
A Feasibility Study of Using Automated Program Repair for
Introductory Programming Assignments

Jooyong Yi
∗

Innopolis University, Russia

j.yi@innopolis.ru

Umair Z. Ahmed

Indian Institute of Technology

Kanpur, India

umair@cse.iitk.ac.in

Amey Karkare

Indian Institute of Technology

Kanpur, India

karkare@cse.iitk.ac.in

Shin Hwei Tan

National University of Singapore,

Singapore

shinhwei@comp.nus.edu.sg

Abhik Roychoudhury

National University of Singapore,

Singapore

abhik@comp.nus.edu.sg

ABSTRACT
Despite the fact an intelligent tutoring system for programming

(ITSP) education has long a�racted interest, its widespread use has

been hindered by the di�culty of generating personalized feedback

automatically. Meanwhile, automated program repair (APR) is an

emerging new technology that automatically �xes so�ware bugs,

and it has been shown that APR can �x the bugs of large real-world

so�ware. In this paper, we study the feasibility of marrying intelli-

gent programming tutoring and APR. We perform our feasibility

study with four state-of-the-art APR tools (GenProg, AE, Angelix,

and Prophet), and 661 programs wri�en by the students taking

an introductory programming course. We found that when APR

tools are used out of the box, only about 30% of the programs in

our dataset are repaired. �is low repair rate is largely due to the

student programs o�en being signi�cantly incorrect — in contrast,

professional so�ware for which APR was successfully applied typ-

ically fails only a small portion of tests. To bridge this gap, we

adopt in APR a new repair policy akin to the hint generation policy

employed in the existing ITSP. �is new repair policy admits par-

tial repairs that address part of failing tests, which results in 84%

improvement of repair rate. We also performed a user study with

263 novice students and 37 graders, and identi�ed an understudied

problem; while novice students do not seem to know how to e�ec-

tively make use of generated repairs as hints, the graders do seem

to gain bene�ts from repairs.

CCS CONCEPTS
•Applied computing→Computer-assisted instruction; •So�-
ware and its engineering →So�ware testing and debugging;

KEYWORDS
Intelligent Tutoring System, Automated Program Repair

∗
�e �rst author did part of this work at National University of Singapore.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, Paderborn, Germany
© 2017 ACM. 978-1-4503-5105-8/17/09. . .$15.00

DOI: 10.1145/3106237.3106262

1 INTRODUCTION
Developing and using intelligent tutoring system for novice pro-

grammers has gained renewed a�ention recently [7, 9, 11, 12, 14,

34, 37, 38]. �e typical goal of an intelligent tutoring system for

programming (ITSP) is to �nd bugs in student programs and pro-

vide proper feedback for the students to help them correct their

programs. An ITSP can also be used to help human tutors deal

with many di�erent student programs e�ciently. While an ITSP

for novice programmers has already existed since at least the early

80s [40], it has not been widely adopted in the education �eld. �e

main di�culty of building an e�ective ITSP is in the high degree

of variations of student programs, which makes it challenging to

automatically generate personalized feedback, without requiring

additional help from the instructor. Despite this di�culty, with the

advent of Massive Open Online Course (MOOC) and increasing

interest in end-user programming, the need for an e�ective ITSP

has never been greater. With the technological advances made

during the last more than three decades since an early prototype

system Meno-II [40] was introduced, it may now be possible to

realize the widespread use of ITSP.

Automated program repair (APR) is an emerging new technology

that has recently been actively researched [8, 10, 16, 20, 21, 23, 24,

28, 31, 44, 47]. An APR system �xes so�ware bugs automatically,

only requiring a test suite that can drive the repair process. Failing

tests in the test suite become passing a�er repair, which manifests

as a bug �x. APR was originally developed to �x professionally de-

veloped large so�ware, and an APR tool, Angelix, recently reported

and automated the �x of the Heartbleed bug [24]. In this paper, we

seek to study the inter-play between APR and ITSP.

Given that student programs are much simpler than profes-

sionally developed so�ware, applying APR to student programs

may seem achievable. However, when we apply four state-of-the-

art APR tools, namely GenProg [19], AE [44], Angelix [24], and

Prophet [21] to 661 student programs (obtained from an introduc-

tory programming course o�ered by the third author at Indian

Institute of Technology Kanpur), repairs are generated only for

31% of these programs. �e remaining about 70% of the student

programs in our dataset are not repaired by any of the four tools.

One of the main reasons for a low repair rate is that student

programs are o�en severely incorrect, and fail the majority of the

tests. In our dataset, 60% of the programs fail more than half of

the available tests. �is is in contrast to the fact that professional

so�ware for which APR was successfully applied typically fails

only a small portion of tests. To rectify an incorrect program that

fails the majority of tests, it is o�en necessary to make sizable

changes to the program. Indeed, about half of the programs in our

dataset require more than one hunk of changes to reach the correct

programs (our dataset contains a corresponding correct program

for each incorrect program). However, the current APR tools can

�x only a small number of lines; most successful repairs reported in

the literature change a small number of lines, and some tools such

as SPR [20] and Prophet [21] even restrict the change to a single

line. Given these discrepancies, it seems infeasible to use APR tools

for the purpose of tutoring programming.

Di�erence betweenBug Fixing andProgramTutoring. While

we report in this paper APR tools’ weak capability to �x novice

student programs, showing a correct program to a student is not

necessarily the best way to provide students with feedback. In fact,

experienced human tutors show an answer only selectively when

students make simple errors such as syntactic errors [27]. For more

complex errors such as semantic errors, human tutors, in general,

do not directly correct the error; instead, they give students hints.

�at way, tutors can help students move toward a correct answer.

Partial Repairs as Hints. Considering this di�erence between

bug �xing and program tutoring, we explore the possibility of

using APR tools for the purpose of generating hints, for the sake

of teaching programming to students. When student programs

fail multiple tests, we change the repair policy of APR tools as

follows. Given an incorrect student program P , a repair candidate

P ′ is returned as a repair if (1) all previously passing tests still

pass with P ′, and (2) at least one of previously failing tests passes

with P ′. We call such as repair a partial repair, distinguishing it

from the complete repair that passes all tests following the original

repair policy of APR. By comparing a generated partial repair with

the incorrect program, students can see when a particular test

fails or passes, which can help a student understand why his or

her program fails the test addressed by the partial repair. Since a

generated partial repair R is specialized for the tests addressed by

R, the expected usage of partial repairs is to encourage students

to modify their own incorrect program by taking account of the

partial repair, rather than blindly accepting it.

We note that our partial repair is conceptually similar to the

“next-step hint” advocated in the education �eld [2, 29, 32, 33, 35,

36]. By looking at a next-step hint, students can make forward

progress toward an answer. In contrast, recent automated feedback

generation techniques that appeared in the so�ware engineering

and programming languages �elds [14, 37, 38] are evaluated under

a restricted assumption that student programs are almost correct.

To facilitate the use of partial repairs as hints, our modi�ed re-

pair strategy generates one of the following two forms of repairs.

�e �rst kind of a partial repair is: if (E) { S }, where S is a modi-

�ed/added/deleted statement and E is the guard expression for S .

When such a form of a repair is generated, the student can obtain a

hint about a data-�ow change by observing the modi�cation/addi-

tion/deletion of S , along with an additional hint about when that

data-�ow change is necessary by observing the guard E. �e sec-

ond kind of a partial repair modi�es only conditional expressions,

which gives students a hint about control-�ow changes.

Improved Feedback Rate. A�er changing the repair policy (al-

lowing partial repairs) and the repair strategy, feedback rate (repair

generation rate) signi�cantly improves, showing 84% improvement.

In about 60% of the programs in our dataset, either complete or

partial repairs are generated. By analyzing the remaining cases

where repairs are not generated, we identify a few common reasons

for repair failure — the two most common reasons being the need

for output string modi�cation and array modi�cation for which

the current APR tools are not specialized. It would be most cost

e�ective to strengthen repair operators that can manipulate strings

and arrays in future APR tools.

User Study. A high feedback rate is only one necessary condition

for using APR for programming tutoring. To see whether auto-

matically generated repairs actually help students and graders, we

perform a user study with 263 students taking an introductory C

programming course and 37 teaching assistants (TAs) of the same

course, part of whose duty is to grade student assignments. In

our user study, students’ problem solving time increases when

generated repairs are provided as hints, whereas TAs’ grading per-

formance improves. �is di�erence seems to be due to that repairs

generated by APR tools over�t the provided test-suite, which is the

well-known problem in APR [39]. While TAs can, in general, spot

the problems of the incorrect student program based on suggested

repairs, novice students are likely to be distracted by the overly spe-

cialized suggestions. To transform automatically generated repairs

into feedback that can actually help students, post-processing of

generated repairs seems necessary, while answering the question

about which form of feedback is bene�cial for students remains a fu-

ture challenge. Note that even if the ideal correct repair for a given

student program is available, post-processing is still necessary to

give the student a hint, not a solution.

Our Contributions. In our feasibility study of using APR for

introductory programming assignments, we found that:

• �e current state-of-the-art APR tools more o�en than not fail

to generate a repair.

• However, they can, more o�en than not, generate partial repairs

that pass part of previously failing tests. Generating partial

repairs are analogous to that human tutors guide the students

gradually toward the answer by giving them hints.

• Failure of APR is o�en due to a few common reasons such as the

weak ability of APR tools to change the output string.

• Automatically generated repairs seem to help TAs grade student

programs more e�ciently.

• However, novice students do not seem to know how to e�ectively

make use of suggested repairs to correct their programs.

Overall, it seems feasible to use APR tools for the purpose of

tutoring introductory programming, given that repairs can be gen-

erated more o�en than not a�er tailoring APR tools, and further

improvement seems possible by addressing a few common reasons

for repair failure. To facilitate further research, we share our dataset

containing 661 real student programs, our toolchain implement-

ing the partial-repair policy/strategy, and our user-study materials

in the following URL: h�ps://github.com/jyi/ITSP. A summary

description is available in Section 11.

https://github.com/jyi/ITSP

Table 1: Characteristics of our dataset

Lab # Prog Topic

Lab 3 63 Simple Expressions, printf, scanf

Lab 4 117 Conditionals

Lab 5 82 Loops, Nested Loops

Lab 6 79 Integer Arrays

Lab 7 71 Character Arrays (Strings) and Functions

Lab 8 33 Multi-dimensional Arrays (Matrices)

Lab 9 48 Recursion

Lab 10 53 Pointers

Lab 11 55 Algorithms (sorting, permutations, puzzles)

Lab 12 60 Structures (User-De�ned data-types)

2 AUTOMATED PROGRAM REPAIR
We perform a feasibility study with the following four state-of-the-

art APR tools: GenProg [19], AE [44], Prophet [21], and Angelix [24].

�ese four tools, similar to the majority of APR tools, are test-

driven, meaning that a modi�ed program P ′ is considered repaired

if P ′ passes all tests in the provided test suite. GenProg repeatedly

modi�es the program using genetic programming [17] until it �nds

a repair or the time budget is exhausted. In contrast to GenProg

where the program is modi�ed in a stochastic fashion (the program

is modi�ed di�erently at each run of the tool), AE modi�es the

program in a deterministic way by applying mutation operators to

the program. Prophet �rst searches for a transformation schema

that can be used to repair the program, and in the next step, it

instantiates the transformation schema to generate a repair. In

the second step of schema instantiation, Prophet uses a repair

model learned from successful human patches to prioritize the

instantiation similar to human patches. Angelix �rst searches for

a set of angelic values for potentially buggy expressions E; when

these angelic values substitute E, all tests are passed. In the next

step, Angelix synthesizes patch expressions that return the angelic

values found in the �rst step. �ese four APR tools, while sharing

the goal of generating repairs that pass all tests, internally use

di�erent repair algorithms and repair operators. We include these

di�erent APR tools in our study to gain holistic understanding of

the feasibility of using APR tools for programming tutoring.

3 DATASET
�e dataset on which we perform and report our analysis was

obtained from an Introductory C Programming (CS-101) course

o�ered at Indian Institute of Technology Kanpur (IIT-K) by the

third author. �e programs were collected using Prutor [5], a sys-

tem that stores intermediate versions of programs in addition to

the �nal submissions. �is course was credited by 400+ �rst year

undergraduate students. One of the major grading component was

weekly programming assignments (termed Lab). �e assignments

were designed around a speci�c topic every week, as described in

Table 1, so as to test the concepts learned so far. �e labs were

conducted in an environment where we recorded the sequence of

submissions made by students towards the goal of passing as many

pre-de�ned test-cases as possible. Multiple a�empts were allowed,

with only the last submission being graded. For each of these labs,

Table 2: �e result of our initial experiment in which the
existingAPR tools are used out of the box. �e overall repair
rate is 31%.

Lab # Programs # Fixed Repair Rate Time

Lab 3 63 3 5 % 6 s

Lab 4 117 30 26 % 20 s

Lab 5 82 27 33 % 89 s

Lab 6 79 32 41 % 50 s

Lab 7 71 17 24 % 75 s

Lab 8 33 16 48 % 139 s

Lab 9 48 15 31 % 46 s

Lab 10 53 24 45 % 24 s

Lab 11 55 26 47 % 83 s

Lab 12 60 18 30 % 38 s

Total 661 208 31 % 59 s

we pick a random sample of (Pb , Pc) program pairs as our dataset,

where Pb is a version of student program which fails on one or

more test-cases, and Pc is a later version of the a�empt by the same

student which passes all the provided test-cases. We exclude from

our dataset the instances of Pb failed to be compiled. �e second

column of Table 1 shows the number of programs for each lab we

include in our dataset.

4 INITIAL FEASIBILITY STUDY
How o�en can the state-of-the-art APR tools �x incorrect student

programs? A high repair rate of APR is a prerequisite to using

APR tools for feedback generation. As the �rst step of our feasibil-

ity study, we investigate how well four state-of-the-art APR tools

(i.e., GenProg, AE, Prophet, and Angelix) �x the incorrect student

programs in our dataset. For each incorrect program, a repair is

considered found if one of the four APR tools successfully generates

a repair — that is, a generated repair passes all provided tests of the

program. We run the four APR tools in parallel until either (a) one

of the APR tools successfully generates a repair or (b) all APR tools

fail to generate a repair within a time limit (15 minutes). We use the

default con�guration of each APR tool with slight modi�cations for

Prophet to extend the search space of repair [22]. Our experiment

was performed on an Intel Xeon E5-2660 2.60 Ghz processor with

Ubuntu 14.04 64-bit operating system and 62 GB of memory.

4.1 Results of Initial Experiment
Table 2 shows the results of our initial experiment. Each column rep-

resents (from le� to right) the lab for which the incorrect programs

were submi�ed (Lab), the number of incorrect programs submi�ed

to the lab (# Programs), the number of incorrect programs in the lab

that are �xed by the APR tools we apply (# Fixed), repair rate, i.e., (#

Fixed)/(# Programs) in percentage (Repair Rate), and average time

taken to successfully generate repairs (Time), respectively. In our

experiments, repairs are generated only in 31% of the programs in

our benchmark, and repair rate is below 50% across each individual

lab. Meanwhile, the average time taken when repairs are found is

about 1 minute. Our initial experimental result suggests that a low

repair rate is a severe concern.

0

25

50

75

Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 Lab 8 Lab 9 Lab 10 Lab 11 Lab 12 Total

Group High failure rate Low failure rate

Figure 1: �is plot shows the repair rate of two di�erent
groups (Y axis) across each individual lab (X axis). �e “High
failure rate” group consists of the cases in which more than
half of the tests fail the given program, whereas the “Low
failure rate” group consists of the cases inwhich at least half
of tests pass the given program. Repair rate is signi�cantly
lower in the high failure rate group to which 60% of the pro-
grams in our dataset belong.

4.2 Reasons for Low Repair Rate
Despite the fact that student programs are simpler than programs

wri�en by professional developers for which APR tools are devel-

oped, the state-of-the-art APR tools fail to generate repairs for the

majority of the incorrect program in our benchmark. Our result

suggests that �xing short student programs is not easier than �xing

developer programs. What makes automatically �xing student pro-

grams di�cult? Answering this question may help us adjust APR

to the new challenge posed by student programs. We observe in

our dataset that the following two properties of student programs

are likely to make automatically �xing student programs di�cult:

(1) student programs o�en fail in a majority of the tests, and (2)

student programs o�en require complex �xes. We describe them in

more detail in the following sections.

4.2.1 High test failure rate. Student programs are o�en signi�-

cantly incorrect, and fail the majority of the tests. In our dataset,

60% of the programs fail more than half of the available tests. �is

is in contrast to the fact that professional so�ware for which APR

was successfully applied typically fails only a small portion of tests.

High test failure rate is likely to make automated program repair

di�cult. Figure 1 compares the repair rate between the following

two groups of our benchmark programs: the high test failure group

in which more than half of the tests fail the given program and the

low test failure group where at least half of tests pass the given

program. While about half (48%) of the programs of the low failure

rate group are successfully repaired, the repair rate of the high

failure rate group is only 20%.

4.2.2 Complex fixes. �e majority of bugs reported to be suc-

cessfully repaired by APR tools are cosmetically simple, mostly

restricted to one-line changes of the given buggy program. Still,

the promise of APR is that it can save developers from manual

search for a simple �x in large so�ware. To investigate the dis-

tribution between simple �xes (one-hunk changes) and complex

�xes (multiple-chunk changes) in our dataset, we compare each

incorrect program in our dataset with its correct version. Recall

that our dataset contains both an incorrect program and its correct

version wri�en by the same student. In our dataset, about half of

the incorrect programs (46%) are �xed by adding more than 1 hunk

of changes. For these programs requiring complex �xes, the repair

rate is shown to be 26%, lower than the repair rate for the rest of

the programs (36%).

5 TUTORING PROGRAMMING
Our initial experiment reveals that repair rate of the current APR

tools for novice student programs is prohibitively low. Does this

imply that it is infeasible to use APR for intelligent programming

tutoring (IPT)? Or, given that APR was originally not developed for

IPT, is it possible to tune up APR for the purpose of IPT?

One big di�erence between �xing a bug and tutoring program-

ming is in the di�erent degrees of their interactivity with the users.

Tutoring is a highly interactive process between a tutor and a stu-

dent. To complete a program, a student takes multiple steps of

actions, and at each step, the tutor provides feedback. �e tutor

o�ers a con�rmatory feedback if the student follows the right track

toward a correct solution. Meanwhile, if the student goes astray,

the tutor provides a hint for the student to get the student back

on track. In this highly interactive tutoring process, the tutor does

not simply show a correct program all at once. Instead, the tutor

provides for the student a series of feedback to help the student

stay on track toward a correct solution. �is behavior of human

programming tutors is recorded in detail in [27]. Intelligent tu-

toring systems expected to mimic human tutors should provide

interactive feedback for the students where each feedback should

help the students move to the next step toward a correct solution.

In contrast, the ideal of APR is to synthesize a correct bug �x at

once, without involving a long feedback loop with the developer.

Given this di�erence between bug �xing and programming tutor-

ing, we believe APR can be used for intelligent tutoring only a�er

it is tailored to the new needs of programming tutoring.

6 FROM BUG FIXING TOWARD TUTORING
Given the di�erence between APR and IPT described in the previous

section, the problem of APR and the problem of IPT can be described

di�erently as follows.

De�nition 6.1 (Automated Program Repair (APR)). Given a pro-

gram P and its speci�cation S , the following holds true initially,

re�ecting the fact that P is buggy: P 0 S . �e problem of APR is to

generate an alternative program P ′ that satis�es P ′ ` S .

De�nition 6.2 (Intelligent Programming Tutoring (IPT)). Given a

program P and its speci�cation S where P 0 S , the problem of IPT is

to generate a series of alternative programs, P ′
1
, P ′

2
, . . . , P ′k , P

′
k+1

, . . . ,

P ′n, P
′
n+1

that satis�es the following, through an iterative interaction

with the student.

(1) For all odd numbers k , P ′k is an automatically generated pro-

gram by the tutoring system, and P ′k+1
is a program constructed

by the student, using P ′k as a hint.

(2) ∀1 ≤ k ≤ n : P ′k � P ′k+1
, where P ′k � P ′k+1

denotes that program

P ′k+1
is closer to the speci�cation S than P ′k (one de�nition of

� will be described later).

(3) ∀1 ≤ k ≤ n : P ′k 0 S
(4) P ′n+1

` S

Notice that in IPT, the �nal correct version of the program (P ′n+1
)

is sought for through a series of feedback generation (represented by

P ′k for all odd numbers k), interspersed with student programming

(represented by P ′k+1
for all odd numbers k).

We describe in the following how we tailor APR to IPT. In par-

ticular, we tailor test-driven APR, given that the majority of APR

tools use a test-driven approach. In test-driven APR, a test suite is

used as the speci�cation of the program. �at is, given a test suite

T and a buggy program P where P does not pass all tests in T (i.e.,

P 0 T), test-driven APR generates a repaired program P ′ satisfying

P ′ ` T , which denotes P ′ passes all tests in T .

6.1 Tailoring Repair Policy
We tailor ITP described in Def. 6.2 to test-driven APR as follows.

First, we replace in Def. 6.2 speci�cation S with test suite T . �us,

intermediate programs P ′k do not pass all tests in T (P ′k 0 T), while

they are gradually approaching the �nal version that passes all tests.

Meanwhile, the partial relation � used in Def. 6.2 can be naturally

de�ned as follows. We say P ′k � P ′k+1
if all tests passed in P ′k also

pass in P ′k+1
. Similar to test-driven development, the progression

of the student can be achieved by gradually passing more tests.

While the number of tests may not be a precise measure of student

progression, its practicality is high, given that tests are widely used

in evaluating student programs. Related but orthogonal issues are

how to construct an e�ective test suite for the purpose of IPT, and

in which order each test should be satis�ed by the program; for

instance, given multiple failing tests Tf and an incomplete program,

which tests among Tf should be addressed �rst? �ese orthogonal

issues are not addressed in this initial feasibility study.

To implement progressive program construction (P ′
1
� P ′

2
�

. . . � P ′n), we modify the repair policy of APR as follows. Taking

as input a student program P ′k , we generate P ′k+1
that satis�es P ′k ≺

P ′k+1
. Note that it is not required for P ′k+1

to pass all tests, unlike in

the original APR. �is di�erent repair policy can be implemented

in an APR tool in a straightforward way by generating a partial

repair de�ned as follows.

De�nition 6.3 (Partial Repair). Givenn positive tests, wheren ≥ 0,

andm negative tests, wherem > 0, a partial repair P ′ satis�es the

following:

(1) P ′ passes all n positive tests, and

(2) P ′ passes at least one ofm negative tests.

In comparison, we de�ne a complete repair generated in the

original APR as follows.

De�nition 6.4 (Complete Repair). Given n positive tests, where

n ≥ 0, and m negative tests, where m > 0, a complete repair P ′

satis�es the following:

(1) P ′ passes all n positive tests, and

(2) P ′ passes allm negative tests.

�e expected usage of partial repairs is to encourage students

to modify their own incorrect program by taking into account the

partial repair as a hint. In fact, a partial repair is specialized for the

tests it addresses (the tests that turn from negative to positive a�er

the partial repair), the student needs to generalize the partial solu-

tion shown to him or her. By comparing a generated partial repair

with the incorrect program, students can see when a particular test

fails or passes, which can help a student understand why his or her

program fails the test addressed by the partial repair.

6.2 Tailoring Repair Strategy
Partial repairs are generated as hints, not as solutions. Typical hints

partial repairs can provide are as follows.

(1) Control-�ow hints. Students can see that a test can pass by

changing the control �ow of the program — which includes

changing the direction of an if-conditional, skipping over a

loop, and exiting a loop at a di�erent iteration than before.

(2) Data-�ow hints. Students can see that a test can pass by

adding or deleting statements which a�ects the data �ow of

the program.

(3) Conditional data-�owhints. It is o�en the case that the data-

�ow of the program should be changed only under a certain

circumstance. In this case, statement addition/deletion can

be guarded with a condition. �e deleted/added statements

provide data-�ow hints, while the guard conditions provide

control-�ow hints. Note that a data-�ow hint can be viewed as

a special case of a conditional data-�ow hint where a statement

S is guarded with either false (suggesting the deletion of S) or

true (suggesting the addition of S).

To facilitate the use of partial repairs as hints, we tailor the re-

pair strategy of APR, following Algorithm 1. Our repair strategy

searches for a control-�ow hint and a conditional data-�ow hint

in parallel (a data-�ow hint is the special case of a conditional

data-�ow hint). �is parallel use of tools is shown in Line 2 of the

algorithm: controlFix(Pb ,Tp ,Tn) | | condDataFix(Pb ,Tp ,Tn), where

Pb ,Tp , and Tn represent an input buggy program, positive tests

(passing tests), and negative tests (failing tests), respectively. Func-

tion controlFix and condDataFix search for a partial repair that can

be used as a control-�ow hint and a (conditional) data-�ow hint,

respectively. Parallel search for a partial repair stops when either a

repair is found or the time budget is exhausted.

In function controlFix by which a control-�ow hint is searched

for, we invoke in parallel two APR tools, Angelix and Prophet, both

of which have repair operators that can modify the conditional ex-

pressions of the if/loop statements. We restrict the repair space only

to conditional expression changes when looking for a control-�ow

hint. Meanwhile, in function condDataFix by which a conditional

data-�ow hint is searched for, we use the following two-step repair

process. In the �rst step, we modify the data-�ow of the program

by adding/deleting/modifying statements such that one of the neg-

ative tests becomes positive a�er the modi�cation. At this step, we

do not preserve positive tests; that is, the modi�ed program Pi in

line 9 may fail some/all of positive tests. However, in the second

step, we re�ne Pi such that the re�ned program Pr (obtained in

either line 12 or 16) passes all positive tests. More speci�cally, our

re�nement process takes place as follows. Given a statement S that

is added or deleted in the �rst step, we transform S into “if (true)

Algorithm 1 Partial Repair Generation Using Our Repair Strategy

Input: buggy program Pb , test suite T
Output: partially repaired program Pr

. Run Pb with T to �nd out positive tests Tp and negative tests Tn .

1: (Tp, Tn) ← run(Pb , T)

. Parallel call. Successful termination of one function (termination with

a non-NULL value) kills the remaining function.

2: Pr ← controlFix(Pb ,Tp, Tn) | | condDataFix(Pb ,Tp, Tn)

. Function controlFix searches for a partial repair changing the

control-�ow of the program, using Angelix and Prophet. If a partial

repair is not found, NULL is returned.

3: function controlFix(Pb ,Tp ,Tn)

. Set the repair con�guration such that a partial repair changing

the control-�ow of the program is searched for.

4: C ← {control, par tial }
5: return runAngelix(C ,Pb ,Tp ,Tn) | | runProphet(C ,Pb ,Tp ,Tn)

6: end function

. Function condDataFix searches for a partial repair changing the

data-�ow and/or the control-�ow of the program. If a partial repair is

not found, NULL is returned.

7: function condDataFix(Pb ,Tp ,Tn)

. Set the repair con�guration such that a partial repair changing

the data-�ow of the program is searched for.

8: C ← {data, par tial }
. Search for a program Pi that makes at least one of the tests in

Tn pass, while ignoring Tp . Ti represents a set of tests in Tn that

pass with Pi .
9: (Pi , Ti) ← runGenProg(C ,Pb ,Tn) | | runAE(C ,Pb ,Tn) | |

runAngelix(C ,Pb ,Tn) | | runProphet(C ,Pb ,Tn)

. If Pi is found (i.e., Pi != NULL), re�ne Pi such that not only Ti
but also all the tests in Tp pass. �is is achieved by looking for a

complete (not partial) repair that passes all tests in Tp ∪Ti
10: if Pi != NULL then
11: C ← {control, complete }
12: Pr ← RunAngelix(C ,Pi ,Tp ∪Ti)
13: end if

. If re�nement with Angelix fails (i.e., Pr == NULL), try with

Prophet.

14: if Pi != NULL && Pr == NULL then
15: C ← {control, complete }
16: Pr ← RunProphet(C ,Pi ,Tp ∪Ti)
17: end if
18: return Pr
19: end function

{ S }” or “if (false) { S }”, respectively. Similarly, if a statement S is

modi�ed into another statement S ′ in the �rst step, we transform S
into “if (true) { S’ } else { S }”. �is transformation takes place inter-

nally inside the APR tools we modify for this purpose. �e re�ned

program Pr is obtained by replacing the tautological conditions

(true or false) guarding the added/deleted/modi�ed statement with

di�erent expressions with which Pr passes all positive tests and

the negative tests addressed in the �rst step. We invoke multiple

APR tools in parallel in the two-step repair process of �nding a

conditional data-�ow hint. In the �rst step, we invoke four tools,

that is, GenProg, AE, Prophet, and Angelix (for Prophet and An-

gelix, we turn o� the options that allow conditional expression

changes). In the second step where guards are modi�ed, we invoke

only Prophet and Angelix, since GenProg and AE do not support

expression-level modi�cations.

6.3 Incremental Repair
Our overall repair algorithm optionally allows incremental repair,

that is, generating a series of partial repairs incrementally. More

speci�cally, a new partial repair Pi+1 is generated based on the

previous partial repair Pi generated at the i-th iteration. �e number

of passing tests grows as the iteration proceeds, and the tests passed

by Pi are also passed by Pi+1. �e iteration proceeds until either

there is no remaining negative (failing) test or a partial repair is not

found. A repair obtained through the incremental repair approach

can be useful for graders to whom showing as many changes as

possible can provide hints about why the student program is wrong.

7 EVALUATION
We evaluate the feasibility of using our partial repair algorithm

for introductory programming assignments. �e following are our

research questions.

RQ1 How o�en are repairs generated when our partial repair

algorithm is employed in addition to the complete repair algorithm

of the existing APR tools? A high repair rate is a prerequisite for

using APR for introductory programming assignments. �e current

state-of-the-art APR tools fail to generate repairs more o�en than

not, as shown in Section 4. How signi�cantly does a new repair

strategy allowing both complete and partial repairs improve repair

rate?

RQ2 When are repairs not generated even a�er employing our

partial repair algorithm? If there are common reasons for those

cases of repair failure, they should be addressed in future tools.

RQ3 Do tool-generated partial repairs help students in �nding a

solution more e�ciently than when repairs are not shown?

RQ4 Similarly, do tool-generated repairs help graders in grad-

ing student programs more e�ciently than when repairs are not

shown?

To investigate our research questions, we conduct a tool experi-

ment (to address RQ1 regarding repair rate), repair failure analysis

(to address RQ2), and user study (to address RQ3 and RQ4).

7.1 Tool Experiment
We developed a tool that implements our partial repair algorithm

on top of the same four existing APR tools as used in our initial

experiment. We apply our tool to the same dataset as used in

our initial experiment modulo the incorrect programs for which

complete repairs are already generated in the initial experiment.

Recall that the purpose of this tool experiment is to investigate

how signi�cantly a new repair strategy allowing both complete and

partial repairs improves repair rate. �e experiment was performed

on the same environment as used for the initial experiment.

Table 3 shows the results of our tool experiment. As compared

to our initial experiment that does not allow partial repairs, the

overall repair rate increases from 31% to 57%, showing about 84% of

improvement. Repair rate increases signi�cantly across all labs, as

shown in Figure 2. Meanwhile, the average successful repair time

stays as low as 58 seconds.

Table 3: �e result of an experiment in which partial repairs
are sought for in case a complete repair is not found out. �e
overall repair rate is about 60%.

Lab # Programs # Fixed Repair Rate Time

Lab 3 63 14 22 % 3 s

Lab 4 117 61 52 % 27 s

Lab 5 82 52 63 % 85 s

Lab 6 79 49 62 % 69 s

Lab 7 71 44 62 % 51 s

Lab 8 33 28 85 % 99 s

Lab 9 48 26 54 % 70 s

Lab 10 53 36 68 % 35 s

Lab 11 55 33 60 % 77 s

Lab 12 60 35 58 % 52 s

Total 661 378 57 % 58 s

0

20

40

60

80

Lab 3 Lab 4 Lab 5 Lab 6 Lab 7 Lab 8 Lab 9 Lab 10 Lab 11 Lab 12 Total

Policy Complete Partial+Complete

Figure 2: �is plot shows the repair rate in percentage
(Y axis) across each individual lab (X axis). �e “Com-
plete” represents the cases in which only complete repairs
are counted, whereas the “Partial+Complete” represents the
cases in which partial repairs are also allowed in case a com-
plete repair does not exist.

7.2 Repair Failure Analysis
Despite the increase of repair rate a�er allowing partial repairs,

neither complete repair nor partial repair was generated in 43% of

our subject programs. We compare these 43% of programs with

their correct versions to look for common reasons for repair failure.

Speci�cally, for each defect represented by the buggy version Pb
and the correct version Pc , we obtain the AST di�erences between

Pb and Pc using Gumtree [6], an AST di�erencing tool. We �rst

perform manual inspection of the AST di�erences to derive a set of

common characteristics observed in the di�erences between Pb and

Pc . �en, we detect other such instances in our dataset, using our

extension of Gumtree where we encode the AST di�erence pa�erns

corresponding to the common characteristics we identi�ed. We

repeat this process until all programs for which repairs are not

generated are covered. Note that some programs are labeled with

multiple characteristics in this process.

Table 4: �is table shows the distribution of the di�erence
characteristics of the two programs, a buggy program (Pb)
and its correct version (Pc), for which neither complete nor
partial repair is generated by the APR tools.

Pc − Pb # Instances Portion

String 125 40 %

Array 44 14 %

Missing Function 38 12 %

Complex Control 35 11 %

Unsupported 30 10 %

Others 16 5 %

Empty Implementation 12 4 %

Wrong Parameters 6 2 %

Wrong Usage 6 2 %

Table 4 shows our analysis result. �e �rst column categorizes

the characteristics of the di�erences between the buggy program

(Pb) and its corrected version (Pc). �e second and third column

show the number of instances and portion of each category, respec-

tively, by which the table is sorted. �e following describes each

category for Pc − Pb which we represent as δ :

String �is corresponds to the case where δ involves changing

the string constants used in the program, such as adding a missing

space or a new line. It is observed that this category takes the most

number of instances of repair failure (40%).

Array �is corresponds to the case where δ involves changes

in arrays that include array index changes, array size changes,

adding/deleting array access expressions, and using array lengths

in the program.

Missing Function �is corresponds to the case where δ involves

adding a function call.

Complex Control �is corresponds to the case where δ involves

complex control-�ow changes that include control-�ow changes

in a nested loop and control-�ow changes in multiple conditionals.

While Angelix and Prophet can change conditional expressions,

they do not exhaustively consider all possible control-�ow changes.

Unsupported �is corresponds to the case where Pc requires

expressions that cannot be synthesized by the current APR tools

such as the expressions involving the modular operator and non-

linear expressions.

Empty Implementation �is corresponds to the case where the

main function of Pb is empty or contains only a return statement.

We do not label other characteristics for the programs belonging to

this category.

Wrong Parameters �is corresponds to the case whereδ involves

changing multiple parameters of a function call expression. While

Angelix can change multiple expressions, it does not exhaustively

consider all possible combinations.

Wrong Usage �is corresponds to the case where students use

language constructs in a semantically wrong way. �is includes mis-

takenly adding a semicolon before a for-loop body (i.e., using for(…);
{…} instead of for(…) {…}), using scanf(…,x) instead of scanf(…,&x)
where x represents a variable, using ++x when x+1 is required, using

‘x’ when x is required, and using *x when x is required.

Others �is covers the rest of the characteristics.

(a) Programming Experience (b) Skill Level for C Programming

Figure 3: Background of Teaching Assistants

�e fact that the portions of the top two categories (String and

Array) take more than 50% suggests that it would be most cost

e�ective to strengthen repair operators that can manipulate strings

and arrays in future APR tools.

7.3 User Study
We perform a user study with novice students and graders to see

(1) whether automatically generated feedback can help students

solve the problem on their own.

(2) whether automatically generated feedback can help teaching

assistants (TAs) grade submissions e�ciently (faster grading)

and e�ectively (only small variation in the marks for similar

submissions.)

For the student study, we selected 5 problems for which we had

buggy submissions and the partial repairs generated by our algo-

rithm. We divided the students into the experimental group for

whom the generated repairs are presented and the control group

for whom the repairs are not presented. Repairs are presented in

the form of a comment around the repaired lines of the buggy sub-

mission. We asked each student to �x one randomly chosen buggy

submission. �e study was unannounced, that is, the task was

provided as a bonus question along with other regular assignment

problems. �e weight of the �x-task was kept low so that it does

not impact the overall grade of the students in the course. �e par-

ticipation was voluntary, and in total 263 students submi�ed their

completed programs (140 students in the without-repair group, and

123 students in the with-repair group), out of the 400+ students

crediting the course.

Similarly, to estimate the impact of repairs on the grading task,

we did a study on TAs. 37 TAs volunteered for this task, out of

which 35 �lled in the pre-study survey and the post-study sur-

vey. Figure 3 summarizes the background of these TAs, which we

collected using a pre-study survey. For the study, we randomly

collected 43 buggy submissions from the subset of our dataset for

which our algorithm successfully generates either complete or par-

tial repairs. �ese 43 buggy submissions correspond to 8 di�erent

programming problems. We asked the TAs to grade these submis-

sions based on how close they are to a correct program by �guring

out the bugs and their corresponding repairs. �e TAs were divided

into two groups. �e �rst group was given 22 tasks (set A) without

repair, and 21 tasks (set B) with repairs, while the second group was

conversely given set A with repairs, and set B without repairs. We

Figure 4: Time taken by students for bug �x task

Figure 5: Time taken by TAs for grading task

Table 5: �e answer frequency from TAs for the question:
How do you categorize the errors of the program based on
the suggested repair? Multiple answers are allowed.

Category Frequency

Conditionals 29

Loops 19

Missing Character 8

String Modi�cations 5

Array Accesses 4

User de�ned Functions 4

Missing Values in the Output 4

Library Functions 3

Others 3

Missing Whitespace in the Output 2

Floating Point Operations 1

compared the time taken and marks assigned by the TAs for these

tasks. �e reference marks for these submissions were provided by

the instructor who did not participate in the study, and did not have

access to the repairs. With TAs, we also conducted a post-study

survey to understand the experience of TAs with repairs.

Figure 4 and Figure 5 respectively show the distribution of time

taken by the students for the solving task, and time taken by the

TAs for the grading task. Both the �gures are box-plots where

X-axis shows the problem IDs and Y-axis shows the time in seconds.

Each box (or rectangle) represents the �rst and third quartiles, with

Table 6: �e answer frequency from TAs for the question:
What kind of modi�cations are necessary in the suggested
repair to obtain a correct solution? Multiple answers are al-
lowed.

Description Frequency

Fix condition for Conditionals or Loops 32

Fix Operators 15

Insert/Delete Character (e.g., ;, &) 15

Forma�ing the Output (whitespaces) 11

Fix Constants 10

Fix Array Indices 4

Others 4

Table 7: Analysis of TAGrading Time. “Yes” TAs correspond
to those who answered in the post-study survey that repairs
were useful, while “No” TAs answered conversely.

Grading All TAs “Yes” TAs “No” TAs
Time Without With Without With Without With
(sec) Repair Repair Repair Repair Repair Repair
Average 173.76 135.41 155.08 124.83 191.40 145.39

Median 150.95 133.68 120.70 126.90 166.87 144.85

Stdev 96.70 40.88 99.98 40.30 92.82 39.96

a horizontal line inside indicating the median value. �e ends of

the vertical lines (or whiskers) on either side of the box represent

the minimum and maximum time-taken. From these �gures, we

can infer that repairs a�ect novice students and TAs di�erently.

While the problem solving time of the students tends to increase

in the group where repairs are shown, the grading time of the

TAs tends to decrease when repairs are shown. �at is, when

repairs are shown, the students tend to solve the problems more

slowly, while the TAs tend to grade the problems more quickly. We

conjecture that these opposite trends between novice students and

TAs are due to their di�erent levels of expertise and the format

of feedback. In our post-study survey, we asked TAs (1) how do

you categorize the errors of the program based on the suggested

repair? and (2) what kind of modi�cations are necessary in the

suggested repair to obtain a correct solution? �e results are shown

in Table 5 and 6. In the �rst question, the majority of TAs identi�ed

the errors in loops/conditionals (see Table 5), while in the second

question, the most number of answers were given to the changes in

loops/conditionals (see Table 6). �ese results suggest that TAs are

capable of generalizing suggested repairs that are overly specialized

to the tests. It is likely that this generalization capability of TAs

helps them �nish the grading tasks more e�ciently. However,

novice students do not seem to know how to e�ectively make use

of suggested repairs, unlike TAs.

Table 7 shows a closer look at the grading performance of TAs.

�e �rst column (All TAs) shows the performance statistics for all

TAs (both without repair and with repair), and the second column

(“Yes” TAs) and the third column (“No” TAs) show the statistics for

those who said in the post-study survey that the suggested repairs

are useful and not useful, respectively. Half of the TAs answered the

repairs are useful (the Yes group) and the rest of the half answered

Figure 6: Distribution of marks assigned by TAs

not useful (the No group). Given that the average grading time is

smaller in the Yes group, high performers tend to feel more strongly

that the suggested repairs are useful. In both groups, the average

grading time decreases when repairs are shown. Also notably, the

standard deviation decreases in both groups, indicating that the gap

between high performers and low performers becomes narrower

when repairs are shown.

Figure 6 shows the marks awarded by the TAs for 15 randomly

picked submissions out of 43 tasks. �e reference marks for these

submissions were provided by the instructor who did not participate

in the study, and also did not look at the generated repairs used in

the study. In the graph, the X-axis and Y-axis show, respectively,

the problem IDs and marks awarded (between 0 and 20). �e overall

trends are similar among the group for whom repairs are presented

(experimental group), the group for whom repairs are not presented

(control group), and the independent instructor. In a majority of

the cases the absolute di�erence between the experimental group

and the control group is not much: ≤ 1 for 22/43 cases and ≤ 2 for

30/43 cases.

8 THREATS TO VALIDITY
In our tool experiments, one of the APR tools, GenProg, uses a

random algorithm (genetic programming), which can produce dif-

ferent results for each run. To mitigate this threat, we applied the

same seed to GenProg in our initial experiment (Section 4) and the

second tool experiment (Section 7.1). Also, the fact that the rest

of the APR tools employed for our experiments (AE, Prophet, and

Angelix) use deterministic repair algorithm further mitigates this

threat. Our repair failure analysis (Section 7.2) may be restricted

by the di�erence categories, Pc − Pb , to which our analysis tool

categorizes. To mitigate this threat, we manually inspected the

di�erences and added new categories when the previously used

categories were not su�cient. Our dataset, while collected from the

actual students taking an introductory programming course, may

not be representative of all student programs. Similarly, in our user

study, participating students and TAs may not represent all novice

students and graders. In terms of the programming language, our

results are con�ned to C programs for which APR has been devel-

oped most actively. However, our proposed partial-repair policy can

be applied to other programming languages. In our user study, the

experimental se�ing—where the participating students are given

buggy programs wri�en by other students—is not identical with

the actual usage scenario where the students �x the mistakes they

made. We leave further investigation as future work.

9 RELATEDWORK
Many di�erent techniques have been applied to automated feed-

back generation, and each technique has di�erent advantages and

disadvantages. Program equivalence checking is used in [14] where

behavioral di�erence between a student program and its refer-

ence program (di�erences in input-output relations) is reported

to the student as feedback. Since program equivalence checking

is generally undecidable, [14] performs equivalence checking in

a constrained manner — that is, when comparing a student pro-

gram Ps with its reference program Pr , Pr should be structurally

similar to Ps . Such Pr can be provided either manually (the instruc-

tor prepares Pr) or semi-automatically (the instructor selects Pr
from previously submi�ed correct student programs which can be

automatically clustered according to their structures). Since this

approach based on program equivalence uses a reference program

as a speci�cation, it can generate feedback even when there is no

failing test. Meanwhile, the fact that the instructor should validate

the correctness of the reference program poses not only a burden

to the instructor, but also a risk of generating false feedback in the

presence of a validation mistake.

A model-based approach is used in [38] where an instructor-

given error model describing possible student errors de�nes how

the given incorrect program is allowed to be modi�ed. To search for

a correct modi�cation e�ciently, a program synthesis technique is

employed. While an error model can capture some common student

errors and hence can guide feedback generation, it also restricts

the search for feedback only to the common errors described in

the error model. �e fact that an error model should be prepared

beforehand by the instructor is another disadvantage.

Static analysis is used in [1, 46] where dependence graphs ex-

tracted from a student program Ps and the reference program Pr
are compared to each other, in order to identify a statement in Ps
that can potentially cause semantic di�erence from Pr . As usual in

conservative static analysis, these approaches can guarantee not to

miss a semantic error, while as a �ip side, an error can be falsely

reported.

A learning-based approach is used in Refazer [37] and Deep-

Fix [13]. Refazer learns programs transformation rules from the

past program changes, similar to [25, 26] where systematic edits

(similar, but not identical, changes made in many program locations)

are learned from the past program changes. Meanwhile, DeepFix

applies deep learning to the correction of syntactic errors that cause

compilation failure. While learning-based approaches can comple-

ment the existing approaches when the previous submissions of

a programming assignment are available, their applicability and

e�ectiveness are restricted by the availability and the quality of the

previous submissions.

A data-driven approach is used in [36] where, in order to gen-

erate feedback, not only the reference program, but also a chain

of intermediate programs leading to the reference program are ex-

ploited. �e use of intermediate programs makes it more amenable

to generate a next-step hint, since the buggy student program is

likely to be closer to one of the intermediate programs than to the

reference program. However, the hint space, consisting of the refer-

ence programs and their intermediate programs, is more restricted

than the one of APR.

Automated program repair (APR) is fully automatic unlike some

approaches requiring additional input from the instructor, such

as an error model and multiple reference programs from multiple

clusters. In APR, it is su�cient to provide a student program and a

test suite. Although generated repairs can be imperfect and overly

specialized to the provided test suite [39], this issue has been grad-

ually addressed in recent work of APR [4, 18, 21, 23, 41, 42, 45].

Meanwhile, fault localization can also be used to provide hints to

students, as suggested in [3]. In fact, APR also performs fault lo-

calization in the sense that APR performs fault localization before

synthesizing a �x. Furthermore, students can also see how a pre-

viously failing test passes a�er �x, which provides an additional

hint.

�ere have been several user studies in the area of program

debugging and repair [15, 30, 43]. Unlike these user studies con-

cerning the productivity of professional developers, our study is

conducted with di�erent target of users, that is, novice students

and graders. Overall, our study provides holistic information about

the feasibility of using APR for introductory programming assign-

ments, including how o�en repairs are generated, why repairs are

failed to be generated, and how useful generated repairs are for

students and graders.

10 CONCLUSION
In this paper, we have explored the possibility of using APR as

a feedback generation engine of intelligent tutoring systems for

introductory programming. We have performed a feasibility study

with four state-of-the-art APR tools (GenProg, AE, Prophet, and

Angelix) and real student programs collected from a course on intro-

ductory programming. Although out-of-the-box application of APR

tools seems infeasible due to the low repair rate, we have shown

that repair rate can be boosted by tailoring the repair policy and

strategy of APR to the needs of intelligent tutoring. Most notably,

adopting a partial repair policy akin to the next-step hint gener-

ation advocated in the education �eld seems e�ective in terms of

improving feedback generation rate. We have also shown through a

repair failure analysis that repair failures are o�en caused by a few

common reasons. Further improvement of feedback generation rate

is expected by strengthening repair operators manipulating strings

and arrays in future APR tools. Lastly, we have shown our user

study results performed with novice students and graders (TAs).

In contrast to the TAs who use the suggested repairs as hints to

e�ciently complete the grading tasks, the novice students do not

seem to know how to e�ectively make e�cient use of suggested

repairs to correct their programs. We leave as future work a study

of e�ective post-processing of repairs to transform them to hints

more comprehensible to novice students.

ACKNOWLEDGMENTS
�e �rst author thanks Innopolis University for its support.

11 ARTIFACT DESCRIPTION
To facilitate further research, we share the artifacts used in this

study in the following GitHub page:

h�ps://github.com/jyi/ITSP

A detailed description about the artifacts—including how to use

them—is provided in our GitHub page. In this section, we provide

summarized information about the shared artifacts.

11.1 Available Artifacts
�e following artifacts are available in our GitHub page:

(1) Dataset containing 661 student programs we used in our exper-

iments (see Section 3)

(2) A toolchain implementing our new repair policy (see Section 6.1)

and strategy (see Section 6.2)

(3) User study materials including the survey questionnaire we

used and survey responses (see Section 7.3)

Docker Image. �e provided toolchain runs on top of four APR

tools, namely GenProg [19], AE [44], Angelix [24], and Prophet [21].

We provide a docker image where all these four tools are already

installed. Our docker image can be downloaded from Docker Hub:

docker pull jayyi/itsp:0.0

Note that the size of the image is quite large (> 30 GB). �e

following more lightweight image (about 3 GB) is also available:

jayyi/itsp-no-angelix:0.0, which does not contain one of APR tools,

Angelix. In the lightweight image, the provided toolchain does not

use Angelix when generating a repair.

Tutorial. We provide in our GitHub page a tutorial about how to

use our toolchain and how to interpret the toolchain result.

11.2 Potential Users of the Artifacts
Our artifacts can be useful for:

(1) �ose who want to reproduce our experimental results.

(2) �ose who need a benchmark for an intelligent tutoring sys-

tem for programming (ITSP). Our shared dataset contains 661

incorrect student programs, their reference programs (correct

versions) and test suites.

(3) �ose who want to extend our partial repair policy/strategy.

�e provided toolchain (wri�en in Bash) implements our partial

repair policy/strategy.

(4) �ose who want to conduct a user study on ITSP. We share the

survey questionnaire used in our user study.

11.3 A Note on Reproducibility
GenProg uses a random algorithm. Also, parallel use of multiple

repair tools introduces one more layer of randomness (there is no

guarantee that one repair tool always �nds a repair faster than

the other tools). �us, di�erent results may be produced at each

experiment. We provide raw experimental data we obtained in

our GitHub page (located in the experiment/cache directory) from

which the summarized information we provide in this paper (i.e.,

Table 2, Figure 1, Table 3 and Figure 2) can be reproduced using the

provided script (analysis.R).

REFERENCES
[1] Anne Adam and Jean-Pierre H. Laurent. 1980. LAURA, A System to Debug

Student Programs. Artif. Intell. 15, 1-2 (1980), 75–122.

[2] Ti�any Barnes and John C. Stamper. 2008. Toward Automatic Hint Generation

for Logic Proof Tutoring Using Historical Student Data. In Intelligent Tutoring
Systems. 373–382.

[3] Geo� Birch, Bernd Fischer, and Michael Poppleton. 2016. Using Fast Model-

Based Fault Localisation to Aid Students in Self-Guided Program Repair and to

Improve Assessment. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2016. 168–173.

[4] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program

Repair with �antitative Objectives. In CAV. 383–401.

[5] Rajdeep Das, Umair Z. Ahmed, Amey Karkare, and Sumit Gulwani. 2016. Prutor:

A System for Tutoring CS1 and Collecting Student Programs for Analysis. CoRR
abs/1608.03828 (2016). h�p://arxiv.org/abs/1608.03828

[6] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-grained and accurate source code di�erencing. In ASE.

313–324.

[7] Elena L. Glassman, Jeremy Sco�, Rishabh Singh, Philip J. Guo, and Robert C.

Miller. 2015. OverCode: Visualizing Variation in Student Solutions to Pro-

gramming Problems at Scale. ACM Trans. Comput.-Hum. Interact. 22, 2 (2015),

7:1–7:35.

[8] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.

2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs

for $8 each. In ICSE. 3–13.

[9] Sebastian Gross, Bassam Mokbel, Benjamin Paaßen, Barbara Hammer, and Niels

Pinkwart. 2014. Example-based feedback provision using structured solution

spaces. IJLT 9, 3 (2014), 248–280.

[10] Zhongxian Gu, Earl T. Barr, David J. Hamilton, and Zhendong Su. 2010. Has the

Bug Really Been Fixed?. In ICSE. 55–64.

[11] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2014. Feedback generation

for performance problems in introductory programming assignments. In FSE.

41–51.

[12] Philip J. Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring for

Computer Programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface So�ware & Technology, UIST 2015, Charlo�e, NC, USA, November
8-11, 2015. 599–608.

[13] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:

Fixing Common C Language Errors by Deep Learning. In AAAI. 1345–1351.

[14] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. 2016.

Semi-supervised veri�ed feedback generation. In FSE. 739–750.

[15] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.

MintHint: automated synthesis of repair hints. In ICSE. 266–276.

[16] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic

Patch Generation Learned from Human-wri�en Patches. In ICSE. 802–811.

[17] John R. Koza. 1993. Genetic programming - on the programming of computers by
means of natural selection. MIT Press.

[18] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program

Repair. In SANER. 213–224.

[19] C. Le Goues, �anhVu Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A

Generic Method for Automatic So�ware Repair. IEEE Transactions on So�ware
Engineering 38, 1 (Jan 2012), 54–72.

[20] Fan Long and Martin Rinard. 2015. Staged program repair with condition syn-

thesis. In ESEC/FSE. 166–178.

[21] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning

correct code. In POPL. 298–312.

[22] Fan Long and Martin C. Rinard. 2016. An analysis of the search spaces for

generate and validate patch generation systems. In ICSE. 702–713.

[23] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking

for Simple Program Repairs. In ICSE. 448–458.

[24] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable

multiline program patch synthesis via symbolic analysis. In ICSE. 691–701.

[25] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic editing:

generating program transformations from an example. In PLDI. 329–342.

[26] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and

applying systematic edits by learning from examples. In ICSE. 502–511.

[27] Douglas C. Merrill, Brian J. Reiser, Shannon K. Merrill, and Shari Landes. 1995.

Tutoring: Guided Learning by Doing. Cognition and Instruction 13, 3 (1995),

315–372.

[28] Hoang Duong �ien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: program repair via semantic analysis. In ICSE. 772–781.

[29] Luc Paque�e, Jean-François Lebeau, Gabriel Beaulieu, and André Mayers. 2012.

Automating Next-Step Hints Generation Using ASTUS. In Intelligent Tutoring
Systems. 201–211.

[30] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques

actually helping programmers?. In ISSTA. 199–209.

https://github.com/jyi/ITSP
http://arxiv.org/abs/1608.03828

[31] Yu Pei, C.A. Furia, M. Nordio, Yi Wei, B. Meyer, and A. Zeller. 2014. Automated

Fixing of Programs with Contracts. IEEE Transactions on So�ware Engineering
40, 5 (May 2014), 427–449.

[32] Chris Piech, Mehran Sahami, Jonathan Huang, and Leonidas Guibas. 2015. Au-

tonomously Generating Hints by Inferring Problem Solving Policies. In Proceed-
ings of the Second ACM Conference on Learning @ Scale. 195–204.

[33] Leena M. Razzaq, Neil T. He�ernan, and Robert W. Lindeman. 2007. What Level

of Tutor Interaction is Best?. In Arti�cial Intelligence in Education. 222–229.

[34] Kelly Rivers and Kenneth R. Koedinger. 2013. Automatic Generation of Program-

ming Feedback; A Data-Driven Approach. In Proceedings of the Workshops at the
16th International Conference on Arti�cial Intelligence in Education AIED 2013,
Memphis, USA, July 9-13, 2013.

[35] Kelly Rivers and Kenneth R. Koedinger. 2014. Automating Hint Generation with

Solution Space Path Construction. In Intelligent Tutoring Systems. 329–339.

[36] Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in

Vast Solution Spaces: a Self-Improving Python Programming Tutor. International
Journal of Arti�cial Intelligence in Education 27, 1 (2017), 37–64.

[37] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit

Gulwani, Rohit Gheyi, Ryo Suzuki, and Bjoern Hartmann. 2017. Learning Syn-

tactic Program Transformations from Examples. In ICSE. 404–415.

[38] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated

feedback generation for introductory programming assignments. In PLDI. 15–26.

[39] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure

worse than the disease? over��ing in automated program repair. In ESEC/FSE.

532–543.

[40] Elliot Soloway, Beverly Park Woolf, Eric Rubin, and Paul Barth. 1981. Meno-II:

An Intelligent Tutoring System for Novice Programmers. In IJCAI. 975–977.

[41] Shin Hwei Tan and Abhik Roychoudhury. 2015. reli�x: Automated repair of

so�ware regressions. In ICSE. 471–482.

[42] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury.

2016. Anti-pa�erns in search-based program repair. In FSE. 727–738.

[43] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically gener-

ated patches as debugging aids: a human study. In FSE. 64–74.

[44] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. 2013. Leveraging pro-

gram equivalence for adaptive program repair: Models and �rst results. In ASE.

356–366.

[45] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang,

and Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In ICSE.

416–426.

[46] Songwen Xu and Yam San Chee. 2003. Transformation-Based Diagnosis of

Student Programs for Programming Tutoring Systems. IEEE Trans. So�ware Eng.
29, 4 (2003), 360–384.

[47] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian

R. Lamelas Marcote, �omas Durieux, Daniel Le Berre, and Martin Monper-

rus. 2017. Nopol: Automatic Repair of Conditional Statement Bugs in Java

Programs. IEEE Trans. So�ware Eng. 43, 1 (2017), 34–55.

	Abstract
	1 Introduction
	2 Automated Program Repair
	3 Dataset
	4 Initial Feasibility Study
	4.1 Results of Initial Experiment
	4.2 Reasons for Low Repair Rate

	5 Tutoring Programming
	6 From Bug Fixing Toward Tutoring
	6.1 Tailoring Repair Policy
	6.2 Tailoring Repair Strategy
	6.3 Incremental Repair

	7 Evaluation
	7.1 Tool Experiment
	7.2 Repair Failure Analysis
	7.3 User Study

	8 Threats to Validity
	9 Related Work
	10 Conclusion
	11 Artifact Description
	11.1 Available Artifacts
	11.2 Potential Users of the Artifacts
	11.3 A Note on Reproducibility

	References

