latest
[
tCM(In)

]finish
. We do this by proving

that for any node (prologue, body or epilogue), the estimated latest and earliest times

are indeed upper and lower bounds for its actual execution times.

We first show that the execution times of the prologue nodes are correctly bounded.

Algorithm 4.3 estimating the prologue nodes consists of two parts: one part for the

estimation of the shaded nodes, which have paths to IF (I1), the fetch of the first in-

struction in the body; and the other part for the rest prologue nodes. The correctness

of the first part has already been guaranteed by Inequality 4.2. The second part is

very similar to Algorithm 2, with one extra bound latest
[
tready
CM(I−p)

]
on Line 10 and

a maximized estimated delay from the late contender on Line 11. Now we only need

to prove the correctness for the two differences because the proof for the rest of the

algorithm can follow that in the previous section.

Lemma A.4. Suppose for each prologue node preceding an unshaded node v in topo-

logically sorted order, its latest and earliest times provide upper and lower bounds for

its execution times. Then, v’s latest ready time calculated by Lines 9 and 10 in Algo-

rithm 4 gives an upper bound on its actual ready time. That is, tready
v ≤ latest

[
tready
v

]
Proof. Let the immediate predecessors of v (those with a dependence edge to v),

denoted as DE(v), be partitioned into two parts: those in the prologue, denoted as

131

DE1(v); and those in the pre-prologue (which are not known), denoted as DE2(v).

Thus,

tready
v = max

uDE(v)

(
tfinish
u

)
= max

(
max

u∈DE1(v)

(
tfinish
u

)
, max

u∈DE2(v)

(
tfinish
u

))
(A.10)

First,

max
u∈DE1(v)

(
tfinish
u

)
≤ max

u∈DE1(v)

(
latest

[
tfinish
u

])
(A.11)

Second, all nodes in DE2(v) are pre-prologue nodes and they should have completed

execution when the last pre-prologue node CM(I−p) becomes ready, therefore

max
u∈DE2(v)

(
tfinish
u

)
≤ tready

CM(I−p) ≤ latest
[
tready
CM(I−p)

]
(A.12)

Combine (A.10), (A.11) and (A.12),

tready
v ≤ max

(
max

u∈DE1(v)

(
latest

[
tfinish
u

])
, latest

[
tready
CM(I−p)

])
The above right hand side is equal to the latest

[
tready
v

]
calculated by Lines 9 and 10.

Therefore we proved tready
v ≤ latest

[
tready
v

]
.

The correctness of Line 11 for bounding delay from an early contender is obvious

– the maximum delay max latv − 1 is assumed.

Theorem A.5. For every node v in the execution graph including the prologue, body

and epilogue, Inequalities (A.2 - A.4) are satisfied. In other words, the estimated latest

and earliest times indeed provide upper and lower bounds for the actual execution

times.

Proof. For the prologue nodes, the correctness of the only differences between Algo-

rithm 2 and Algorithm 4 has been proved by Lemma A.4, and the proof for the rest

of Algorithm 4 is the same as the proof for Algorithm 2 in last section. Similarly, the

132

estimation algorithms for body nodes and epilogue nodes are exactly the same as in

last section whose correctness has already been proved. Thus Inequalities (A.2 - A.4)

hold.

It can be proved straightforwardly from Theorem A.5 that latest
[
tready
CM(In)

]
is an

upper bound to the actual tready
CM(In). Since the estimated overlap δ has been proved

earlier to be a lower bound to the actual overlap, the estimated execution time

latest
[
tfinish
CM(In)

]
− δ is an upper bound to the actual execution time.

133

REFERENCES

[1] Aho, A., S. R. U. J., Compilers: Principles, Techniques and Tools. Addison-

Wesley, 1986.

[2] Altenbernd, P., “On the false path problem in hard real-time programs,” in

8th Euromicro Workshop on Real Time Systems (WRTS), 1996.

[3] Arnold, R., Mueller, F., Whalley, D., and Harmon, M., “Bounding

worst-case instruction cache performance,” in IEEE Real-Time Systems Sympo-

sium, 1994.

[4] Bate, I. and Reutemann, R., “Worst-case timing analysis for dynamic branch

predictors,” in 30th EuroMicro Conference, 2004.

[5] Bodin, F. and Puaut, I., “A WCET-oriented static branch prediction scheme

for real-time systems,” in Proc. of the 17th Euromicro Conference on Real-Time

Systems, (Palma de Mallorca, Spain), July 2005.

[6] Burger, D. and Austin, T., “The SimpleScalar Tool Set, Version 2.0,” Tech-

nical Report CS-TR-1997-1342, University of Wisconsin, Madison, June 1997.

[7] Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M., and

Watt, S., Maple V Language Reference Manual. Springer-Verlag, 1991.

[8] Chen, K., Malik, S., and August, D., “Retargatable static software timing

analysis,” in IEEE/ACM Intl. Symp. on System Synthesis (ISSS), 2001.

[9] Colin, A. and Puaut, I., “Worst case execution time analysis for a processor

with branch prediction,” Journal of Real time Systems, May 2000.

134

[10] Colin, A. and Puaut, I., “A modular and retargetable framework for tree-

based WCET analysis,” in Proc. of the 13th Euromicro Conference on Real-Time

Systems, (Delft, The Netherlands), pp. 37–44, June 2001.

[11] Colin, A. and Puaut, I., “A modular and retargetable framework for tree-

based WCET analysis,” Tech. Rep. 0, IRISA, March 2001.

[12] Combs, J., Combs, C., and Shen, J., “Mispredicted path cache effects,” in In

Euro-Par Conference, 1999.

[13] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to

Algorithms (Second Edition). MIT Press, 2001.

[14] Cousot, P. and Cousot., R., “Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints.,”

in ACM Symposium on Principles of Programming Languages, 1977.

[15] CPLEX, “The ILOG CPLEX Optimizer v7.5,” 2002. Commercial software,

http://www.ilog.com.

[16] Engblom, J., Processor Pipelines and Static Worst-Case Execution Time

Analysis. PhD thesis, Uppsala University, Sweden, 2002.

[17] Engblom, J., “Analysis of the execution time unpredictability caused by dy-

namic branch prediction,” in IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2003.

[18] Engblom, J. and Ermedahl, A., “Modeling complex flows for worst-case

execution time analysis,” in IEEE Real-Time Systems Symposium, 2000.

[19] Engblom, J., Ermedahl, A., and Altenbernd, P., “Facilitating worst-

case execution times analysis for optimized code,” in Proceedings of the 10th

Euromicro Real-Time Systems Workshop, 1998.

135

[20] Ermedahl, A. and Gustafsson, J., “Deriving annotations for tight calcula-

tion of execution time,” in European Conference on Parallel Processing, 1997.

[21] Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt,

M., Theiling, H., Thesing, S., and Wilhelm, R., “Reliable and precise

WCET determination for a real-life processor,” in Intl. Workshop on Embedded

Software (EmSoft), 2001.

[22] Ferdinand, C. and Wilhelm, R., “Fast and Efficient Cache Behavior Pre-

diction for Real-Time Systems,” Real-Time Systems, vol. 17, no. (2/3), 1999.

[23] Fields, B., Bodik, R., and Hill, M., “Slack: Maximizing performance under

technological constraints,” in 29th ACM Annual International Symposium on

Computer architecture, 2002.

[24] Healy, C., Arnold, R., Mueller, F., Whalley, D., and Harmon, M.,

“Bounding pipeline and instruction cache performance,” IEEE Transactions on

Computers, vol. 48, no. 1, 1999.

[25] Healy, C., Sjodin, M., Rustagi, V., and Whalley, D., “Bounding loop

iterations for timing analysis,” in IEEE Real-time Appplications Symposium

(RTAS), 1998.

[26] Healy, C., Sjodin, M., Rustagi, V., Whalley, D., and Engelen, R.,

“Supporting timing analysis by automatic bounding of loop iterations,” Real-

Time Systems, vol. 18, no. 2/3, pp. 129–156, 2000.

[27] Healy, C. and Whalley, D., “Automatic detection and exploitation of branch

constraints for timing analysis,” IEEE Transaction on Software Engineering,

vol. 28, no. 8, 2002.

136

[28] Healy, C., Whalley, D., and Harmon, M., “Integrating the timing analysis

of pipelining and instruction caching,” in IEEE Real-Time Systems Symposium

(RTSS), 1995.

[29] Heckmann, R., Langenbach, M., Thesing, S., and Wilhelm, R., “The

Influence of Processor Architecture on the Design and the Results of WCET

Tools,” Proceedings of the IEEE, vol. 91, July 2003.

[30] Hennessy, J. and Patterson, D., Computer Architecture- A Quantitative

Approach. Morgan Kaufmann, 1996.

[31] Hur, Y., Bae, Y. H., Lim, S.-S., Kim, S.-K., Rhee, B.-D., Min, S. L.,

Park, C. Y., Shin, H., and Kim, C. S., “Worst case timing analysis of RISC

processors: R3000/r3010 case study,” in IEEE Real-Time Systems Symposium

(RTSS), 1995.

[32] Inc., S., “SiByte SB-1 MIPS64 embedded CPU Core,” in Embedded Processor

Forum, 2000.

[33] Kirner, R. and Puschner, P., “Transformation of path information for

WCET analysis during compilation,” in 13th Euromicro Conference on Real-

Time Systems, 2001.

[34] Kirner, R. and Puschner, P., Extending Optimising Compiliation to Sup-

port Worst-Case Execution Time Analysis. PhD thesis, Vienna University of

Technology, 2003.

[35] Kligerman, E. and Stoyenko, A. D., “Real-time euclid: a language for

reliable real-time systems,” IEEE Trans. Softw. Eng., vol. 12, no. 9, pp. 941–

949, 1986.

137

[36] Langenbach, M., Thesing, S., and Heckmann, R., “Pipeline modeling for

timing analysis,” in Static Analysis Symposium (SAS), 2002.

[37] Li, X., Mitra, T., and Roychoudhury, A., “Accurate timing analysis by

modeling caches, speculation and their interaction,” in ACM Design Automation

Conf. (DAC), 2003.

[38] Li, X., Mitra, T., and Roychoudhury, A., “Modeling control speculation

for timing analysis,” Journal of Real-Time Systems, vol. 29, no. 1, 2005.

[39] Li, X., Roychoudhury, A., and Mitra, T., “Modeling out-of-order proces-

sors for software timing analysis,” in IEEE Real-Time Systems Symposium, 2004.

[40] Li, Y.-T. S. and Malik, S., “Performance analysis of embedded software using

implicit path enumeration,” in Workshop on Languages, Compilers and Tools for

Real-Time Systems, 1995.

[41] Li, Y.-T. S., Malik, S., and Wolfe, A., “Efficient microarchitecture mod-

eling and path analysis for real-time software,” in Proceeding of the IEEE Real-

Time Systems Symposium, 1995.

[42] Li, Y.-T. S., Malik, S., and Wolfe, A., “Cache modeling for real-time

software: Beyond direct mapped instruction caches,” in Proceeding of the IEEE

Real-Time Systems Symposium, 1996.

[43] Li, Y.-T. S., Malik, S., and Wolfe, A., “Performance estimation of embed-

ded software with instruction cache modeling,” ACM Transactions on Design

Automation of Electronic Systems, vol. 4, no. 3, 1999.

[44] Lim, S.-S., Bae, Y., Jang, G., Rhee, B.-D., Min, S., Park, C., Shin, H.,

Park, K., and Kim, C., “An accurate worst-case timing analysis technique for

138

RISC processors,” IEEE Transactions on Software Engineering, vol. 21, no. 7,

1995.

[45] Lim, S.-S., Bae, Y., Jang, G., Rhee, B., Min, S., Park, C., Shin, H.,

Park, K., and Kim, C., “An accurate worst case timing analysis technique for

risc processors,” in IEEE Real-Time Systems Symposium, 1994.

[46] Lim, S.-S., Han, J., Kim, J., and Min, S., “A worst case timing analysis

technique for multiple-issue machines,” in IEEE Real Time Systems Symposium

(RTSS), pp. 334–345, 1998.

[47] Liu, Y. and Gomez, G., “Automatic time-bound analysis for a higher-order

language,” in Proceedings of the ACM SIGPLAN Workshop on Languages, Com-

pilers, and Tools for Embedded Systems (LCTES), 1998.

[48] Liu, Y. and Gomez, G., “Automatic accurate cost-bound analysis for high-level

languages,” IEEE Transactions on Computers, vol. 50, no. 12, 2001.

[49] Lundqvist, T. and Stenström, P., “An integrated path and timing analysis

method based on cycle-level symbolic execution,” Journal of Real-Time Systems,

vol. 17, no. 2-3, 1999.

[50] Lundqvist, T. and Stenström, P., “Timing anomalies in dynamically sched-

uled microprocessors,” in IEEE Real-Time Systems Symposium, 1999.

[51] McFarling, S., “Combining branch predictors,” tech. rep., DEC Western Re-

search Laboratory, 1993.

[52] McMillan, K. and Dill, D., “Algorithms for interface timing verification,”

in IEEE International Conference on Computer Design, 1992.

[53] Microelectronics, I., “PowerPC 440GP Embedded Processor,” in Embedded

Processor Forum, 2001.

139

[54] Mitra, T., Roychoudhury, A., and Li, X., “Timing analysis of embedded

software for speculative processors,” in ACM SIGDA International Symposium

on System Synthesis (ISSS), 2002.

[55] Mueller, F. and Whalley, D. B., “Fast instruction cache analysis via static

cache simulation,” in Simulation Symposium, 1995.

[56] Mueller, F., Static Cache Simulation and its Applications. PhD thesis, The

Florida State University, 1994.

[57] Park, C., Predicting Deterministic Execution Times of Real-Time Programs.

PhD thesis, University of Washington, 1992.

[58] Park, C. and Shaw, A., “Experiments with a program timing tool based on

source-level timing schema,” IEEE Transactions on Computers, vol. 24, no. 5,

1991.

[59] Pierce, J. and Mudge, T., “Wrong-path instruction prefetching,” in In ACM

Intl. Symp. on Microarchitectures(MICRO), 1996.

[60] Price, C., “MIPS IV Instruction Set, revision 3.1,” 1995.

[61] Puschner, P. and Koza, C., “Calculating the maximum execution time of

real-time programs,” Journal of Real-time Systems, vol. 1, no. 2, 1989.

[62] Puschner, P., “Worst-case execution time analysis at low cost,” Control En-

gineering Practice, vol. 6, pp. 129–135, Jan. 1998.

[63] Real-Time Research Group at Seoul National University, “SNU

Real-Time Benchmarks.” http://archi.snu.ac.kr/RESEARCH/index.html.

[64] Schneider, J. and Ferdinand, C., “Pipeline behavior prediction for super-

scalar processors by abstract interpretation,” in ACM Intl. Workshop on Lan-

guages, Compilers and Tools for Embedded System (LCTES), 1999.

140

[65] Schrijver, A., Theory of Linear and Integer Programming. John Wiley Ltd.,

1986.

[66] Shaw, A., “Reasoning about time in higher level language software,” IEEE

Transactions on Software Engineering, vol. 1, no. 2, 1989.

[67] Sohi, G., “Instruction issue logic for high-performance, interruptible, multiple

functional unit, pipelined computers,” IEEE Transactions on Computers, vol. 39,

no. 3, 1990.

[68] Stappert, F., Ermedahl, A., and Engblom, J., “Efficient longest exe-

cutable path search for programs with complex flows and pipeline effects,” Tech.

Rep. 2001-012, Uppsala University, 2001.

[69] Sultan, A., Linear Programming, An Introduction with Applications. Academic

Press Inc., 1986.

[70] Theiling, H. and Ferdinand, C., “Combining Abstract Interpretation and

ILP for Microarchitecture Modelling and Program Path Analysis,” in Proceedings

of the 19th IEEE Real-Time Systems Symposium, 1998.

[71] Theiling, H., Ferdinand, C., and Wilhelm, R., “Fast and precise WCET

prediction by separated cache and path analysis,” Journal of Real Time Systems,

May 2000.

[72] Thesing, S., Safe and Precise Worst-Case Execution Time Prediction by Ab-

stract Interpretation of Pipeline Models. PhD thesis, University of Saarland,

2004.

[73] Yeh, T. and Patt, Y., “Alternative implementations of two-level adaptive

branch prediction,” in ACM Intl. Symp. on Computer Architecture (ISCA), 1992.

141

[74] Yen, T. and Wolf, W., “Performance estimation for real-time distributed

embedded systems,” IEEE Transactions on Parallel and Distributed Systems,

vol. 9, no. 11, 1998.

[75] Zhao, W., Kreahling, W., Whalley, D., Healy, C., and Mueller, F.,

“Improving WCET by optimizing worst-case paths,” in IEEE Real-Time and

Embedded Technology and Applications Symposium, 2005.

[76] Zhao, W., Whalley, D., Healy, C., and Mueller, F., “WCET code po-

sitioning,” in IEEE Real-Time Systems Symposium, 2004.

142

