
Bucketing Failing Tests via Symbolic Analysis

Van-Thuan Pham1, Sakaar Khurana2, Subhajit Roy2, Abhik Roychoudhury1

1National University of Singapore, Singapore
2Indian Institute of Technology Kanpur, India

{thuanpv,abhik}@comp.nus.edu.sg sakaark@gmail.com subhajit@iitk.ac.in

Abstract. A common problem encountered while debugging programs
is the overwhelming number of test cases generated by automated test
generation tools, where many of the tests are likely to fail due to same
bug. Some coarse-grained clustering techniques based on point of failure
(PFB) and stack hash (CSB) have been proposed to address the problem.
In this work, we propose a new symbolic analysis-based clustering algo-
rithm that uses the semantic reason behind failures to group failing tests
into more “meaningful” clusters. We implement our algorithm within the
KLEE symbolic execution engine; our experiments on 21 programs drawn
from multiple benchmark-suites show that our technique is effective at
producing more fine grained clusters as compared to the FSB and CSB
clustering schemes. As a side-effect, our technique also provides a seman-
tic characterization of the fault represented by each cluster—a precious
hint to guide debugging. A user study conducted among senior under-
graduates and masters students further confirms the utility of our test
clustering method.

1 Introduction
Software debugging is a time consuming activity. Several studies [4], [6], [8],
[9], [18] have proposed clustering techniques for failing tests and proven their
effectiveness in large-scale real-world software products. The Windows Error
Reporting System (WER) [8] and its improvements such as ReBucket [6] try
to arrange error reports into various “buckets” or clusters. WER employs a
host of heuristics involving module names, function offset and other attributes.
The Rebucket approach (proposed as an improvement to WER) uses specific
attributes such as the call stack in an error report.

Although the techniques have been applied widely in industry, there are
three common problems that they can suffer from (as mentioned in [8]). The
first problem is “over-condensing” in which the failing tests caused by multiple
bugs are placed into a single bucket. The second problem is “second bucket” in
which failing tests caused by one bug are clustered into different buckets. The
third one, “long tail” problem, happens if there are many small size buckets
with just one or a few tests. For example, using failure type and location (as
used in KLEE [4]) for clustering tests are more likely to suffer from both over-
condensing and second bucket problems as they would group all tests that fail
at the same location, completely insensitive to the branch sequence and the call-
chain leading to the error. Call stack similarity for clustering tests also suffers

2 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

from the “over-condensing” and “second bucket” problems because it is insensi-
tive to the intraprocedural program paths (i.e. the conditional statements within
functions). One of the main reasons why techniques in [4], [6], [8], [9], [18] suffer
from these problems is that they do not take program semantics into account.

In this work, we propose a novel technique to cluster failing tests via symbolic
analysis. Unlike previous work that drive bucketing directly from error reports,
we adapt symbolic path exploration techniques (like KLEE [4]) to cluster (or
bucket) the failing tests on-the-fly. We drive bucketing in a manner such that
tests in each group fail due to the same reason. Since we use symbolic analysis
for clustering, our technique leads to more accurate bucketing; that is (a) tests
for two different bugs are less likely to appear in the same bucket, and (b)
tests showing the same bug are less likely to appear in different buckets. We
experimentally evaluate our semantics-based bucketing technique on a set of 21
programs drawn from five repositories: IntroClass, Coreutils, SIR, BugBench and
exploit-db. Our results demonstrate that our symbolic analysis based bucketing
technique is effective at clustering tests: for instance, the ptx program (in our set
of benchmarks) generated 3095 failing tests which were grouped into 3 clusters
by our technique. Similarly, our tool clustered 4510 failing tests of the paste
program into 3 clusters.

In addition to bucketing failures, our tool provides a semantic characteriza-
tion of the reason of failure for the failures in each cluster. This characterization
can assist the developers better understand the nature of the failures and, thus,
guide their debugging efforts. The existing approaches are not capable of defin-
ing such an accurate charaterization of their clusters (other than saying that all
tests fail at a certain location or with a certain stack configuration).

While our algorithm is capable of bucketing tests as they are generated via
a symbolic execution engine, it is also capable of clustering failures in existing
test-suites by a post-mortem analysis on the set of failures.

The contributions of this paper are as follows:

– We propose an algorithm to efficiently cluster failing test cases, both for
the tests generated automatically by symbolic execution as well as tests
available in existing test-suites. Our algorithm is based on deriving a culprit
for a failure by comparing the failing path to the nearest correct path. As
we use semantic information from the program to drive our bucketing, we
are also able to derive a characterization of the reason of failure of the tests
grouped in a cluster. The existing approaches are not capable of defining
such characterization for the clusters they produce.

– We implement a prototype of the clustering approach on top of the symbolic
execution engine KLEE [4]. Our experiments on 21 programs show that our
approach is effective at producing more meaningful clusters as compared to
existing solutions like the point of failure and stack hash based clustering.

2 Overview
We illustrate our technique using a motivating example in Figure 1. In the
main() function, the code at line 27 manages to calculate the value of (2x +

Bucketing Failing Tests via Symbolic Analysis 3

x! +
∑y

i=0 i) in which x and y are non-negative integers. It calls three functions,
power(), factorial() and sum(), to calulate 2x, x! and sum of all integer num-
bers from 0 to y. While sum() is a correct implementation, both power() and
factorial() are buggy.

In the power() function, the programmer attempts an optimization of saving
a multiplication: she initializes the result (the integer variable pow()) to 2 (line 2)
and skips the multiplication at line 5 if n equals 1. However, the optimization
does not handle the special case in which n is zero. When n is zero, the loop is
not entered and the function returns 2: it is a wrong value since 20 must be 1.
Meanwhile, in the factorial() function the programmer uses a wrong condition
for executing the loop at line 13. The correct condition should be i ≤ n instead
of i < n. The incorrect loop condition causes the function to compute factorial
of n− 1 so the output of the function will be wrong if n ≥ 2.

1 unsigned int power(unsigned int n) {

2 unsigned int i, pow = 2;

3 /* Missing code: if (n == 0) return 1; */

4 for(i=1; i<=n; i++) {

5 if(i==1) continue;

6 pow = 2*pow;

7 }

8 return pow;

9 }

10 unsigned int factorial(unsigned int n) {

11 unsigned int i,result = 1;

12 /* Incorrect operator: < should be <= */

13 for(i=1;i<n;i++)

14 result = result*i;

15 return result;

16 }

17 unsigned int sum(unsigned int n) {

18 unsigned int result = 0, i;

19 for (i=0; i<=n; i++)

20 result += i;

21 return result;

22 }

23 int main() {

24 unsigned int x, y, val , val_golden;

25 make_symbolic(x, y);

26 assume(x<=2 && y <=2);

27 val = power(x)+ factorial(x)+sum(y);

28 assert(val == golden_output(x, y));

29 return 0;

30 }

Fig. 1: Motivating Example

We can use a symbolic exe-
cution engine (like KLEE) to
generate test cases that ex-
pose the bugs. In order to do
that, we first mark the vari-
ables x and y as symbolic
(line 25) and add an assert
statement at line 28. The asser-
tion is used to check whether
the calculated value for 2x +
x! +

∑y
i=0 (as stored in val)

is different from the expected
value which is fetched from
golden output().

The specification oracle
golden output() can be inter-
preted in many ways depend-
ing on the debugging task: for
example, it can be the previous
version of the implementation
when debugging regression er-
rors, or the expected result of
each test when run over a test-
suite. For the sake of simplic-
ity, we add an assume() state-
ments at line 26 to bound the

values of symbolic variables x and y.

Figure 2 shows the symbolic execution tree that KLEE would explore when
provided with this example. In this paper, we use the term failing path to indi-
cate program paths that terminate in error. The error can be assertion violation
or run-time error detected by symbolic execution engine such as divide-by-zero
or memory access violation (as supported in KLEE). In contrast, the term pass-

4 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

Table 1: Clustering result: Symbolic analysis

Path Culprit Clus.

ID Test Case Path Condition Constraint ID

1 x=0, y=0 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y ≤ 0) (x < 1) 1

2 x=0, y=1 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y > 0)∧(y ≤ 1) (x < 1) 1

3 x=0, y=2 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y > 0)∧(y > 1)∧(y ≤ 2) (x < 1) 1

4 x=1, y=0 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x < 2)∧(y ≤ 0) NA NA

5 x=1, y=1 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x < 2)∧(y > 0)∧(y ≤ 1) NA NA

6 x=1, y=2 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x < 2)∧(y > 0)∧(y > 1)∧(y ≤ 2) NA NA

7 x=2, y=0 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y ≤ 0) (x ≥ 2) 2

8 x=2, y=1 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y > 0)∧(y ≤ 1) (x ≥ 2) 2

9 x=2, y=2 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y > 0)∧(y > 1)∧(y ≤ 2) (x ≥ 2) 2

ing path indicates paths that successfully reach the end of the program (or the
return statement in the intraprocedural setting) with no errors.

As shown in Figure 2, KLEE explores 9 feasible executions and detects 6
failing paths; the paths are labeled from 1 to 9 in the order tests are generated
while following the Depth-First-Search (DFS) search strategy. If we apply failure
location based or call-stack based bucketing techniques, both of them will place
all 6 failing tests in a single cluster as there is only one failure location at line 28,
and the call stacks are identical when the failure is triggered. Hence, both the
techniques suffer from the “over-condensing” problem as the failures are due to
two different bugs (in the power() and factorial() functions).

Let us now present our approach informally: given a failing test t encountered
during symbolic exploration, our algorithm compares the path condition of t
with the path condition of a successful test t′ that has the longest common
prefix with t. The branch b at which the execution of t and t′ differ is identified
as the culprit branch and the branch condition at b which leads to the failing
path is identified as the culprit constraint—the “reason” behind the failure of t.
Intuitively, the reason behind blaming this branch for the failure is that the
failing path t could have run into the passing execution t′—only of this branch
b had not misbehaved!

Table 1 presents the result produced by our clustering algorithm (refer to
Figure 2 for the symbolic execution tree). The failing tests 1-3 fail due to the
bug in the power() function. The culprit constraint or “reason” for these failures
is attributed as x < 1, since it is the condition on the branch where these failing
tests diverge from their nearest passing test (Test 4), after sharing the longest
common prefix ((0 ≤ x ≤ 2)∧(0 ≤ y ≤ 2)). Hence, we create the first cluster
(Cluster 1) and place tests 1-3 in it, with the characterization of the cluster as
(x < 1). Similarly, the failing tests 7-9 (failing due to the bug in factorial())
share the longest common prefix ((0 ≤ x ≤ 2)∧(0 ≤ y ≤ 2)∧(x ≥ 1)) with Test
4; thus, the culprit constraint for tests 7-9 is inferred as (x ≥ 2). Hence, these
tests are placed in Cluster 2 with the characterization (x ≥ 2). Note that the
culprit constraints (x < 1) and (x ≥ 2) form a neat semantic characterization of
the failures in these two clusters.

Summary. In this example, our semantic-based bucketing approach correctly
places 6 failing tests into 2 different clusters. Unlike the two compared tech-

Bucketing Failing Tests via Symbolic Analysis 5

[PC:0≤x≤2;0≤y≤2]
x ≥ 1?

[PC:True]
0≤x≤2; 0≤y≤2

[PC:1≤x≤2;0≤y≤2]
x ≥ 2?

[PC:x==0;0≤y≤2]
y > 0?

[PC:x==0;1≤y≤2]
y > 1?

[PC:x==1;0≤y≤2]
y > 0?

[PC:x==2;0≤y≤2]
y > 0?

[PC:x==1;1≤y≤2]
y > 1?

[PC:x==2;1≤y≤2]
y > 1?

1

2 3 4

5 6

7

8 9

False True

False

False

False

False False

True

True True

True True

True

True

False FalseCluster 1

Cluster 2

Fig. 2: Symbolic execution tree for motivating example

niques, it does not suffer from the “over-condensing” problem, and therefore,
yields a more meaningful clustering of failures. Moreover, we provide a semantic
characterization for each cluster that can assist developers in their debugging
efforts. In fact, the characterization for Cluster1 (x < 1) exactly points out
the bug in power() (as x is non-negative integer, x < 1 essentially implies that
x equals zero). Likewise, the characterization for Cluster2 (x ≥ 2) hints the
developer to the wrong loop condition in the factorial() function (as the loop
is only entered for x ≥ 2). We, however, emphasize that our primary objective
is not to provide root-causes for bugs, but rather to enable a good bucketing of
failures.

3 Reasons of failure
The path condition ψp of a program path p is a logical formula that captures
the set of inputs that exercise the path p; i.e. ψp is true for a test input t if and
only if t exercises p. We say that a path p is feasible if its path condition ψp is
satisfiable; otherwise p is infeasible.

We record the path condition ψp for a path p as a list of conjuncts lp. Hence,
the size of a path condition (|ψp|) is simply the cardinality of the list lp. We
also assume that as symbolic execution progresses, the branch constraints (en-
countered during the symbolic execution) are recorded in the path condition in
order. This enables us to define prefix(i, ψp) as the prefix of length i of the list lp
that represents the path condition ψp. Hence, when we say that two paths p and
q have a common prefix of length i, it means that prefix(i, ψp) = prefix(i, ψq).

Definition 1 (Culprit Constraint)

Given a failing path πf with a path condition ψf (as a conjunct b1 ∧ b2 ∧
· · · ∧ bi ∧ . . . bn) and an exhaustive set of all feasible passing paths Π, we

6 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

attribute bi (the i-th constraint where i ranges from 1 to n) as the culprit
constraint if and only if i − 1 is the maximum value of j (0 ≤ j < n) such
that prefix(j, ψf) = prefix(j, ψp) among all passing paths p ∈ Π.

We use the culprit constraint (as a symbolic expression) as the reason why
the error path “missed” out on following the passing path; in other words, the
failing path could have run into a passing path, only if the branch corresponding
to the culprit constraint had not misbehaved.

Our heuristic of choosing the culprit constraint in the manner described above
is primarily designed to achieve the following objectives:
– Minimum change to Symbolic Execution Tree: Our technique targets

well-tested production-quality programs that are “almost” correct; so, our
heuristic of choosing the latest possible branch as the “culprit” essentially
tries to capture the intuition that the symbolic execution tree of the correct
program must be similar to the symbolic execution tree of the faulty pro-
gram. Choosing the latest such branch as the culprit is a greedy attempt at
encouraging the developer to find a fix that makes the minimum change to
the current symbolic execution tree of the program.

– Handle “burst” faults: In Figure 2, all paths on one side of the node with
[PC : 1 ≤ x ≤ 2; 0 ≤ y ≤ 2] fail. So, the branching predicate for this node,
x ≥ 2, looks “suspicious”. Our heuristic of identifying the latest branch as
the culprit is directed at handling such scenarios of “burst” failures on one
side of a branch.

4 Clustering framework
4.1 Clustering algorithm
Algorithm 1 shows the core steps in dynamic symbolic execution with additional
statements (highlighted in grey) for driving test clustering. The algorithm op-
erates on a representative imperative language with assignments, assertions and
conditional jumps (adapted from [3], [13]). A symbolic executor maintains a state
(l, pc, s) where l is the address of the current instruction, pc is the path condition,
and s is a symbolic store that maps each variable to either a concrete value or an
expression over input variables. At line 3, the algorithm initializes the worklist
with an initial state pointing to the start of the program (l0, true, ∅): the first
instruction is at l0, the path condition is initialized as true and the initial store
map is empty.

The symbolic execution runs in a loop until the worklist W becomes empty. In
each iteration, based on a search heuristic, a state is picked for execution (line 7).
Note that to support failing test bucketing, the search strategy must be DFS
or an instance of our clustering-aware strategy (clustering-aware search strategy
discussed in Section 4.2). A worklist S (initialized as empty) keeps all the states
created/forked during symbolic exploration.

If the current instruction is an assignment instruction, the symbolic store s
is updated and a new state pointing to the next instruction is inserted into S
(lines 8 − 9). A conditional branch instruction is processed (line 10) via a con-
straint solver that checks the satisfiability of the branch condition; if both its

Bucketing Failing Tests via Symbolic Analysis 7

Algorithm 1 Symbolic Exploration with Test Clustering

1: procedure SymbolicExploration(l0, W)

2: C ← {}; passList← []; failList← [] . initialization for bucketing

3: W ← {(l0, true, ∅)} . initial worklist
4: while W 6= ∅ do
5: (l, pc, s)← pickNext(W)

6: S ← ∅
7: switch instrAt(l) do . execute instruction
8: case v := e . assignment instruction
9: S ← {(succ(l), pc, s[v → eval(s, e)])}

10: case if (e) goto l′ . branch instruction
11: e← eval(s, e)
12: if (isSat(pc ∧ e) ∧ isSat(pc ∧ ¬e)) then
13: S ← {(l′, pc ∧ e, s), (succ(l), pc ∧ ¬e, s)}
14: else if (isSat(pc ∧ e) then
15: S ← {(l′, pc ∧ e, s)}
16: else
17: S ← {(succ(l), pc ∧ ¬e, s)}
18: end if
19: case assert(e) . assertion
20: e← eval(s, e)
21: if (isSat(pc ∧ ¬e)) then
22: testID ← GenerateTest(l,pc,s)

23: pc′ ← ConvertPC(pc)

24: AddToList(failList,(testID,pc′))

25: continue
26: else
27: S ← {(succ(l), pc ∧ e, s)}
28: end if
29: case halt . end of path
30: testID ← GenerateTest(l,pc,s)

31: pc′ ← ConvertPC(pc)

32: AddToList(passList,(testID,pc′))

33: if failList 6= [] then

34: ClusterTests(C,passList,failList)

35: failList← [] . empty failing list

36: end if
37: continue
38: W ←W ∪ S . update worklist
39: end while
40: if failList 6= [] then

41: ClusterTests(C,passList,failList)

42: end if
43: end procedure

branches are satisfiable, two new states are created and inserted into S. If only
one of the branches is satisfiable, the respective state is added to S. For assert
instructions, the symbolic execution checks the assert condition, and if it holds,
a new program state is created and the state is added to S. If the condition

8 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

does not hold, it triggers an assertion failure, thereby, generating a failing test
case (we call the respective test case a “failing test”). Some symbolic execution
engines (like KLEE [4]) perform run-time checks to detect failures like divide-
by-zero and memory access violations; in this algorithm, the assert instruction
is used to represent the failures detected by such checks as well. On encountering
a halt instruction, the symbolic execution engine generates a test-case for the
path (we refer to such a test case as a “passing test”). The halt instruction
represents a normal termination of the program.

Algorithm 2 Clustering failing tests
1: procedure ClusterTests(Clusters,passList,failList)

2: for (failID, failPC) ∈ failList do

3: maxPrefixLength← 0

4: for (passID, passPC) ∈ passList do

5: curPrefixLength← LCP (failPC, passPC)

6: if curPrefixLength > maxPrefixLength then

7: maxPrefixLength← curPrefixLength

8: end if

9: reason← failPC[maxPrefixLength+1]

10: Update(Clusters,failID,reason)

11: end for

12: end for

13: end procedure

14: ———————————————————————–

15: procedure Update(Clusters,failID,reason)

16: for r ∈ Clusters.Reasons do

17: if isValid(reason⇒ r) then

18: Clusters[r].Add(failID)

19: return

20: else if isValid(r⇒ reason) then

21: UpdateReason(Clusters[r], reason)

22: Clusters[reason].Add(failID)

23: return

24: end if

25: end for

26: AddCluster(Clusters, reason, failID)

27: end procedure

To support cluster-
ing of tests, we de-
fine two new vari-
ables, passList and
failList, to store in-
formation about all
explored passing and
failing tests (respec-
tively). For each test,
we keep a pair (testID,
pathCondition), where
testID is the identifier
of the test generated
by symbolic execution,
and pathCondition is
a list of branch con-
ditions (explained in
Section 3). We also in-
troduce a variable C
that keeps track of
all clusters generated
so far; C is a map
from a culprit con-
straint (cluster reason)
to a list of identifiers of
failing tests. The buck-
eting functionality op-
erates in two phases:

Phase 1: Searching for failing and passing tests. The selected search strat-
egy guides the symbolic execution engine through several program paths, gen-
erating test cases when a path is terminated. We handle the cases where tests
are generated, and update the respective list (passList or failList) accordingly.
In particular, when a failing test case is generated, the path condition (pc) is
converted to a list of branch conditions (pc′). The pair comprising of the list
pc′ and the identifier of the failing test case form a representation of the failing
path; the pair is recorded in failList (lines 23–24). The passList is handled in
a similar manner (lines 31–32).

Bucketing Failing Tests via Symbolic Analysis 9

Phase 2: Clustering discovered failing tests. Once a passing test is found
(lines 35–37) or the symbolic execution engine completes its exploration (lines
42–43), the clustering function ClusterTests will be invoked. The procedure
ClusterTests (Algorithm 2) takes three arguments: 1) all clusters generated so
far (Clusters), 2) all explored passing tests (passList) and 3) all failing tests
that have not been clustered (failList). In this function, the culprit constraints
of all failing tests in failList is computed (lines 2–9) and, then, the function
Update is called (line 10) to cluster the failing tests accordingly.

The Update function (Algorithm 2) can place a failing test into an existing
cluster or create a new one depending on the culprit constraint (reason) of the
test. We base our clustering heuristic on the intuition that the reason of failure of
each test within a cluster should be subsumed by a core reason (rc) represented
by the cluster. Hence, for a given failing test f (with a reason of failure rf) being
clustered and a set of all clusters Clusters, the following three cases can arise:

– There exists c ∈ C such that rc subsumes rf : in this case, we add the
test f to the cluster c (line 18);

– There exists c ∈ C such that rf subsumes rc: in this case, we generalize
the core reason for cluster c by resetting rf as the general reason for failure
for tests in cluster c (lines 21–22);

– No cluster reason subsumes rf , and rf subsumes no cluster reason:
in this case, we create a new cluster c’ with the sole failing test f and attribute
rf as the core reason of failure for tests in this cluster (line 26).

4.2 Clustering-aware Search Strategy

It is easy to see that Algorithm 1 will yield the correct culprit constraints if
the search strategy followed is DFS: once a failing path fi is encountered, the
passing path that shares the maximum common prefix with fi is either the last
passing path encountered before the failure, or is the next passing path after
fi (i.e. ignoring all failures in the interim). Hence, a depth-first traversal of the
symbolic execution tree will always find the culprit constraints by constructing
the largest common prefix of the failing paths with at most two passing paths
(the passing executions just before and just after encountering the failures).

However, DFS has a very poor coverage when used with a time-budget.
Hence, we require search strategies different than DFS (like the Random and
CoverNewCode strategies in KLEE) to achieve a good coverage. In fact, during
our experiments, we could not trigger most of the failures in our benchmarks
with DFS within reasonable timeouts.

We design a new clustering-aware search strategy (CLS) that is capable of
discovering the precise culprit constraint while achieving a high coverage at the
same time. CLS is built on a crucial observation that we only require DFS
on a failing test to guide the search to its nearest passing test; on a passing
test, the next test can be generated as per any search heuristic. Hence, one can
implement any combination of suitable search strategies (to achieve high code
coverage) while maintaining the use of DFS on encountering a failure (to identify
the culprit constraint precisely).

10 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

We leverage a so-called branching tree, a data structure maintained by many
symbolic execution engines (like KLEE) to record the symbolic execution tree
traversed in terms of the branching/forking history (KLEE refers to it as the
process tree). Let us illustrate as to how we combine an arbitrary search strategy
(SS) with DFS exploration to implement an instance of CLS using the branching
tree in Figure 3. In the tree, i1–i7 are internal nodes while p1–p8 are leaf nodes.
Note that in the following paragraphs, we will use the term (leaf) node and path
interchangeably. Basically, CLS works in two phases:

p5p1 p2 p3 p4 p6 p7 p8

i1

i2

i4

i3
i5

i6
i7

Fig. 3: A Branching Tree

Phase 1: SS searches for a fail-
ing test. The search heuristic SS
searches for a failure using its own algo-
rithm. Suppose SS first detects a failing
path p5, it returns control to CLS that
now switches to the DFS heuristic (to
locate the “nearest” passing test, i.e.
the one that has the longest common
prefix with p5).

Phase 2: DFS looks for “nearest”
passing test. Continuing with our example (Figure 3), by the time SS detects
the failing path p5, assume that we have explored three paths p1, p2, p7 and
successfully put the failing path p2 into its correct cluster. So, now only four
active paths remain: p3, p4, p6 and p8. At this point, our CLS seach strategy
uses another crucial observation: since p7 is a passing path and i4 is the closest
common ancestor node of p5 and p7, the nearest passing path for p5 must be p7
or another passing path spawned from intermediate nodes i5, i6 or i7. Hence,
we can reduce the search space for finding the nearest passing path for p5 from
the space represented by outer blue triangle to the inner (smaller) triangle (as
p7 is a passing path, it must be the nearest passing path if no “nearer” passing
path is discovered in the subtree rooted at i4). We omit the details of how it is
acheived for want of space.

If the symbolic execution is run with a timeout setting, the timeout can
potentially fire while CLS is searching for the nearest passing path to a failing
execution. In this case, we simply pick the nearest passing path to the failing
execution among the paths explored so far to compute the culprit constraint.

Our technique is potent enough to cluster an existing test-suite by running
the symbolic execution engine needs to run in a mode that the exploration of a
path that is controlled by the failing test (like the “seed” mode in KLEE [4]).
During path exploration, the first passing test encountered in a depth-first traver-
sal seeded from the failing test t would necessarily be the passing test that has
the longest common prefix with t. Thus, we can compute the culprit constraint
accordingly, and use it to form a new cluster or update an existing cluster.

4.3 Generalize reasons for failure

Consider Figure 4: the program checks if the absolute value of each element in the
array is greater than 0. The buggy assertion contains > comparison instead of≥),

Bucketing Failing Tests via Symbolic Analysis 11

which would cause 10 failing test cases ∀ i ∈ {0..9}. Since each array element
is modeled as a different symbolic variable, all 10 cases are clustered separately.

1 int main() {

2 int arr[10], int i;

3 make_input(arr , sizeof(arr));

4 for (i = 0; i < 10; i++) {

5 if (a[i] < 0) a[i] = -a[i];

6 assert(a[i] > 0); // a[i] >= 0

7 }

8 }

Fig. 4: Generalization for arrays

In such cases, we need to general-
ize errors that occur on different in-
dices but due to the same core reason.
For example, if the reason is: arr[4] >
0∧arr[4] < 10, we change this formula
to ∃x (arr[x] > 0 ∧ arr[x] < 10). Note
that this is only a heuristic, and our im-
plementation allows the user to disable
this feature.

5 Experimental Evaluation
We evaluated our algorithm on a set of 21 programs: three programs from In-
troClass [10] (a micro benchmark for program repair tools) and the remaining
eighteen real-world programs taken from four benchmarks-suites: eleven pro-
grams from Coreutils[1] version 6.10, three from SIR[7], one from BugBench[16]
and three from exploit-db[2]. The three subject programs from exploit-db (down-
loaded them from the project’s website) were used in [11]. The bugs in IntroClass,
Coreutils, exploit-db and BugBench programs are real bugs, whereas the ones
in SIR are seeded.

We manually inserted assert statements in the programs taken from the
IntroClass benchmark to specify the test oracle, while all remaing 18 real-world
programs were kept unchanged. During symbolic execution, the failing test cases
are generated due to the violation of embedded assertions or triggering of run-
time errors (captured by KLEE) like divide-by-zero and invalid memory accesses.

We compared our symbolic-analysis based (SAB) test clustering method
to two baseline techniques: call-stack based (CSB) and point-of-failure based
(PFB) clustering. While SAB refers to the implementation of our algorithm
within KLEE, we implemented CSB and PFB on top of KLEE to evaluate our
implementation against these techniques. Specifically, our implementation first
post-processes the information of test cases generated by KLEE to compute the
stack hash (on function call stack) and extract failure locations. Based on the
computed and extracted data, they cluster the failing tests.

We conducted all of the experiments on a virtual machine created on a host
computer with a 3.6 GHz Intel Core i7-4790 CPU and 16 GB of RAM. The
virtual machine was allocated 4 GB of RAM and its OS is Ubuntu 12.04 32-bit.
For our experiments, we use the clustering-aware search strategy (CLS), enable
array generalization and use a timeout of one hour for each subject program.
KLEE is run with the --emit-all-errors flag to enumerate all failures.

5.1 Results and Analysis

Table 2 shows the results from our experiments on selected programs. Size

provides the size of the program in terms of the number of LLVM bytecode
instructions. #Fail Tests provides the number of failing tests. The rest of the

12 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

Table 2: Test Clustering: num. of clusters

Program Repository
Size

(kLOC)
#Fail
Tests

#C
PFB

#C
CSB

#C
SAB

median IntroClass 1 7 1 1 5

smallest IntroClass 1 13 1 1 3

syllables IntroClass 1 870 1 1 5

mkfifo Coreutils 38 2 1 1 1

mkdir Coreutils 40 2 1 1 1

mknod Coreutils 39 2 1 1 1

md5sum Coreutils 43 48 1 1 1

pr Coreutils 54 6 2 2 4

ptx Coreutils 62 3095 16 1 3

seq Coreutils 39 72 1 1 18

paste Coreutils 38 4510 10 1 3

touch Coreutils 18 406 2 3 14

du Coreutils 41 100 2 2 8

cut Coreutils 43 5 1 1 1

grep SIR 61 7122 1 1 11

gzip SIR 44 265 1 1 1

sed SIR 57 31 1 1 1

polymorph BugBench 25 67 1 1 2

xmail Exploit-db 30 129 1 1 1

exim Exploit-db 253 16 1 1 6

gpg Exploit-db 218 2 1 1 1

Table 3: Test clustering: overhead

Program
#Pass
paths

#Fail
paths

Time
(sec)

Ovrhd
(%)

median 4 7 5 ∼0

smallest 9 13 5 ∼0

syllables 71 870 1800 4.35

mkfifo 291 2 3600 ∼0

mkdir 326 2 3600 ∼0

mknod 72 2 3600 ∼0

md5sum 62449 48 3600 0.42

pr 540 6 3600 ∼0

ptx 9 3095 3600 2.04

seq 445 72 1800 0.73

paste 3501 4510 3600 16.17

touch 210 406 3600 0.84

du 44 100 3600 0.81

cut 38 5 3600 ∼0

grep 169 7122 3600 34.13

gzip 5675 265 3600 0.7

sed 3 31 3600 0.03

polymorph 3 67 3600 14.36

xmail 1 129 3600 0.06

exim 178 16 3600 0.03

gpg 10 2 3600 ∼0

columns provide the number of clusters (#C) for Point-of-failure (PFB), Stack
Hash (CSB) and our Symbolic Analysis (SAB) based methods. Note that #C(PFB)
doubles up to also record the number of failing locations. As KLEE symbolically
executes the LLVM [14] bitcode, we show the size of the program in terms of
the total lines of the LLVM bitcode instructions.

In several programs (like ptx, paste, grep) SAB places thousands of fail-
ing tests into managable number of clusters. Compared to CSB, in 12 out of
21 subjects (∼57%), our method produces more fine-grained clustering results.
Compared to PFB, our technique expands the number of clusters to get a more
fine-grained set in 10/21 subjects. However, our method also collapses the clus-
ters in case the program has failures that are likely to be caused by the same
bug but the failures occur at several different locations (like ptx and paste).

RQ1. Does our technique produce more fine-grained clusters?In the
experiments, we manually debugged and checked the root causes of failures in
all subject programs. Based on that, we confirm that our SAB approach does
effectively produce more fine-grained clusters. For instance, as shown in Figure 5,
the buggy smallest program, which computes the smallest number among four
integer values, does not adequately handle the case in which at least two of the
smallest integer variables are equal. For example, if d equals b, none of the four
conditional statements (at lines 7, 9, 11 and 13) take the true branch; the result
is incorrect as the variable smallest then takes an arbitrary value.

Bucketing Failing Tests via Symbolic Analysis 13

1 int a, b, c, d, smallest;

2 make_symbolic(a, b, c, d);

3 assume(a>=-10 && a <=10);

4 assume(b>=-10 && b <=10);

5 assume(c>=-10 && c <=10);

6 assume(d>=-10 && d <=10);

7 if (a < b && a < c && a < d)

8 smallest = a;

9 if (b < a && b < c && b < d)

10 smallest = b;

11 if (c < b && c < a && c < d)

12 smallest = c;

13 if (d < b && d < c && d < a)

14 smallest = d;

15 assert(smallest ==

16 golden_smallest(a,b,c,d));

Fig. 5: Code snippet from ‘smallest’

1 case ’e’:

2 if (optarg)

3 getoptarg (optarg , ’e’, ...);

4 // ...

5 break;

6 // other cases

7 case ’i’:

8 if (optarg)

9 getoptarg (optarg , ’i’, ...);

10 // ...

11 break;

12 // other cases

13 case ’n’:

14 if (optarg)

15 getoptarg (optarg , ’n’, ...);

16 break;

Fig. 6: Code snippet from ‘pr’

As shown in Figure 5, we instrumented the program to make it work with
KLEE. During path exploration, KLEE generated 13 failing tests for this pro-
gram and the CSB technique placed all of them into one cluster as they share
the same call stack. However, our SAB approach created three clusters with the
following reasons: (Cluster 1) d ≥ b, (Cluster 2) d ≥ c and (Cluster 3) d ≥ a. The
reasons indeed show the corner cases that can trigger the bugs in the program.
We observed similar cases in median and syllables programs (see Table 2).

In the subject program pr (a Coreutils utility), we found that 6 failing tests
due to two different bugs are placed in two clusters on using stack hash similarity.
Meanwhile, our approach placed these 6 failing tests into 4 different clusters: one
cluster contained 3 failing tests corresponding to one bug, and the other three
clusters contain three failing tests of the second bug. Figure 6 shows a code
snippet from pr that shows three call sites for the buggy function getoptarg()
(at lines 3, 9 and 15). In this case, because all of the three call sites are in one
function, so the stack hash based technique placed the three different failing
paths in the same cluster. Similar cases exist in the exim and du applications.

RQ2. Can our clustering reasons (culprit constraints) help users to
look for root causes of failures? One advantage of our bucketing method
compared to CSB and PFB approaches is its ability to provide a semantic
characterization of the failures that are grouped together (based on the cul-
prit constraint). The existing techniques are only capable of capturing syntactic
information like the line number in the program or the state of the call-stack
when the failure is triggered.

Table 4: Sample culprit constraints

Program Culprit constraint

mkfifo (= (select arg0 #x00000001) #x5a)

pr (= (select stdin #x00000009) #x09)

Table 4 shows a few ex-
amples of the culprit con-
straints that our technique
used to cluster failing tests
for mkfifo and pr. In mk-
fifo, the culprit constraint

can be interpreted as: the second character in the first argument is the charac-
ter ‘Z’. This is, in fact, the correct characterization of this bug in mkfifo as

14 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

the tests in this cluster fail for the “-Z” option. In case of pr, the culprit con-
straint indicates that: the tenth character of the standard input is a horizontal
tab (TAB). The root cause of this failure is due to incorrect handling of the
backspace and horizontal tab characters.

RQ3. What is the time overhead introduced by our bucketing tech-
nique over vanilla symbolic execution?Overall, in most of the subject pro-
grams the time overhead is negligible (from 0% to 5%), except in some programs
where the overhead is dominated by the constraint solving time.

5.2 User Study

A user study was carried out with 18 students enrolled in a Software Security
course (CS4239) in the National University of Singapore (NUS) to receive feed-
back on the usability and effectiveness of our bucketing method. Among the
students, there were 14 senior undergraduate and 4 masters students. Before at-
tending the course, they had no experience on applying bucketing techniques.The
students were required to run the three bucketing techniques (our method and
two others based on call-stack and point of failure information) to cluster the
found failing tests, and (primarily) answer the following questions:

Q1. Rate the level of difficulty in using the three techniques for bucketing failing tests.

Q2. To what extent do the bucketing techniques support debugging of program error?

Q3. Are the numbers of clusters generated by the bucketing techniques manageable?

The users’ responses for Q1 & Q2 are summarized in Table 5; for example, the
first cell of Table 5 shows that 8 of the 18 respondents found the PFB technique
“Easy” for bucketing. In response to Q3, 14 out of the 18 respondents voted that
the number of clusters generated by our technique is manageable.

Table 5: Responses from the user study.
Q1 enquires about the difficulty of using a technique: Easy

(E), Moderate (M), Difficult (D) and Very Difficult (VD).

Q2 responses are about the usefulness of a method: Not

Useful (N), Useful (U) and Very Useful (VU).

Bucketing Difficult(Q1) Useful(Q2)

Technique E M D VD N U VU

Point of failure (PFB) 8 8 2 0 0 7 11

Stack hash (CSB) 3 13 2 0 3 8 7

Symbolic analysis (SAB) 1 9 7 1 2 4 12

In terms of usefulness as a
debugging aid, our technique
is ranked “Very Useful” by 12
of the 18 respondents. It gains
a high rating for its useful-
ness as it provides a seman-
tic characterization for each
bucket (in terms of the culprit
constraint), that can help users
locate the root cause of failure.
At the same time, we found

that the main reason that they found our technique harder to use was that
this characterization was shown in the form of logical formula in the SMT-LIB
format—a format to which the students did not have enough exposure.

We list some of the encouraging feedback we got:

– “I believe it is the most powerful of the three techniques, letting me understand
which assert are causing the crash or how it is formed.”

– “It is very fine grain and will allow us to check the path condition to see variables
that causes the error.”

Bucketing Failing Tests via Symbolic Analysis 15

6 Related work
One related line of research involves clustering crash reports or bug reports [6],
[8], [12], [17], [20]. Crash Graph [12] uses graph theory (in particular, similarity
between graphs), to detect duplicate reports. In terms of duplicate bug report
detection, Runeson [20] proposed a technique based on natural language pro-
cessing to check similarity of bug reports.

Another relevant work involves clustering program failing traces. Liu and
Han [15] proposed the technique to use results of fault localization methods for
clustering failing traces. Given two set of failing and passing traces which are
collected from instrumented predicates of software program, they statistically
localize the faults and two failing traces are considered to be similar if the pointed
fault locations in the two traces are the same. Podelski et al.[19] cluster failure
traces by building symbolic models of their execution (using model checking
tools) and use interpolants as signatures for clustering tests. Due to the cost of
symbolic model-checking, their technique seems to suffer from scalability issues
as in their experiments, even their intraprocedural analysis times out (or the
interpolant generator crashes) on a large number of methods.

Although the above-mentioned lines of research are relevant to our work,
we target our research on clustering failing tests — instead of crash reports,
bug reports or failing traces. The other lines of research do not assume they
have concrete test inputs to trigger the bugs, so they build the techniques on
exploring run-time information collected in the field (i.e.,where the software
systems are deployed). In our case, we work on failing tests obtained during
symbolic exploration of software programs or provided by test teams.

To the best of our knowledge, all popular symbolic execution engines only
borrow and slightly change the techniques that have been proposed for clustering
crash reports to cluster their generated failing tests. The clustering approach can
be as simple as using point of failure in KLEE [4] or using call stack information
in SAGE [9] and MergePoint [3].

7 Conclusions
We leverage the symbolic execution tree built by a symbolic execution engine
to cluster failing tests found by symbolic path exploration. Our approach can
also be implemented on symbolic execution engines like S2E [5] for clustering
tests for stripped program binaries (when source code is not available). Unlike
many other prior techniques, our technique should be able to handle changing
of addresses when Address Space Layout Randomization (ASLR) is enabled as
symbolic expressions are unlikely to be sensitive to address changes.

8 Acknowledgment
This research is supported in part by the National Research Foundation, Prime
Minister’s Office, Singapore under its National Cybersecurity R&D Program
(TSUNAMi project, Award No. NRF2014NCR-NCR001-21) and administered
by the National Cybersecurity R&D Directorate.

16 Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, Abhik Roychoudhury

References
1. Coreutil benchmarks. http://www.gnu.org/software/coreutils/coreutils.html.
2. Exploit-db benchmarks. https://www.exploit-db.com/.
3. T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. Enhancing symbolic ex-

ecution with veritesting. In Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 1083–1094, New York, NY, USA, 2014.
ACM.

4. C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI’08,
pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

5. V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A platform for in-vivo multi-
path analysis of software systems. SIGPLAN Not., 47(4):265–278, Mar. 2011.

6. Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. Rebucket: A method for
clustering duplicate crash reports based on call stack similarity. In Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12, pages
1084–1093, Piscataway, NJ, USA, 2012. IEEE Press.

7. H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Softw.
Engg., 10(4):405–435, Oct. 2005.

8. K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. Nichols,
D. Grant, G. Loihle, and G. Hunt. Debugging in the (very) large: Ten years of
implementation and experience. In Proceedings of the ACM SIGOPS 22Nd Sympo-
sium on Operating Systems Principles, SOSP ’09, pages 103–116, New York, NY,
USA, 2009. ACM.

9. P. Godefroid, M. Y. Levin, and D. Molnar. Sage: Whitebox fuzzing for security
testing. Commun. ACM, 55(3):40–44, Mar. 2012.

10. C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest, and
W. Weimer. The manybugs and introclass benchmarks for automated repair of
c programs. IEEE Transactions on Software Engineering, 41(12):1236–1256, Dec
2015.

11. W. Jin and A. Orso. F3: Fault localization for field failures. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013,
pages 213–223, New York, NY, USA, 2013. ACM.

12. S. Kim, T. Zimmermann, and N. Nagappan. Crash graphs: An aggregated view of
multiple crashes to improve crash triage. In Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable Systems&Networks, DSN ’11, pages
486–493, Washington, DC, USA, 2011. IEEE Computer Society.

13. V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state merging in
symbolic execution. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, pages 193–204,
New York, NY, USA, 2012. ACM.

14. C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

15. C. Liu and J. Han. Failure proximity: A fault localization-based approach. In
Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, SIGSOFT ’06/FSE-14, pages 46–56, New York, NY, USA,
2006. ACM.

Bucketing Failing Tests via Symbolic Analysis 17

16. S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench: Benchmarks for
evaluating bug detection tools.

17. N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet. Auto-
matically identifying known software problems. In Proceedings of the 2007 IEEE
23rd International Conference on Data Engineering Workshop, ICDEW ’07, pages
433–441, Washington, DC, USA, 2007. IEEE Computer Society.

18. D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation to find integer
bugs in x86 binary linux programs. In Proceedings of the 18th Conference on
USENIX Security Symposium, SSYM’09, pages 67–82, Berkeley, CA, USA, 2009.
USENIX Association.

19. A. Podelski, M. Schäf, and T. Wies. Classifying Bugs with Interpolants, pages
151–168. Springer International Publishing, Cham, 2016.

20. P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect
reports using natural language processing. In Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pages 499–510, Washington, DC,
USA, 2007. IEEE Computer Society.

