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Abstract

Many reactive control systems consist of a large number of similar in-
teracting objects; these objects can be often grouped into classes. Such
interacting process classes appear in telecommunication, transportation
and avionics domains. In this paper, we propose a modeling and simu-
lation technique for interacting process classes. Our modeling style uses
standard notations to capture behavior. In particular, the control flow
of a process class is captured by a state diagram, unit interactions be-
tween process objects by sequence diagrams and the structural relations
are captured via class diagrams. The key feature of our approach is that
our simulation is symbolic. We dynamically group together objects of the
same class based on their past behavior. This leads to a simulation strat-
egy that is both time and memory efficient and we demonstrate this on
well-studied non-trivial examples of reactive systems. We also use our
simulator for debugging realistic designs such as NASA’s CTAS weather
monitoring system.

1 Introduction

System level design based on UML notations is a possible route for pushing
up the abstraction level when designing reactive embedded systems. For this
approach to be viable, such design flows must include simulation and (platform
dependent) code generation tools. Here we focus on developing an efficient
simulation technique for reactive systems specified as interacting classes of active
objects.

Interacting process classes arise naturally in application domains such as
telecommunications and avionics. We observe that during the initial system
design phase it may be unnatural to fix the number of objects in each process
class of the system. In general, it is also difficult to set a small cutoff number np

on the number of objects for each process p, such that this restricted system is
guaranteed to exhibit all the interesting behaviors of the intended system. This
is our motivation for developing a modeling framework, where one can efficiently
simulate and validate a system with a large number of active objects, such as
a telephone switch network with thousands of phones, an air traffic controller
with hundreds of clients etc. If the execution semantics of such systems main-
tains the local state of each object as simulation proceeds, this will lead to an
impractical blow-up. Instead, we dynamically group together objects by main-
taining sufficient -but bounded-information to ensure that the grouped objects
will exhibit similar future behaviors.

We use labeled transition systems and class diagrams as a basis for our mod-
eling framework – class diagrams are used to capture the associations between
the process classes and transition systems are used to describe the behavior of
process classes. One unconventional feature in our modeling framework is that
the unit of interaction is chosen to be not just a synchronization or send-receive
event pairs. Instead, we use a sequence diagram as a basic communication unit.
We note that at the model level, even primitive interactions between process
classes often involve bidirectional information flow and are best depicted as
short -acyclic- protocols. Thus from our experience in reactive system mod-
eling (including the examples discussed in this paper), descriptions of process
interactions based on sequence diagrams is very natural.
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Finally, we also introduce static and dynamic associations between objects.
This is necessary when classes of active objects interact with each other. Static
associations are needed to specify constraints imposed by the structure of the
system. For instance, the topology of a network may demand that a node
can take part in a “transmit” transaction only with its neighbors. We use
class diagrams in a standard way to specify such associations. On the other
hand, dynamic associations are needed to instantiate the proper combinations of
objects -based on past history- to take part in a transaction. For instance when
choosing a send-receive pair of objects to take part in a “disconnect”’ transaction
we must choose a pair which are currently in the “connected” relation. This
relation has presumably arisen by virtue of the fact that they took part last in
a “connect” transaction.

All these features of our model demand a good deal of work in terms of
defining an execution semantics. Furthermore, developing a symbolic execution
semantics for process classes where we must also symbolically maintain static
and dynamic class associations is even harder. In this paper we develop such a
symbolic execution mechanism for interacting process classes.

In summary, the highlights of our work are: (a) a symbolic execution seman-
tics which dynamically groups objects of a process class based on behavior, (b)
systematic use of sequence diagrams to specify behavioral interactions between
interacting process classes, and (c) investigating the efficiency of our symbolic
simulation and its use in debugging with the help of realistic examples of reac-
tive controllers. In terms of future work, we are looking into code generation as
well as (symbolic) test-bench generation from our models.

2 Related Work

Simulation of scenario-based specifications as well as synthesis of executable
models from such specifications is an important research area. The synthesis
task may consist of realizing per-process transition systems from scenario-based
specifications (see [4, 19] for example). Alternatively, one may develop exe-
cutable specifications based on Message Sequence Charts (MSCs). Works in
this direction include Live Sequence Charts [2], Triggered Message Sequence
Charts [16] as well as our past work [14]. All these approaches deal with con-
crete objects and their interactions.

Live Sequence Charts (LSCs)[2, 6] offer an MSC-based inter-object modeling
framework for reactive systems. However, LSCs completely suppress the control
flow information for each process class. More importantly, though the objects of
a process class can be specified symbolically, the LSC execution mechanism (the
play-engine as described in [6]) does not support symbolic execution of process
classes. The symbolic instances are instantiated to concrete objects during
simulation.1 The work on Triggered Message Sequence Charts [16] allows for
a per-process execution semantics (in comparison to the play-engine of LSCs
which gives a centralized execution semantics). Again, the execution semantics
deals with concrete object interactions.

There are a number of design methodologies based on the UML notions of
class and state diagrams as exemplified in the tools Rhapsody and RoseRT.

1The approach taken in [20] alleviates this problem of LSCs by maintaining constraints on
process identities but falls short of a fully symbolic execution.
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These tools also have limited code generation facilities. Again, no symbolic ex-
ecution semantics is provided and the interactions between the objects -not
classes- have to be specified at a fairly low level of granularity. The new
standard UML 2.0 advocates the use of “structured classes” where interac-
tion relationships between the sub-classes can be captured via entities such
as ports/interfaces; Our present framework does not cater for structured classes
but it can easily accommodate notions such as ports/interfaces. Indeed, our
execution mechanism is easily applicable to a variety of related modeling styles.

Our technique for grouping together behaviorally similar objects is different
from existing works on behavioral subtyping which develop subclass relation-
ships based on behaviors of the objects in those classes. One of the early works
in this area is by Liskov and Wing [11] which focuses on passive objects – ob-
jects whose state change is only via method invocation by other objects. Subse-
quently, behavioral subtyping of active objects have been studied in many works
(e.g. [5, 21]). These works mostly exploit well-known notions of behavioral in-
clusion (such as trace containment) to define notions of behavioral subtyping.
Our aim however is not to detect/establish subclass relationships. Rather, we
wish to dynamically group together objects of the same class based on behavior
exhibited so far for purposes of efficient system execution or simulation.

Our method of grouping together active objects is related to abstraction
schemes developed for grouping processes in parameterized systems (e.g., see
[13]). In such systems, there are usually many similar processes whose behavior
can be captured by a single finite state machine. It is then customary to main-
tain the count of number of processes in each state of the finite state machine;
the names/identities of the individual processes are not maintained. However,
in our setting inter-object associations across classes have to be maintained —
an issue that does not arise in parameterized system validation.

The notion of “roles” played by processes in protocols have appeared in other
contexts (e.g. [15]). Object orientation based on the actor-paradigm has been
studied thoroughly in [10]. We see this work as an orthogonal approach where
the computational rather than the control flow features are encapsulated using
classes and other object-oriented programming notions (such as inheritance).

3 The Modeling Language

3.1 Model Specification

We model a reactive system as a collection of process classes P, where a class p ∈
P is a collection of processes with similar functionalities. Objects belonging to a
class will possess a common control flow detailing the pattern of computational
and communication activities they can go through and this is described as a
state diagram. A communication action will name a transaction and the role
played by an object of the class in the transaction. Message Sequence Charts
(sequence diagrams) will be used to represent transactions. We fix a set of
transactions Γ with γ ranging over Γ. Also, for each transaction γ ∈ Γ, let
Rγ be the set of roles (usually called lifelines or instances of the chart) and
R = ∪γ∈ΓRγ . Each role r in R will be a pair (p, ρ) where p is the name of a
class -from which an object playing this role is to be drawn- and ρ is the chart
role to be played by r (“sender”, “receiver” etc.). For convenience we assume
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that if (p1, ρ1) and (p2, ρ2) are two distinct members of Rγ (i.e., two distinct
roles in transaction γ), then ρ1 �= ρ2. We however do not demand p1 �= p2.
Thus two different roles in a transaction may be played by two objects drawn
from the same class.

More precisely, a transaction γ in our model is a guarded message sequence
chart of the form (I : Ch), where Ch is the Message Sequence Chart and I is
the transaction guard: conjunction of guards, one for each role of Ch. We now
describe the MSC Ch and its guard I in more detail.

Message Sequence Chart To describe an MSC, we define the following
components:

• M is an alphabet of message events.

• Act is an alphabet of internal actions representing computational steps
performed by various lifelines.

• Let p, q range over R. Σp be the set of actions executed by p ∈ R and let
Σ = ∪p∈RΣp. These actions are of the form: <p!q,m>- p sending message
m to q, 〈p?q, m〉- p receiving a message m from q, and 〈p, a〉 denoting
an internal action a of p (where q ∈ R). We assume that the message
communication is over point to point reliable FIFOs.

• We define a Σ labeled poset to be a structure Ch = (R′, E,≤, λ), where
R′ ⊆ R, (E,≤) is a poset and λ : E → Σ is a labeling function. Also
let, ↓ (e) = {e′ | e′ ≤ e, for some e ∈ E} and l, r range over R′. We set
El = {e | λ(e) ∈ Σl}. These are the events that l takes part in. Further,
El!r = {e | e ∈ El and λ(e) = 〈l!r, m〉 for some m ∈ M}. Similarly,
El?r = {e | e ∈ El and λ(e) = 〈l?r, m〉 for some m ∈ M}. Also, for any
channel c = (l, r), the communication relation Rc is defined as: (e, e′) ∈ Rc

iff | ↓ (e) ∩ El!r| = | ↓ (e′) ∩ Er?l| and λ(e) = 〈l!r, m〉 and λ(e′) = 〈r?l, m〉
for some message m.

Definition 1 (Message Sequence Chart) An MSC (over (R, M, Act)) is a
Σ labeled poset Ch = (R′, {Ep}p∈R′ ,≤, λ), with l,r ranging over R′, satisfying
the following:
(1) ≤l is a linear order for each l where ≤l is restricted ≤ to El × El.
(2) Suppose λ(e) = 〈l?r, m〉. Then | ↓(e) ∩ El?r| = | ↓(e) ∩ Er!l|.
(3) For every l,r with l �= r, |El?r| = |Er!l|.
(4) ≤= (≤R′ ∪RChan)� where ≤R′= ∪l∈R′ ≤l and RChan = ∪c∈ChanRc.

We assume synchronous concatenation of two MSCs. Also message com-
munication is considered to be asynchronous; however other variants such as
synchronous communication can be easily supported.

The Guard of a Transaction The guard I of transaction γ = (I : Ch),
Ch = (Rγ , {Ep}p∈Rγ

,≤, λ), is of the form {Ir}r∈Rγ
, i.e. a conjunction of the

guards, one for each role in Rγ .
In a transaction, the guard associated with the role (p, ρ) will specify the

conditions that must be satisfied by an object Or belonging to the class p in
order for it to be eligible to play the role r = (p, ρ). These conditions will
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Figure 1: Transactions DepartReqA & NoMoreDest; A is an internal computa-
tion event in transaction NoMoreDest

consist of two components: i) a history property of the execution sequence (of
communication actions) that Or has so far gone through ii) a propositional
formula built from boolean predicates regarding the values of the (instantiated)
variables owned by Or. For instance, in the transaction “DepartReqA” (refer to
Figure 1(a)), a Car object wishing to play the role (Car, sndReq)2 must have last
played the role (Car, rcvDest) in the transaction SetDest or in the transaction
SelectDest . This is captured by the regular expression guard

Act�
Car .(SetDestrcvDest |SelectDestrcvDest )

shown at the top of the sndReq lifeline in Figure 1(a). Thus, we will use regular
expressions to specify the history component of a guard. Also, note that in
the transaction “DepartReqA” (Figure 1(a)), the guard does not restrict the
local variable valuation of participating objects in any way. On the other hand,
in the transaction of Figure 1(b), the variable “dest” owned by the car-object
intending to play the role (Car,sndStop) must satisfy “dest = 0”.

The transition system describing the common control flow of all the objects
belonging to the class p will be denoted as TSp and it will be a structure of the
form

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp
〉.

We first explain the nature of the components Actp, Vp and vinitp
. The set of

actions Actp are the set of roles that the p-objects can play in the transactions
in Γ. Accordingly, a member of Actp will be a triple of the form (γ, p, ρ) with
γ ∈ Γ, γ = (I : Ch) and r = (p, ρ) ∈ R where R is the set of roles of Ch. Since
role r = (p, ρ), the action label (γ, p, ρ) will be abbreviated as γr; when p is
clear from the context it can also be abbreviated as γρ. The computational steps
performed by an object will be described with the help of the set of variables
Vp associated with p. Each object O in p of course will have its own copy of
the variables in Vp but for convenience of explanation we shall assume that all
the objects of class p assign the same initial value to any variable u ∈ Vp. This

2As a notational shorthand we have written role (p, ρ) as pρ at the bottom of each lifeline
in the transactions of Figure 1.
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initial assignment is captured by the function vinitp
while assuming appropriate

value domains for the variables in Vp. Since a computational step can be viewed
as a degenerate type of transaction having just one role in its chart, we will not
distinguish between computational and communication steps in what follows.
Returning to TSp = 〈Sp, Actp,→p, initp, Vp, vinitp

〉, Sp is the set of local states,
initp ∈ Sp is the initial state and →p⊆ Sp ×Actp ×Sp is the transition relation.
In summary, our model can be defined as follows.

Definition 2 (The IPC Model) Given a set P of process-classes, a set Γ of
transactions and a set of action labels Actp for p ∈ P involving transactions from
Γ, a system of Interacting Process Classes (IPC) is a collection of P-indexed
labeled transition systems {TSp}p∈P where

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp
〉

is a finite state transition system as explained above.

3.2 Class Diagram and Associations

We make use of class-diagrams to model the system structure and associations
to model different kinds of communication links that can exist in an interaction
among objects. These extensions are crucial for achieving adequate modeling
power. The associations are classified as static or dynamic in a manner similar
to as presented in [18].

Static Associations A static association expresses structural relationship be-
tween the classes. In a class-diagram the static associations are captured using
links, annotated with fixed multiplicity at both the association ends. Static as-
sociations between the objects remain fixed and do not change at runtime, i.e.,
they represent permanent or unchanging relations between the classes during
the execution. We can refer to static associations in transaction guards to im-
pose the restriction that process classes chosen for a given pair of agents should
be statically related.

Dynamic Associations A dynamic association expresses behavioral relation-
ship between the classes, which in our case implies that the objects of two
dynamically associated classes can become related to each other during simu-
lation for some period of time, exchange messages (by executing transactions
together) and then leave that relation. In the class-diagram dynamic associa-
tions are captured using links, annotated with multiplicity ranges at both the
association ends. Thus the contents of a dynamic relation can change during
simulation (unlike the static relation).

4 Execution Semantics

In this section, we describe the execution semantics of our IPC model. At
the initial configuration, for each class p, every p-object will be residing at the
designated initial state of TSp. The history of each such object will be the null
string and for each variable associated with p, each object of p will initialize
it to the same value. The system will move from the current configuration by
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executing an enabled transaction and as a result, move to a new configuration.
The transaction γ = (I : Ch) is enabled at the configuration c if we can assign
to each role r = (p, ρ) of Ch, a distinct object Or belonging to p such that the
following conditions are satisfied (we will state these conditions informally and
illustrate them via the example shown in Figure 2):

• First, the object Or must reside at a state s in TSp such that there is
transition s

γr→ s′ in TSp. (This object will move to s′ when γ executes at
c).

• Next suppose the guard I in γ = (I : Ch) is of the form {Ir}r∈Rγ
.Furthermore,

assume that Ir = (Λ, Ψ) where Λ is a regular expression over alphabet Actp
and Ψ is a propositional formula constructed from some boolean predicates
over the variables associated with p. Then σ, the current history of Or

(i.e., sequence of actions executed by Or), must be in the language defined
by the regular expression Λ. Furthermore, the valuation of the variables
of Or should satisfy the formula Ψ.

If both these conditions are satisfied for an object Or for each role r, then the
transaction γ can occur at c. This will result in a new configuration c′ obtained
by updating current control locations, current history and the values of the
variables of the objects Or for each role r. In the example shown in Figure 2,
suppose c is a configuration at which

• Two Car objects Oc1 and Oc2 are residing in state stopped and a third
object, Oc3, is in state s2 of TSCar. Further suppose they have the values
0, 1 and 2 respectively for the variable dest.

• Three Cruiser objects, O1 . . . O3 are residing in state
started of TSCruiser such that the history of O1 and O2 satisfy the regular
expression

(ActCruiser )�.AlertStoprcvDisEg

while the history of O3 satisfies the regular expression

(ActCruiser )�.DepartAckAstarted

• Six Terminal objects, Ot1 . . . Ot6 are residing in state s1 of TSTerminal.

Suppose we want to execute transaction NoMoreDest — shown in Figure
2(d) — at configuration c. As for the role (Car,sndStop), though Oc1 and
Oc2 are in the appropriate control state, only Oc1 can be chosen since it (and
not Oc2) satisfies the guard dest = 0. For the cruisers, we observe that all
the three Cruiser objects O1, O2, O3 are in the “appropriate” control state at
configuration c for the purpose of executing NoMoreDest. However, only O1 and
O2 have histories which satisfies the history part of the guard associated with
the role (Cruiser,rcvStop). Hence either one of them (but not O3) can be chosen
to play this role. For the role (Terminal,inc), both the history and propositional
guards are vacuous and hence we can choose any one of the 6 objects residing
in the control state s1.

Assume that Oc1, O1 and Ot1 are chosen to execute transaction NoMore-
Dest in configuration c. In the resulting configuration c′, all objects other than
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Oc1, O1 and Ot1 will have their control states and histories unchanged from
c. The objects Oc1, O1, Ot1 will reside in states idle, stopped, s1 respectively.
The history of Oc1, O1, Ot1 will be obtained by appending NoMoreDestsndStop ,
NoMoreDestrcvStop and NoMoreDestinc to their respective histories at configu-
ration c. Object Ot1 also updates a local variable via an internal event — refer
to Terminalinc in Figure 2(d).

Execution in the presence of associations In the case of static associ-
ations, the only additional restriction to the execution semantics (illustrated
above), will be to choose statically related objects for the given lifelines. We
now illustrate the use of dynamic associations using the rail-car example. De-
tails about this example will be given later in Section 6. During the system run
various rail-cars enter and leave the terminals along their path. When a car is
approaching a terminal, it sends arrival request to that terminal by executing
ContactTerminal transaction and while leaving the terminal, its departure is ac-
knowledged by the terminal by executing DepartAckA or DepartAckB (refer to
Figure 2(a)). Hence, the guard of DepartAck(A/B) requires that the participat-
ing Car and Terminal objects should have together executed ContactTerminal
(when the car was entering this terminal). Since this condition involves a re-
lationship between the local histories of multiple objects, we cannot capture it
via regular expressions over the individual local histories.

Instead, we make use of dynamic relation ItsTerminal between the Car and
Terminal classes as part of our specification. Instead of giving details of the
ContactTerminal and DepartAck(A/B) transactions, we list here relevant roles
of these transactions.

• ContactTerminal has roles (Car,sndReq) and (Terminal,rcvReq),

• DepartAckA and DepartAckB have roles (Car,rcvAck) and
(Terminal,sndAck). Transactions DepartAck(A/B) also involve other roles
which we choose to ignore here for the purpose of our discussion.

If car object O1 and terminal object O2 play the roles (Car,sndReq) and (Ter-
minal,rcvReq) in ContactTerminal (refer to Figure 2(a) for TSCar and Figure
2(c) for TSTerminal), then the effect of ContactTerminal is to insert the tuple
(O1, O2) into the ItsTerminal relation (refer to Figure 3). The DepartAck(A/B)
transaction’s guard now includes the check that the object pair corresponding to
roles (Car,rcvAck) and (Terminal,sndAck), be related by the dynamic relation
ItsTerminal; so if objects O1 and O2 are selected to play the (Car,rcvAck) and
(Terminal,sndAck) roles in DepartAck(A/B), the check will succeed. Further-
more, the effect of DepartAck(A/B) transaction is to remove the tuple (O1, O2)
from ItsTerminal relation.

4.1 Behavioral Partitions

One of our key objectives is to avoid having to keep track of the identities of
the objects of a process class during execution. To achieve this, the objects of
a process class will be grouped together into “behavioral partitions”, based on
their potential future behaviors. Note that for an object of a process class p, the
transactions it can execute depends on its current state in TSp, its execution
history (which determines the satisfaction of regular expressions occurring in
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guards of lifelines mentioned in the transition labels in TSp), and valuation
of its local variables (determining the satisfaction of propositional guards of
lifelines in TSp). In the examples we have studied it suffices to deploy very
restricted regular expressions (in the guards of the transactions), which can be
represented as DFAs and hence, from a pragmatic point of view, complexity is
not an issue.

Given an IPC model as defined in the previous section, for the class p we
define Hp to be the least set of DFAs given by: A is in Hp iff there exists a
transaction γ = (I : Ch) and a role r of Ch of the form (p, ρ) such that the
guard Ir of r is (Λ, Ψ) and A is the minimal DFA recognizing the language
defined by the regular expression Λ, the history part of the guard. The notion
of behavioral partitions can now be defined as follows.

Definition 3 (Behavioral Partition) Let
{TSp = 〈Sp, Actp,→p, initp, Vp, vinitp

〉}p∈P be an IPC. Let Hp = {A1, . . . ,Ak}
be the set of minimal DFAs defined for class p as described in the preceding.
Then a behavioral partition behp of class p is a tuple (s, q1, . . . , qk, v), where

s ∈ Sp, q1 ∈ Q1, . . . , qk ∈ Qk, v ∈ V al(Vp).

Qi is the set of states of automaton Ai and V al(Vp) is the set of all possible
valuations of variables Vp. We use BEHp to denote the set of all behavioral
partitions of class p.

We also define initial behavioral partitions representing the initial state of
an IPC model.

Definition 4 (Initial Behavioral Partition) Let
{TSp = 〈Sp, Actp,→p, initp, Vp, vinitp

〉}p∈P be an IPC. Let Hp = {A1, . . . ,Ak}
be the set of minimal DFAs defined for class p as described in the preceding and
qinit
i be the initial state of Ai. Then the initial behavioral partition behinit

p of
class p is the behavioral partition (initp, q

init
1 , . . . , qinit

k , vinitp
).

Now suppose c is a configuration and the object O belonging to the class
p has the history σ ∈ Act�p at c and the valuation of its variables is given by
the function vO. We will say that at c, the object O belongs to the behavioral
partition (s, q1, . . . , qk, v) in case O resides in s at c and qj is the state reached
in the DFA Aj when it runs over σ for each j in {1, . . . , k}. Furthermore, the
valuation of O’s local variables is given by v. Thus, two p-objects O1 and O2 of
process class p are in the same behavioral partition (at a configuration) if and
only if the following conditions hold.
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• O1 and O2 are currently in the same state of TSp,

• They have the same valuation of local variables, and

• Their current histories lead to the same state for all the DFAs in Hp.

This implies that the computation trees of two objects in the same behavioral
partition at a configuration are isomorphic. This is a strong type of behavioral
equivalence to demand. There are many weaker possibilities but we will not
explore them here.

Bounding the number of Behavioral Partitions We shall assume in what
follows that the value domains of all the variables are finite sets. Thus, the
number of behavioral partitions of a process class is finite. In fact, the number
of partitions of a process class p is bounded by

|Sp| × |V al(Vp)| ×
∏

A∈Hp

|A|

where |Sp| is the number of states of TSp, |V al(Vp)| is the number of all possible
valuations of variables Vp, |A| is the number of states of automaton A ∈ Hp. As
described in the preceding, Hp is the set of minimal DFAs accepting the regular
expression guards of the various roles of different transactions played by class
p. Note that the maximum number of behavioral partitions does not depend on
the number of objects in a class. In practice, many regular expression guards of
transactions are vacuous leading to a small number of partitions.

For example, consider TSCruiser as shown in Figure 2(b); it contains 7 states,
i.e. |SCruiser| = 7 (one state and its associated transitions are not shown in the
figure to maintain clarity), and the description of the transaction NoMoreDest
shown in Figure 2(d). This transaction is executed when a car has no further
destinations to visit (as indicated by the propositional guard, dest = 0, of
lifeline CarsndStop), and so it stops its cruiser by sending it the message stop.
For the lifeline corresponding to the cruiser, CruiserrcvStop, we see that it has
a non-trivial regular-expression (ActCruiser)�.AlertStoprcvDisEg as its guard.
The DFA for this regular expression contains only 2 states:

- q1 which is the initial state accepting the regular language

((ActCruiser)�.¬AlertStoprcvDisEg | ε).

.

- q2 which is the final state accepting the regular language

((ActCruiser)�.AlertStoprcvDisEg).

Of all the transition labels appearing in TSCruiser, only NoMoreDestrcvStop

is guarded using a regular expression (propositional guards of lifelines corre-
sponding to all the labels are trivially true). Also, there is no local variable
declared for Cruiser. Thus, the bound on the number of behavioral partitions
for Cruiser is 7*2=14. By carefully examining TSCruiser and the above regu-
lar expression, we can derive the tighter bound of only 8 behavioral partitions.3

3We do not compute bounds in this way, but this is just to show that actual bound may
in-fact be lower than computed using the formula described earlier.
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This is an interesting observation, since it indicates that no matter how many
objects we choose to have in process class Cruiser, they will always be divided
into maximum of 8 partitions; and in fact in Section 7 we report experiments
that the number of behavioral partitions encountered in actual simulation runs
is often lower than the upper bound on number of partitions (48 Cruiser objects
are divided into less than 6 partitions, see Table 1).

Simulation example with behavioral partitions Consider TSCruiser

shown in Figure 2(b). Suppose we simulate the specification with 24 Cruiser
objects (assume that other process-classes are also appropriately populated
with objects). As mentioned earlier, in TSCruiser, only NoMoreDestrcvStop

is guarded using regular expression (i.e. there is no restriction on the exe-
cution histories for other action labels). Let us call DFA corresponding to
NoMoreDestrcvStop as DFA1, which contains two states as described before.
Initially all the objects are in the stopped state of TSCruiser. And all of them
have null execution history satisfying the trivial regular expression ε and hence
are in the initial state q1 of DFA1. Thus they are in the same behavioral par-
tition 〈stopped, q1〉, where we have suppressed the valuation component since
there are no local variables associated with this class in this example.

Suppose now one cruiser object, say O1, executes the trace “DepartReqAstart ,
DepartAckAstarted , EngagercvEng , AlertStoprcvDisEg”. As a result it now resides
in control state started, and its execution history satisfies the regular expression
corresponding to state q2 of DFA1. Another cruiser object, say O2, executes
the trace “DepartReqAstart , DepartAckAstarted” and also resides in control state
started. However, unlike O1, the execution history of O2 satisfies the regular
expression corresponding to state q1 of DFA1. Note that, during system simu-
lation objects of other process classes are also involved in various transactions,
some of which may not even involve cruiser objects. Here we focus only on the
Cruiser class for the purpose of illustration. After above executions, we now
have three behavioral partitions for cruiser objects.

1. 〈stopped, q1〉 has 22 objects which were idle.

2. 〈started, q2〉 has object O1.

3. 〈started, q1〉 has object O2.

In the preceding, objects in different behavioral partitions have different
sets of actions enabled, thereby obviously leading to different possible future
evolutions. Now let object O1 execute the action NoMoreDestrcvStop. Note
that we could not have chosen O2 to play this role, since it does not satisfies the
regular expression guard corresponding to NoMoreDestrcvStop (being in state
q1 of DFA1, which is not the final state). The above execution results in a merger
of the first two behavioral partitions shown in the preceding, that is, O1 is now
indistinguishable (behaviorally) from the 22 objects which never participated in
any transaction. For all of these 23 objects, the action DepartReqAstart is now
enabled. This is the manner in which behavioral partitions will be split and
merged during simulation.

12



4.2 Simulation of Core Model

To explain how symbolic simulation takes place, we first define the notion of an
“abstract configuration”.

Definition 5 (Abstract Configuration) Let {TSp}p∈P be an IPC specifica-
tion such that each process class p contains Np objects. An abstract configuration
of the IPC is defined as follows.

cfg = {(BEHp, countp)}p∈P

- BEHp is the set of all behavioral partitions of class p.

- countp : BEHp → N ∪ {0} is a mapping s.t.

Σb∈BEHp
countp(b) = Np

countp(b) is the number of objects in partition b.

The set of all configurations of an IPC S is denoted as CS .

We note that Np can be a given positive integer constant or it can be ω (standing
for unbounded number of objects). If Np is ω, our operational semantics remains
unchanged provided we assume the usual rules of addition/subtraction (i.e. ω+
1 = ω, ω − 1 = ω and so on). Hence for convenience of explanation, we assume
that Np is a given constant in the rest of the article

Our symbolic simulation efficiently keeps track of the objects in various
process classes by maintaining the current abstract configuration; only the be-
havioral partitions with non-zero counts are kept track of. The system moves
from one abstract configuration to another by executing a transaction. In what
follows, for the sake of convenience we shall often drop the “abstract” when
talking about “abstract configurations”. How can our simulator check whether
a specific transaction γ is enabled at the current configuration cfg? We say that
γ is enabled at cfg if for every lifeline of γ we can assign a distinct object to take
up that lifeline (i.e. we do not want the same object to act as several lifelines
in the same execution of a transaction γ). Since we do not keep track of object
identities, we define the notion of witness partition for a role, from which an
object can be chosen.

Definition 6 (Witness partition) Let γ ∈ Γ be a transaction and cfg ∈ CS
be a configuration. For a role r = (p, ρ) of γ where r has the guard (Λ, Ψ),
we say that a behavioral partition beh = (s, q1, . . . , qk, v) is a witness partition,
denoted as witness(r, γ, cfg), for r at cfg if

1. s
(γr)−→ s′ is a transition in TSp

2. For all 1 ≤ i ≤ k, if Ai is the DFA corresponding to the regular expression
of Λ, then qi is an accepting state of Ai.

3. v ∈ V al(Vp) satisfies the propositional guard Ψ.

4. countp(b) �= 0, that is there is at least one object in this partition in the
configuration cfg.
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An “enabled transaction” can now be defined as follows.

Definition 7 (Enabled Transaction) Let γ be a transaction and cfg ∈ CS be
a configuration. We say that γ is enabled at cfg iff for each role r = (p, ρ) of γ,
there exists a witness partition witness(r, γ, cfg) such that

- If beh ∈ BEHp is assigned as witness partition of n roles in γ, then
countp(b) ≥ n. This ensures that one object does not play multiple roles
in a transaction.

For an arbitrary configuration cfg, we use En(cfg) to denote the set of en-
abled transactions at cfg.

The “destination partition” — the partition to which an object moves from
its “witness partition” after executing a transaction — can be defined as follows.
We denote the destination partition of beh w.r.t. to transaction γ and role r
as beh′ = dest(beh, γ, r). Thus, an object in behavioral partition beh moves to
partition dest(beh, γ, r) by performing role r in transaction γ, where r = (p, ρ)
is a role in γ.

Definition 8 (Destination Partition) Let γ be an enabled transaction at
configuration cfg ∈ CS and beh = (s, q1, . . . , qk, v) be the witness partition for
the role r = (p, ρ) of γ. Then we define dest(beh, γ, r) — the destination
partition of beh w.r.t. transaction γ and role r — as a behavioral partition
beh′ = (s′, q′1, . . . , q

′
k, v′), where

- s
(γr)−→ s′ is a transition in TSp.

- for all 1 ≤ i ≤ k, qi
(γr)−→ q′i is a transition in DFA Ai.

- v′ ∈ V al(Vp) is the effect of executing γr on v.

Finally, we describe the effect of executing an enabled transaction at a given
configuration. Let cfg be a configuration and γ be an enabled transaction at
cfg. Computing the new configuration cfg’ as a result of executing transaction
γ in configuration cfg thus involves computing the destination behavioral par-
tition beh′ for each behavioral partition beh of a process class at cfg and then
computing the new count of objects for each beh′.

The operational rule of our model is given below. It specifies that if a
transaction is enabled at a configuration cfg then it can execute and the system
arrives at a new configuration cfg′.

cfg = {(BEHp, countp)}p∈P
γ ∈ En(cfg)

∀b ∈ BEHp . count′p(b) = countp(b) + |{x | b = dest(w, γ, x)}|
−|{x | b = w}|

where w = witness(x, γ, cfg)
cfg′ = {(BEHp, count′p)}p∈P}

cfg
γ−→ cfg′
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4.3 Simulation of Models with Associations

In the specification, for any dynamic relation, we describe the effect of each
transaction on the relation (in terms of addition/deletion of tuples of objects
into the relation). Furthermore, the guard of any transaction can contain a
membership constraint on one or more of the specified dynamic or static rela-
tions. In terms of simulation of concrete objects, it is clear how our extended
model should be executed. However, since we do not maintain identities of con-
crete objects during simulation, it is not possible to take the obvious approach.
We now describe how we can exploit the notion of behavioral partitions for this
purpose.

Simulating the extended model For dynamic associations, the key ques-
tion here is how we maintain relationships between objects if we do not keep
track of the object identities. We do so by maintaining dynamic associations
between behavioral partitions. To illustrate the idea, consider a binary relation
D which is supposed to capture some dynamic association between two objects
of process class p. In our symbolic execution, each element of D will be a pair
(b, b′) where b and b′ are behavioral partitions of class p. To understand what
(b, b′) ∈ D means, consider the concrete simulation of the process class p. If
after an execution π (a sequence of transactions), two concrete objects O, O′ of
process class p get related as (O, O′) ∈ D then the symbolic execution along
the same sequence of transactions π must produce (b, b′) ∈ D where b (b′) is the
behavioral partition in which O (O′) resides after executing π. The same idea
can be used to manage dynamic relations of larger arities.

In case of static associations we do not by default enter the partitions con-
taining the statically associated objects into respective association relations.
Thus, initially there will be no partition pairs in any static associations, but
they are discovered and inserted on-the-fly during execution. When a mem-
bership constraint for an object pair to be in static association is encountered
during simulation, the destination partitions of the participating objects are
inserted in the corresponding relation. Unlike for dynamic associations, while
selecting the witness partitions for static associations we can choose either a pair
already present in the association relation (inserted during an earlier check), or
allow for a fresh pair of partitions to play the role.

Note that associations are maintained between behavioral partitions, but as-
sociations are not used to define behavioral partitions. Hence there is no blow-up
in the number of behavioral partitions due to associations.

We now give the operational semantic rule taking into account various as-
sociations. Let αa(cfg) denote the content of association a at configuration cfg.
We use:

(a) “‘Inserts(x1, x2) to a” to represent insertion of object pair playing the
roles x1, x2 into a.

(b) “Deletes(x1, x2) from a” to represent removal of object pair playing the
roles x1, x2 from a.

(c) “Check((x1, x2) ∈ a)” constrains the choice of object pair for roles x1, x2

to be in relation a.
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cfg = {(BEHp, countp}p∈P
γ ∈ En(cfg)

∀b ∈ BEHp . count′p(b) = cntp(b) + |{x | b = dest(w, γ, x)}|
−|{x | b = w}|

where w = witness(x, γ, cfg)
cfg′ = {(BEHp, count′p}p∈P
∀a ∈ A . αa(cfg′) = αa(cfg)⊕

(
⋃

Inserts(x1,x2) to a{(d1, d2)} ⋃
Check((x1,x2)∈a{(d1, d2)})

�⋃
Deletes(x1,x2) from a{(w1, w2)}

where xi ∈ agents(γ) ∧ wi = witness(xi, γ, cfg) ∧ di = dest(wi, γ, xi)

cfg
γ−→ cfg′

Here the operator ⊕(�) describes the action of inserting(deleting) behavioral
partitions from association relations as described below. If the pair (x1, x2)
is inserted into association a when executing γ, then the pair of destination
partitions (d1, d2) corresponding to the witness partitions (w1, w2) of (x1,x2) is
inserted into αa at the new configuration (if it is not already present). On the
other hand, if the pair is deleted from the association a, we do not add (d1, d2)
to αa. When there is a check for the pair of roles (x1, x2) to be related by an
association a, then (w1, w2) must belong to αa in case of dynamic associations.
For static associations, we can either choose witness partitions (w1, w2), s.t.
(w1, w2) ∈ αa, or select a fresh pair of witness partitions w′

1, w
′
2 (i.e. (w′

1, w
′
2) /∈

αa and satisfies other requirements to qualify as witness partitions). Moreover,
for both static and dynamic associations, the destination partition pair (d1, d2)
is inserted into αa. Finally, we remove any (w1, w2) from the αa when the
number of remaining objects in either of the witness partitions is 0.

Example As discussed in Section 4, dynamic relation ItsTerminal is main-
tained between the objects of class Car and Terminal (as shown in Figure 3).
This relationship is established between a Car and a Terminal object while
executing ContactTerminal and exists till the related pair executes either De-
partAckA or DepartAckB. For illustration, suppose one object each from class
Car and class Terminal plays the role (Car,sndReq) and (Terminal,rcvReq) re-
spectively in the transaction ContactTerminal. Let bCar & (bTerm) be the be-
havioral partitions in to which the objects of Car & Terminal go by executing
(ContactTerminal,sndReq) & (ContactTerminal,rcvReq) respectively. Say, this
is followed by another object pair from the same classes, playing the roles in
another execution of ContactTerminal. Assume that, this time the car object
goes to another behavioral partition bCar1 (possibly due to different execution
history than the previous car object), while the Terminal object goes to the
same behavioral partition bTerm, which now contains at-least two objects. So
the contents of ItsTerminal now are,

ItsTerminal = {(bCar, bTerm), (bCar1, bTerm)}.
Now when we execute DepartAck(A/B) transaction, we will pick a pair from

this relation as witness behavioral partitions for lifelines (Car,rcvAck) and (Ter-
minal,sndAck). We have not maintained information about which Terminal
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object in bTerm is related to which Car of bCar or bCar1. But this information
is not required for our symbolic simulation to proceed. This is because, the two
objects in the behavioral partition bTerm are behaviorally identical, so during
symbolic simulation we can safely assume that we have chosen the right related
object corresponding to the car object chosen from either bCar or bCar1.

4.4 The Soundness and Incompleteness of Symbolic Exe-
cution

It turns out, that due to the presence of associations, there can be symbolic
executions which do not correspond to concrete executions. However every
concrete execution can be realized as a symbolic execution. In this sense, our
symbolic execution semantics is sound as stated next.

Theorem 1 Suppose σ is a sequence of transactions that can be executed by
the IPC, S. Then σ can also be exhibited in the symbolic execution of S.

Proof: To establish this result, it is sufficient to prove that any sequence of
transactions allowed by concrete execution of a model is also allowed by symbolic
execution of the same model. Since the transaction alphabet as well as the
number of possible global states of Spec is guaranteed to be finite, the result can
be proved by induction on the length of the sequence of transactions. When the
sequence is empty, then the result is trivially satisfied. Let σ = σ1◦τ where σ1 is
a sequence of transactions exhibited in both concrete and symbolic executions,
◦ denotes concatenation, τ is a single transaction which can be executed in
concrete execution. Then we just need to show that τ can be executed in
symbolic execution after the behavior σ1 is exhibited.

We first consider the case in which no association is involved. From the
assumption that σ1 is exhibited in both concrete and symbolic executions and
τ is executable in concrete execution after σ1, we can find concrete objects to
satisfy the guard of τ in the concrete execution. And after the execution of σ1,
for every concrete object O of process class p which will take part in the transac-
tion τ , being in control state s and DFA states q1, · · · , qk, and state valuation v,
we can construct a behavioral partition b = (s, q1, · · · , qk, v), which contains at
least the objects that has control state s and satisfies the corresponding guard
condition of τ . From Definition 7, we know that countp(b) at least equals to the
number of objects taking up the same role r as O.

Thus for every agent x involved in transaction τ , there exists a behavioral
partition b which satisfies the guard condition of x. From Definition 6 we can
easily know that b is the witness partition for the role r of x in transaction
τ at the configuration cfg after the symbolic execution of σ1. Furthermore, b
contains at least the objects taking up role r. So τ is enabled at cfg according
to Definition 7. Therefore τ is executable in symbolic simulation.

For static associations, if there is a static association between two objects o1

and o2 involved in a concrete transaction sequence, then we need to show that
there is also an association between their corresponding behavioral partitions in
the symbolic execution. In fact, we can construct the behavioral partitions cor-
responding to O1 and O2 by using their control states, DFA states and variable
valuations, and choose these partitions as witness partitions, later entering the
destination partitions of the participating objects in static association relation
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as discussed in Section 4.3. So the symbolic execution is still correct w.r.t. the
concrete execution.

We now consider the case for dynamic associations. We need to show that
the effect of symbolic execution of any transaction sequence σ preserves the
concrete execution. We prove the result by induction on the length of σ. For
length 0, the association contains no object pairs and the result trivially holds.
Suppose σ = σ1 ◦ τ and the trace σ1 is exhibited by both concrete and symbolic
executions. If the dynamic association a between O1 and O2 is introduced in τ ,
then in concrete simulation, the pair (O1, O2) is added to αa. In the symbolic
simulation, let b1 and b2 be the behavioral partitions corresponding to the ob-
jects O1 and O2 respectively. According to the semantics, we just need to add
the pair of their destination partitions (b′1, b

′
2) into αa. If it already exists in

αa, then nothing is modified in αa. If a is removed between O1 and O2 in τ ,
then in concrete simulation we simply remove the pair (O1, O2) from αa. For
symbolic case, if there remains objects of the behavioral partitions b1 and b2,
then we just keep (b1, b2) in αa since we do not know if the objects in these
partitions are related or not. And (b′1, b

′
2) will not be added in αa. If a pair of

objects taking part in the transaction is in a, then in concrete simulation noth-
ing is changed and only the entry for the pair will be checked. In symbolic case,
the pair of destination partitions (b′1, b

′
2) will be added into αa if it is not in.

Therefore, whenever τ can be executed in the concrete setting, it is executable
in the symbolic simulation and the objects involved in dynamic associations
may still be associated to some objects in the behavioral partitions to which its
witness partition is associated with. This completes the proof of the theorem. �

Next we address the following problem: For a given symbolic execution σ,
could we always find a concrete execution? In other words, is there any choice
of objects such that they can execute the trace concretely?

In the absence of associations we prove that, corresponding to a symbolic
execution run we can always construct a concrete execution run. We prove it
by induction on the length of symbolic execution run σ = σ1 ◦ τ . For length =
0, the result trivially holds. Assume that result holds for the execution trace
up-to σ1, i.e. σ1 is exhibited by both symbolic and concrete runs. Now, since
τ can execute in the symbolic run, we have an assignment of witness partitions
b = (s, q1, . . . , qk, v) for each lifeline l in τ . This implies that we can always
find at-least one concrete object O corresponding to behavioral partition b in
control state s, DFA states q1, . . . , qk and having variable valuation v such that
O satisfies the guard of l as well. Hence O can be chosen to play the role of
lifeline l in the concrete execution. Thus, if τ executes symbolically, we can
always find an assignment of objects to various lifelines in τ which can then be
executed in concrete setting. This completes our proof.

However, in the presence of associations we show that it is not always pos-
sible that a concrete execution can be found for a behavior in the symbolic
execution. We now give an example involving static associations in which a
behavior observed in the symbolic simulation does not correspond to any actual
system run. Consider the system consisting of 3 process classes: Cruiser, Car
and BrakeControl, such that each Cruiser and BrakeControl object is asso-
ciated with a Car object via static associations Asc1 and Asc2. The partial
transition systems for these components are shown in Figure 4, along with the
checks on the static associations by various transactions. Assume that there
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Figure 4: An example

are no variables declared in these process classes and that all the action labels
shown in the example have trivial guards, i.e. they do not impose any restric-
tion on the execution history of the object to play that lifeline (of course object
should be in appropriate control state). Suppose now, that we have an initial
configuration:

c = {(〈sA1〉, 2), (〈sB1〉, 2), (〈sC1〉, 2)}.
Each process class:Cruiser, Car and BrakeControl, contains 2 objects in their
initial states: sA1, sB1 and sC1 respectively. The given system then executes
the trace: T1.T2.T3 in a symbolic run. For each transaction executed we give
below the witness and destination partitions. We use wγr

to denote the witness
partition for role r in transaction γ.

a) T1 executes at configuration c as given above with:
wT1p1 = 〈sA1〉, wT1p2 = 〈sB1〉
with resulting destination partitions-
〈sA2〉 = dest(〈sA1〉, T1, (Cruiser, p1)), 〈sB2〉 = dest(〈sB1〉, T1, (Car, p2))
and resulting configuration-
c1 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB1〉, 1), (〈sB2〉, 1), (〈sC1〉, 2)}
b) Then T2 executes at configuration c1 with:
wT2q1 = 〈sC1〉, wT2q2 = 〈sB1〉
with resulting destination partitions-
〈sC2〉 = dest(〈sC1〉, T2, (BrakeControl, q1)), 〈sB2〉 = dest(〈sB1〉, T2, (Car, q2))
and resulting configuration-
c2 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB2〉, 2), (〈sC1〉, 1), (〈sC2〉, 1)}.
At this point we note that the Car objects playing roles in T1 and T2 can never
be the same, since after playing role T1p2, the control state in the destination
partition to which this object moves will be sB2: T2q2 is never enabled from
this control state for a Car object.

c) Finally T3 executes at configuration c2 with:
wT3r1 = 〈sA2〉, wT3r2 = 〈sB2〉, wT3r3 = 〈sC2〉
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One can easily verify that T1 and T2 and T3 are enabled at the given
configurations (following Definition 7) and also satisfy the static association
constraints, i.e. the witness partitions for the roles which need to be statically
associated contain at least one such pair of objects.

However, as we can observe, though all the constraints in the symbolic
simulation have been met, the Car objects playing the roles T1p2 and T2q2

are always distinct. In other words there is no object O′ ∈ Car, such that
(O′, OCruiser) ∈ Asc1 and (O′, OBrakeControl) ∈ Asc2 when T3 is executed.
Though in this example we have only considered static associations, we can
easily extend our example to involve dynamic associations as well.

5 Checking a Symbolic Execution Run

From the discussion in the previous section, we know that there may exist sym-
bolic execution runs that do not correspond to any concrete execution. Thus, we
need a mechanism that can efficiently detect such spurious symbolic executions.
This is similar to detecting spurious counter-example traces in abstraction-
refinement based software model checking (e.g. see [7]). Fortunately, one can
effectively check in our setting if a symbolic execution run σ corresponds to a
concrete run as follows. For each process class p, let nump,σ be the total number
of roles having the initial partition (refer to Definition 4) as the witness partition
in the transactions appearing in σ. We define xp,σ = min(Np, nump,σ) if Np,
the number of objects in p is a given constant. Otherwise the number of objects
of p is not fixed and we set xp,σ = nump,σ. It is worth noting that xp,σ serves
as a cutoff on the number of objects of class p only for the purpose of exhibiting
the behavior σ and not all the behaviors of the system. Clearly, σ is a concrete
run in the given system iff it is a concrete run in the finite state system where
each process class p has xp,σ objects.

We have implemented the above spuriousness check using the Murphi model
checker [12]. The reason for using Murphi is that it has in-built support for
symmetry reduction [9]; this can speed up model checking of process classes
with many similar processes. Such systems often exhibit structural symmetry
which can be exploited to avoid constructing/traversing the full state space.
This is achieved by using the scalarset data type, which makes it easy to detect
and exploit symmetry in the system structure. In the case of IPC models we
identify various objects of a process class using the scalarset type. We now
briefly discuss the our translation from an IPC model into Murphi input format
for checking a spurious trace.

IPC translation to Murphi In the Murphi translation we define the follow-
ing data types for each process class:

• A scalarset type to act as an object identifier having the cut-off number as
its upper limit. For example, for Car class containing N objects, following
type will be declared:

Car: Scalarset(N); –index for process class Car

• Enumeration variable types which define sets of states of its LTS and
various DFAs. Assuming that the LTS of process class Car contains M
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states and one of its DFAs, say dfai has Di states, the following translation
will result:

stCar: Enum {st car1,...,st carM}; –states for LTS of Car
dfai Car: Enum {d car i1,...,d car iDi}; –states for dfai of Car

Based on the types defined above, following variables are declared for each
process class:

• An array of enumeration type representing the LTS states, indexed by the
scalarset type corresponding to this process class. For example, LTS states
for objects of process class Car will be represented using the following
array variable:

Car lts: Array [Car] of stCar;

• Similarly, array variables are defined to represent the DFA states.

• Arrays corresponding to the variables in the IPC model. Murphi supports
only integer/boolean variables and the range for integer type needs to
be specified in declaration. For example, variable mode4 for the Car is
declared as follows:

Car mode: Array [Car] of 0..1;

Associations are represented using two dimensional arrays having the value
range 0..1. For an association “Asc” between two process classes A and B, this
array is indexed by their scalarset types, for example:

Asc: Array [A] of Array [B] of 0..1;,

assuming A and B have been declared as appropriate scalarset types. Value 1
will indicate existence of an association between the objects of A and B, whose
identities are represented by the index values of that particular array element.

For each transaction in the trace being checked, a corresponding rule is
defined in Murphi (representing a guarded command) using the witness and
destination partitions’ information: control states, dfa states and variable valu-
ations for the participating agents, obtained from the symbolic execution. For
example, the guard in the translation of ContactTerminal transaction may look
as follows:

Car lts[i2] = st car10; –checking for source control state
Car dfa1[i2] = d car 11; –checking for source dfa state

where i2 is an index variable of type Car (scalarset type to represent car ob-
jects). This snippet of guard shows the constraints a Car object must satisfy
to execute this rule; intuitively its an encoding of its witness partition.

Another important aspect of translation is imposing the association count
constraints while entering two objects into an association. For this, additional
guard terms are introduced in the rule for a transaction in which a) a dy-
namic association is ‘imposed’ between two agents or, b) a static association is

4Mode indicated whether a car will stop or pass through its current terminal.
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‘checked’ between two agents. Since both these operations can insert a fresh
object pair into an association, it is ensured that inserting them into the partic-
ular association does not violate the count restriction for either of the object.
The association count information is gathered from the class-diagram of the IPC
model.

The initial configuration for the Murphi execution is given as the “Start-
state” declaration, where the initial control states, dfa states and variable val-
uations for various objects are defined.

The spurious run corresponds to a deadlocked run in Murphi for which no
alternative execution path exists or all result in a deadlock. By slight modi-
fication in the Murphi code we are able to detect all possible deadlock states,
and precisely identify the transaction it got stuck at and furthermore report the
system state at that point. This can then be analyzed by the user to determine
the possible cause for deadlock.

For initial experiments we have have used the test cases for the four examples
discussed later in the Section 6. These test cases correspond to meaningful use
cases and no spurious run is detected in their check except for one case: in the
trace for the telephone-switch example with call waiting feature5.The running
times for various cases is within 0.1 second with length of traces varying between
12–50 transactions; which is an encouraging indicator as to the usefulness and
scalability of this approach.

6 Benchmarks

We have implemented our symbolic execution method by building a simulator
in Ocaml, a general purpose programming language supporting functional, im-
perative and object-oriented programming styles. We briefly discuss here the
examples that we have modeled and used for experimenting with the simulator.
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Figure 5: Class diagram for Telephone-switch example.

For initial experiments, we modeled a simple telephone switch drawn from
[8]. It consists of a network of switch objects with the network topology showing
the connection between different geographical localities. Switch objects in a

5Details are discussed in Appendix B.
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locality are connected to phones in that locality as well other switches as dictated
by the network topology. The network topology is represented using the class
diagram as shown in Figure 5. To make a call, a phone connects to a switch in
its area, which then establishes connection with another switch in the area being
called. This second switch then sends the ring to called phone, and connection
is established if the called phone is not busy. Note that a call made can be local
(that is within the same area) or remote (from one area to another).

Besides the basic features of local/remote calling, we extended the model
with call-waiting feature. This extension was done on top of the existing model
by adding some extra states and transitions. These features allow a phone to
be connected to two different phones simultaneously such that, it is in active
connection with one phone and other phone is put on hold. This common phone
can switch between the two by pressing flash button.

Next we modeled the rail-car system whose behavioral requirements have
been specified using Statecharts in [3] and using Live Sequence Charts in [2].
This is an automated rail-car system with several cars operating on two parallel
cyclic paths with several terminals.The cars run clockwise on one of the cyclic
paths and anti-clockwise direction on the other. This example is a substan-
tial sized system with a number of components in different process classes, for
instance a given system configuration could contain: 24 cars, 6 terminals, 24
cruisers (for maintaining speed of a rail-car), 0..24 car-handlers (a temporary
interface between a car and a terminal while a car is in that terminal), etc. This
example appears in more detail in Appendix A.

We have also modeled the requirement specification of two other systems -
one drawn from the rail transportation domain and another taken from air traf-
fic control. These systems have been proposed in the software engineering com-
munity as case studies for trying out reactive system modeling techniques (for
example, see http://scesm04.upb.de/case-studies.html). We now briefly
describe these two systems.

N N
N

1

11

shAg_bnk_connectshAg_shPr_connect

Banking AgentShuttle Process

Broker Agent

Shuttle Agent

sh_br_connect

Figure 6: Class diagram for Automated shuttle example.

The automated rail-shuttle system [17] consists of various shuttles which
bid for orders to transport passengers between various stations on a railway-
interconnection network. The successful bidder needs to complete the order in
a given time, for which it gets the payment as specified in the bid; the shuttle
needs to pay the toll for the part of network it travels. If an order is delayed
or not started in time, a pre-specified penalty is incurred by the responsible
shuttle. A part of network may be disabled some times due to repair work,
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causing shuttles to take longer routes. A shuttle may need maintenance after
travelling a specified distance, for which it needs to make payment. Also, in
case a shuttle is bankrupt (due to payment of fines), it is retired. The class
diagram for this system is shown in Figure 6, showing its main components.

connecteditsWCP

0..N111
ClientsWCP CM

Figure 7: Class diagram for Weather controller example.

The weather update controller [1] is a an important component of the Center
TRACON Automation System (CTAS), automation tools developed by NASA
to manage high volume of arrival air traffic at large airports. The case study
involves three classes of objects: weather-aware clients, weather control panel
(WCP) and the controller or communications manager(CM). The class diagram
is shown in Figure 7.

All the clients are initially disconnected from the weather control panel and
can individually get connected via controller. The latest weather update is
then presented by the weather control panel to various connected clients (again
via the controller). This update may succeed when all these clients are able
to receive and update themselves with the new weather information or, fail in
case any of these clients is either unable to receive or unable to update itself
using the weather update information. Furthermore, all connected clients get
disconnected in case any one of them fails to update itself as mentioned before.

7 Simulation Results

Our simulator can be used for random as well as guided simulation. We used
guided simulation on each of our examples to test out the prominent use cases;
we now summarize these simulation runs. For each example, we summarize the
results of three test cases in Table 1.

For the Telephone Switch example with call-waiting feature, we consider
three possible test cases. In the first one there were three calls made, each
independent of another, and without invoking the call-waiting feature. In the
second and third cases, we have two ongoing calls and then a third call is made
to one of the busy phones, invoking the call-waiting feature. These two cases
differ in how the calls resume and terminate.

We simulate the following test cases for the Rail-car example– (a) cars mov-
ing from a busy terminal to another busy terminal (i.e. a terminal where all the
platforms are occupied, so an incoming car has to wait) while stopping at every
terminal, (b) cars moving from a busy terminal to less busy terminals while
stopping at every terminal, and (c) cars moving from one terminal to another
while not stopping at certain intermediate terminals.

In the rail shuttle-system example, again we report the results for three
test runs corresponding to (a) timely completion of order by shuttle leading
to payment, (b) late completion of order leading to penalty, and (c) shuttle
being unable to carry out order as it gets late in loading the order. Finally,
for the weather update controller, we report the results of simulating three test
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Example Process # Concrete # of partitions
Class Objects in Test Case

I II III
Telephone Phone 60 9 9 7

Switch Switch 30 9 9 9
Weather Clients 20 3 3 3
Update

Rail Shuttle 60 6 5 6
Shuttle Agent

Car 48 12 10 11
CarHandler 48 3 8 8
Terminal 6 6 6 6
Platform 6 1 3 3
Mngr.
Exits 6 1 2 2
Mngr.

Rail-Car Entrance 12 2 1 2
Example Exit 12 1 2 2

Cruiser 48 1 3 5
Proximity 48 1 1 2

Sensor
cDestPanel 48 1 1 1
tDestPanel 6 1 1 1

Table 1: Maximum Number of Behavioral partitions observed during
symbolic simulation

cases corresponding to (a) successful update of latest weather information to
all clients, (b) unsuccessful weather update where certain clients revert to older
weather settings, and (c) unsuccessful update leading to disconnecting of clients.

The results from simulating all the above-mentioned test cases are reported
in Table 1. For each test case of each example, we report the number of concrete
objects for each process class as well as the maximum number of behavioral par-
titions observed during simulation. Of course, we have reported the results for
only process classes with more than one concrete object. Since we are simulat-
ing reactive systems, we had to stop the simulation at some point; for each test
case, we let the simulation run for 100 transactions – long enough to exhibit
the test case’s behavior. We observe that the number of behavioral partitions
is much less than the number of concrete objects in various examples.

As mentioned earlier, at the heart of our symbolic simulation is the idea
of a behavioral partition, which groups together objects with identical execu-
tion possibilities. And this is done without maintaining object identities or any
other state-information related to these objects individually. Since, one of our
main aim is to achieve a simulation strategy efficient in both time and memory,
a possible concern is whether the management of behavioral partitions intro-
duces unacceptable timing and memory overheads. We measured the timing and
memory usage of several randomly generated simulation runs of length 1000(i.e.
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Time Memory
Example (sec) (MB)

C S C/S C S C/S

RailCar 24cars 3.9 2.1 1.9 173 83 2.1
48cars 7.0 2.2 3.2 353 84 4.2

Shuttle 30 Shuttles 0.7 0.4 1.6 33 18 1.8
60 Shuttles 1.2 0.4 2.7 69 18 3.8

WthrCon 10 Clients 0.6 0.5 1.2 21 18 1.2
20 Clients 0.8 0.5 1.6 27 18 1.5

Simple 60ph,30sw 2.0 1.5 1.3 87 63 1.4
switch 120ph,60sw 4.1 1.5 2.7 189 64 3.0

C ≡ Concrete Execution, S ≡ Symbolic Execution

Table 2: Timing and Memory Overheads
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Figure 8: Execution Time and Memory Usage comparison for the Railcar ex-
ample.

containing 1000 transactions) in our examples and considered the maximum re-
sult for each example. We also compared our results with a concrete simulator
(where each concrete object’s state is maintained separately). For meaningful
comparison, the concrete simulator is also implemented in OCaml and shares
as much code as possible with our symbolic simulator. Simulations were run on
a Pentium-IV 3 GHz machine with 1 GB of main memory.

The results for various examples appear in Table 2. For each example, the
timing and memory usage is shown for both symbolic and concrete simulations.
Also, for a given example, we compared the results for two different configura-
tions, where 2nd configuration is obtained by doubling the number of one (or
more) components; such as for rail-car example with 24 and 48 cars respectively.

We observe that for a given example and configuration, the running time and
memory usage for the concrete simulator are higher than that for the symbolic
simulator. It is in fact more interesting to notice that, for the same example, but
with higher number of objects; in case of symbolic execution, the values remain
roughly the same for both the configurations, whereas they almost double for
the concrete case, as indicated by the ratio C/S in Table 2 (except for Weather
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controller example6).
Further, the graphs shown in Figure 8, compare the growth in timing and

memory usage respectively for the railcar example, for both concrete and sym-
bolic simulations. Each successive configuration is obtain by increasing the
number of cars and its associated components: car-handler, proximity-sensor,
cruiser and dest-panel by 24.

We can easily see that the concrete simulator’s timing and memory usage
increases appreciably with an increase in number of objects. This is not the case
for our symbolic simulator. This indicates one of the primary usefulness of our
approach, since users can try out various configurations of the model varying
greatly in the number of objects, without worrying about timing or memory
overheads.

8 Debugging Experience

Finally, we describe some experiences in debugging the NASA’s CTAS weather-
update control system [1] using our simulator. As mentioned earlier, the weather-
update control system consists of three process classes: the communications
manager (call it CM), the weather control panel (call it WCP) and Clients.
Both CM and WCP have only one object, while the Client class has many ob-
jects. In Figure 9, we show a snippet of the transition system for CM. We have
given the transactions names to ease understanding, for example Snd Init Wthr
stands for “send initial weather” and so on. We now discuss two bugs that we
detected via simulation. The first one is an under-specification in the informal
requirements document for the weather-update controller.

In Figure 9, the controller CM initially connects to one or more clients by
executing the transactions Connect and Snd Init Wthr. In the Connect transac-
tion CM disables the Weather Control Panel (WCP). If the client subsequently
reports that that it did not receive the weather information (i.e. transaction
Not Rcv Init Wthr is executed), CM goes back to Idle state without re-enabling
the Weather Control Panel (WCP). Hence no more weather-updates are pos-
sible at this stage. This results from an important under-specification of the
weather-update controller’s informal requirements document. This error came
up in a natural way during our initial experiments involving random simulation.
Simulation runs executing the sequence of transactions

Connect,Snd Init Wthr,Not Rcv Init Wthr,Upd from WCP

got stuck and aborted as a result of which the simulator complained and pro-
vided the above sequence of transactions to us. From this sequence, we could
easily fix the bug by finding out why Upd from WCP cannot be executed (i.e.
the Weather Control Panel not being enabled). We note that since the above se-
quence constitutes a meaningful use-case we would have located the bug during
guided simulation, even if it did not appear during random simulation. In this
context it is worthwhile to mention that for every example, after modeling we
ran random simulation followed by guided simulation of prominent test cases.

We found another bug during guided simulation of the test case where con-
nected clients get disconnected from the controller CM since they cannot use the

6For the weather controller example, there is almost no concurrency during execution,
since clients, which are multiple in number, always interact sequentially with the controller.
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Figure 9: Snippet of Transition System for Weather-Update Controller

latest weather information. This corresponds to the connected clients executing
the Disconnect transaction with the CM, and the CM returning from Done2
to Idle by executing Enable WCP (Figure 9). For this simulation run, even af-
ter all clients are disconnected, the CM executes Upd from WCP (update from
Weather Control Panel) followed by Rdy for PreUpd (ready for pre-update).
The simulator then gets stuck at the PreUpd Wthr (pre-update weather) trans-
action since there are no connected clients. From this run, we found a missing
corner case in the guard for Upd from WCP transaction – no weather updates
should take place if there are no connected clients. In this case, it was a bug in
our modeling which was detected via simulation.

Currently, our simulator supports the following features to help error detec-
tion.

• Random simulation for a fixed number of transactions

• Guided simulation for an use-case (the entire sequence of transactions to
be executed need not be given)

• Testing whether a given sequence of transactions is an allowed behavior.

9 Discussion and Future Work

In this paper, we have studied a modeling and simulation methodology for
interacting process classes; such classes occur in reactive control systems of
various application domains such as telecommunications and transportation.
Our models are based on standard UML notations and our symbolic simulation
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strategy allows efficient simulation of realistic designs with large number of
objects. The efficacy of our method for efficient simulation and debugging has
been demonstrated on realistic reactive control systems.

We are currently working on automated test case generation from the given
model of the system. The idea is to do explore the state space of the model such
that all the transactions are executed at least once. This will serve two purposes:
(a) All the transactions since executed at least once will be verified against any
specification inconsistencies (for example, no receive specified corresponding to
a send), and (b) By examining the execution tree obtained so far, we can list
out traces as meaningful test sequences for the final system implementation.

Further, to verify various properties of the system at model level itself, we
are looking at model-checking the specification. The state-space of a model can
be easily obtained by extending the simulator, using which various temporal
properties can be verified. The main concern here would be keeping in check
the memory consumption due to large state-spaces, which can easily become
worse as we increase the number of objects in various process classes (due to
increase in the number of possible partitionings of the objects into various be-
havioral partitions at runtime). This would require us to look for efficient state
representations and techniques such as partial order reduction for reducing the
search space itself.

Since we are modeling reactive systems, we would like to be able to specify
timing constraints; for example, minimum or maximum time intervals between
two events etc., and do various kinds of analysis to check against any timing
inconsistencies.

Finally, we want to do automated code generation from our models, which
would really strengthen the whole framework: starting from high level modeling
and analysis facilities, leading to the final implementation of the system, which
can be tested using various test-cases obtained from the model.
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Figure 10: Rail-Car system.

Appendix A RailCar Example

A.1 Introduction

This automated rail car example has been constructed using the descriptions in
[3] and [2]. The overall system is shown in Figure 10. As shown in the figure,
there are six terminal located along the cyclic path. Each adjacent pair of these
terminals is connected by a two rail tracks, one of which is for the clockwise and
another for the anti-clockwise travel of the rail cars.

There are several (a fixed number) of rail cars available for transporting
passengers between the terminals. There is a control center which receives,
processes and communicates data between various terminals and railcars.

As shown in Figure 11, each terminal has got four parallel platforms, on each
of which a single railcar can be parked. Further, we have two entrance and two
exit segments which connect the main rail tracks to the terminals platform
tracks. These segments can connect the rail tracks to any of the four terminal
platforms.

Also, each terminal has a destination board for the use of passengers. It
contains a push button and an indicator for each destination terminal. Each
rail-car also has a similar destination-panel for the use by passengers. Further a
rail-car is equipped with an engine and cruise-controller to maintain the speed.
The cruiser can be off, engaged or disengaged.

Figure 12 shows the class diagram for the complete system. The numbers
at the top right corner of each class-box gives the number of objects of that
class in our system. They can be changed easily with minor modifications
in the overall system. This class diagram is the flattened representation of
the object-model diagram given in [3]. This results in loss of clarity of actual
component structures, but in our case we just need to capture relationships
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Figure 11: Terminal.

between various components. For example, just from our class diagram we can
not say that PlatformManager is part of the Terminal itself. Also, comparing
to the object-model diagram we have excluded the Passenger class. This does
not makes any difference in the model, since we model various user actions
non-deterministically and achieve the same effect.
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Figure 12: Class diagram for Railcar example.

As mentioned earlier tDestPanel represents the destination panel in the
terminal and correspondingly cDestPanel represents the destination panel in
the rail-car. We have only one ControlCenter object which is related to all the
Terminal and Car objects. Also each Car is related to a ProximitySensor,
which notifies the car when it arrives within 100 and 80 yards of some terminal,
and also related to a Cruiser which maintains the car speed.

When a car is in some terminal or arrives at one, then a unique CarHandler
is associated with the Car to handle communication between the car and the
terminal. Whenever the car leaves the terminal there is no CarHandler asso-
ciated with it anymore.

With each terminal we have two Entrance and two Exit objects associated
which represent the entrance and exit segments connecting the rail tracks to
the terminal’s platforms. PlatformManager and ExitsManager respectively
allocate platforms and exits to CarHandler, which in turn notifies the Car of
these events.
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A.2 System description

As shown in the class diagram, we have 24 cars in all, and initially we assume
that there are 4 cars standing idle in each of the platforms. Then they can get
requests to go to some other terminal via the passenger pressing the button in
the destination panel of the car itself. Later at runtime, if there is no car in the
terminal and a user wishes to go to some place, he will indicate so by pressing
the relevant destination button in the terminal’s destination panel.

A.2.1 Some use cases

These use cases describe the main execution scenarios during the system execu-
tion.

1. Car approaching terminal While cruising, a car eventually approaches the
next terminal on its path. When it is 100 yards from the terminal, it
is alerted by its proximity sensor, as a result of which it contacts sends
the arrival request to the next terminal and is allocated a car handler
for further communication. Further, the system allocates it a platform
and an entrance segment so that it can enter the appropriate platform in
the terminal it is heading to. If this allocation can not be made(either
due to some technical problem or maybe all platforms are already full) by
the time the car is within 80 yards from the terminal, the car is delayed
until the allocation is done. Then the car is notified, and it moves in the
terminal.

2. Car departing terminal If a car has more destination stations to reach then
it departs the current terminal after being parked for 90 seconds there, or
else it just stays there until any further request comes. If the car needs to
depart then the system connects its platform to the appropriate rail-track
via the exit segment and engages the car’s engine.

3. Passenger in terminal In case there is a car in the terminal travelling in the
direction in which passenger wishes to travel, he can simply board the train
and press the desired destination button in its destination panel. In case,
there is no car in the terminal or none travelling in the desired direction,
then passenger simple presses the destination button in the terminal’s
destination panel and waits until the car arrives. The system now will
send an idle car from some other terminal.

All these cases have been discussed in [3] and LSCs representing these sce-
narios have been given in [2].

A.2.2 Component Descriptions

We describe the behavior of various components using state machines. These
state machines are based on the statechart descriptions and simple program like
descriptions for the main components as given in [3]. The state machines for
the rail-car, car-handler, and cruiser are shown in the Figures 13(a), 13(b), and
14 respectively. The state machines of other components are quite simple and
are not shown.

Various transitions having the name Initial are executed first before the
main simulation starts. Their execution initializes the system by making some
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initial entries in the global relational table. In this example the initial entries
relate the four cars with the terminal they are standing in, with their car-
handlers etc.

The SelectDest transaction indicates the pressing of any one of the six desti-
nation buttons at the rail-car’s or the terminal’s destination panel.
ContactTerminal transaction represents scenario when a rail-car arrives at the
next terminal along it’s path.

A.2.3 Sample Execution

We give a sample execution sequence, and describe it in reference with the LSC
shown in Figure 16, which is taken from [2]. To produce the similar scenario
execution the sequence of transactions that will be executed are shown as the
red path in the state machine of rail-car. We give the MSCs corresponding to
the main transactions along the path, based on which one can immediately see
direct correspondence with the LSC shown in Figure 16. Various relevant MSCs
are shown in Figures 15(a) and 15(b).

Transactions T1 and SetModeStop are internal transactions of rail-car. T1
is an empty transaction, and SetModeStop indicates that the rail-car has to
stop at the next terminal it is approaching.

For illustration, if we consider the execution sequence of the transactions
DepartReq1, DepartAck1 and Engage, then we get the execution scenario sim-
ilar to the subchart Perform Departure as shown in LSC 16.
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(PlatformAllocated,_)

s4

(EntryMoveTo,_)

s5

(EntryMoveComplete,_)

(ArriveAck,_)

s8

(AllocExit,_)

s9

(ExitAllocated,_)

s10

(ExitMoveTo,_)

s11

(ExitMoveComplete,_)

s12

(DepartAck1,_) (DepartAck2,_)

(FreeEntries,_)

(b) State machine for Car-Handler

Figure 13: Various state machines
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stopped

s1

(DepartReq1,_)

started

(DepartAck1,_)

(Empty,_)

engaged

(Engage,_) (AlertStop,_)

s2

(GetAlert,_)

s6

(GetAlert1,_)

engaged1

(Engage1,_)

(AlertStop,_)

(GetAlert1,_)

(Engage2,_)

Figure 14: State machine for Cruiser.
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(tDestPanel, ) (terminal, )(controlCenter, ) (car, )

callCar
sendCar

setDest

msc SetDest

(cruiser, ) (car, ) (carHandler, )

departReq
start

msc DepartReq1

(terminal, ) (cruiser, ) (car, ) (carHandler, )

departAck
started

msc DepartAck1

(cruiser, ) (car, )

engage

msc Engage

(car, ) (proxSensor, )

alert100

msc Alert100

(a) MSC1

(terminal, ) (car, )

arriveReq

msc ContactTerminal

(terminal, )(platformManager, ) (car, ) (carHandler, )

new
allocatePlatform

msc ArriveReq

(car, ) (carHandler, )

arriveAck

msc ArriveAck

(cruiser, ) (car, ) (proxSensor, )

alertStop
disEngage

msc AlertStop

(b) MSC2

Figure 15: MSCs for rail-car model.
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Figure 16: LSC example.
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Figure 17: Telephone-Switch Network

Appendix B Telephone Switch Example – Spu-
riousness Check

B.1 Introduction

This telephone switch model is based on ISUP (ISDN User Part) which is part
of SS7 signalling system: a global standard for telecommunications defined by
the International Telecommunication Union (ITU) Telecommunication Stan-
dardization Sector (ITU-T). ISUP defines the protocol and procedures used to
set-up, manage, and release trunk circuits that carry voice and data calls over
the public switched telephone network (PSTN).

In this example we assume that various telephones in a particular area are
connected to a specific group of switches which are used to handle all the outgo-
ing and incoming calls for this batch of phones. To communicate with another
phone, some switch in caller’s area (on behalf of the caller) initiates a connection
to a remote switch on the callee’s side.

In the model we assume enough number of switches in any group to be able
to handle calls for all the phones simultaneously in their area. We also assume
that a connection between two switches at different locations can always be
made if the concerned parties are available.

The above setup needs at least two process classes: one to describe the
behavior of switches and another for the phones. To consider a realistic example
we consider a network of phones and switches such that it consists of 3 groups
of phones, connected to 3 groups of switches as shown in the class diagram in
Figure 17.

For example, Phone1 represents a group of phones, say in Area1, whose calls
are handled by the switches represented by Switch1. To communicate with a
phone in another area (or even in the same area), some switch in the caller’s
area initiates a connection to another switch on the callee’s side.
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1

2

(Call,_)

4

(Ring,remote)(Busy,calling)

(Busy,called)

3

(Ring,local)

(Busy,called)

5

(Connect,local)

(Busy,called)

(Connect,remote)

(Disconnect,snd) (Disconnect,rcv)

(Busy,called)

Figure 18: State Machine for Phone

1

2

(Call,snd)

3

(Call,rcv)

7

(Busy,local)

5

(Ring,local)

8

(Busy,remote)

4

(Ring,remote)

(Rlc,rcv) (Rlc,snd)

6

(Connected,rcv) (Connected,snd)

(Disconnect,snd) (Disconnect,rcv)

Figure 19: State machine for Switch
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B.2 Brief description of the model

B.2.1 Call setup and breakdown

This example models the call setup and breakdown scenario, that may take
place in the real telephone network. State machines describing the behaviors of
Phones and Switches are shown in Figures 18 & 19 respectively. To keep the
model simple and easy for discussion, out of various ways in which line may
be disconnected (since in real world at any given time either of caller or callee
may choose to disconnect), we assume that if a call is successful, then it can be
disconnected by either caller or callee putting down the phone, and not both of
them disconnecting simultaneously.

To establish a call, the transaction Call will execute, involving the calling
phone, switch to which it connects and the remote switch. Then the remote
switch will send the ‘ring’ to the called phone and local switch will send the
‘ringing-tone’ to the caller. This is done via the execution of the Ring trans-
action. Consequently, assuming that called phone is always picked up when
ringing, the line is established and the two parties talk. This takes place via the
execution of the Connect transaction.

Now that the two phones are connected, either of them can be put on-hook,
sending the busytone to other. This is done via the Disconnect transaction.
Finally, the two switches disconnect the line by executing the Rlc transaction,
which stands for Release Confirm.

B.2.2 Busy Phone

We also model the situation where the called phone may be busy. A phone is
considered busy if it is in either of the states 2–5. Initially the call is attempted
as before via the execution of the Call transaction. However, since we do not
maintain object identities, in case some phone is busy in the locality where
the call is made, we may nondeterministically assume that this is the phone
being called by the current caller. If that is the case then we execute the Busy
transaction where the called phone says that it is busy and the caller is sent the
busy-tone, after which it puts down the phone. The two switches involved also
disconnect.

B.2.3 Abbreviations used

• iam: Initial Address message

• acm: Address confirm message

• anm: Answer message

• rel : Release connection

• rlc: Release confirm

B.2.4 Call-waiting feature

The model described above is for the basic call-setup-breakdown in telephone
networks. However, there are various other features, such as: call forwarding,
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A

B

C

D

E

(Call,_)

(Ring,local), 
(CW,local) 

(Connect,local),
(Flash,onHold) 

(Connect,remote)

(Disconnect,snd),
(DisconnectB,talking), 
(DisconnectC,talking) 

(Busy,calling)

(Ring,remote)

(Disconnect,rcv)

(Busy,called)

(Busy,called) 

(Busy,called),
(CW,remote), 
(Flash,common), 
(Flash1,common), 
(DisconnectA,remote), 
(DisconnectA1,remote) 

(Busy,called)

Ea

(Flash,talking),
(Flash1,talking) 

(Flash1,onHold),
(Resume,onHold), 
(Ring1,onHold) 

(DisconnectA,onHold) 

F

G

(DisconnectB,remote),
(DisconnectD,talkingB) (Resume,remote) 

(DisconnectC,remote),
(DisconnectD,talkingA) 

(Ring1,remote) 

(DisconnectA1,onHold)

Figure 20: State machine for phone with Call-waiting feature

where the called phone forwards the call to another prespecified phone, or busy
call waiting - the called phone if busy puts the calling phone on hold, etc.

We extended the basic model with the call waiting feature. This extension
did not require modifying the existing model, but rather was achieved by adding
extra transitions and few states. The state-machines for the phone and switch
with the call-waiting feature are shown in Figures 20 and 21.

With call waiting feature enabled, when a phone calls a busy phone, then
the busy phone may put on hold the phone it is currently talking to and talk
to the phone which has called. Then by pressing the Flash button it can switch
between these phones, putting one on-hold and talking to other. The phone may
be put down by any of the three parties and this gives rise to various interesting
cases. Let the phone currently on-hold be called onHold, one using call-waiting
feature be called common, and third talking phone be simply called talking.

If the talking phone in the above scenario diconnects, then call between
onHold and the common is resumed. If the onHold phone disconnects, then
other two simply continue talking. If common phone disconnects, then the
talking phone is sent the busy tone and it disconnects, and ringing-tone is sent
again to the common phone on behalf of the onHold phone.

As can be observed, there are many possible interacting scenrios that are
possible. We experimented with this feature in controlled settings, and guided
the simulation by providing sequence of transactions and process-class names
for various agents.

43



(Call,snd) (Call,rcv) 

(Ring,local), 

(CW,local)
(Ring,remote), 
(CW,remote) 

(Connect,rcv), 
Flash,rcvOH) (Connect,snd), 

(Flash,sndOH) 

(Busy,local) (Busy,remote) 

(Disconnect,snd),
(DisconnectA,sndOH), 
(DisconnectB,snd), 
(DisconnectC,snd), 
(DisconnectD,snd), 
(DisconnectA1,snd) 

(Disconnect,rcv),
(DisconnectA,rcvOH), 
(DisconnectB,rcv), 
(DisconnectC,rcv), 
(DisconnectD,rcv), 
(DisconnectA1,rcv) 

(Rlc,rcv) (Rlc,snd)

1

2 3
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6

7 8 (Flash,sndOH), 
(Flash,snd), 
(Flash,rcv), 
(Resume,sndOH), 
(Resume,rcvOH), 
Ring1,local), 
(Ring1,remote) 

Figure 21: State machine for switch with Call-waiting feature

B.3 Spuriousness Check

As a use-case scenario involving the call-waiting feature we ran the following
trace using our simulator: “Call, Ring, Call, Connect, Ring, Connect, Call,
CW, Flash, Flash1, DisconnectB, Rlc, Disconnect, Resume, Rlc, Disconnect,
Rlc”. This use-case involves two independent connections involving four phones,
followed by a fifth phone calling one of the busy phones. This leads to three
phones being involved the call-waiting feature (two others remain in an inde-
pendent connection).

Considering the phones involved in the call-waiting feature, while the first
two are connected and talking, the third phone calls one of the busy phones,
which then puts the other phone on hold and talks to the third phone by execut-
ing Flash transaction; later again switching between them by executing Flash1.
As mentioned earlier, we have a common, talking and an onHold phone involved
in the call-waiting feature. Then DisconnectB executes, where the talking phone
disconnects from the common phone, later followed by the transaction Resume
where the talk between onHold and common phones resume. In the complete
trace eventually all the parties disconnect and system returns to initial state.
This trace runs to completion in the symbolic simulation. However, during the
check for one of the symbolic execution runs of this trace using the Murphi
model checker, we find that it is spurious as described below.

The Murphi reports a ‘deadlock’ after executing first 10 transactions in the
trace, i.e. it is unable to execute DisconnectB and proceed further. It prints the
system state at this point, relevant part of which is shown in Table 3. It gives the
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1
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Telephone3

Switch2

Switch3
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Figure 22: Class Diagram showing Objects with Associations

LTS & DFA states, associations and variable valuations for various objects in the
system7. This information is graphically presented in Figure 22, which shows
various objects in their respective classes along with various associations. We
also show the objects in the same behavioral partitions using dashed boundaries.

Since at the point of deadlock, system has executed the first 10 transac-
tions, as described earlier: three phones: Telephone1 18, Telephone2 1 and
Telephone1 3 are involved in the call-waiting feature s.t. Telephone1 1 is on-
Hold, Telephone1 3 is talking and Telephone2 1 is common phone (this rela-
tionship is shown via associations in Figure 22). Also, another pair (Tele-
phone1 2,Telephone3 1) is in an independent connection.

Next we examine the reason for deadlock. From the given configuration,
we determine the appropriate set of objects to execute DisconnectB, which are
shown connected by bold associations in Figure 22. However, from the guard of
DisconnectB as produced in Murphi translation (shown in Table 4), we find that
in symbolic simulation the witness partition corresponding to ‘Telephone1 2’
instead of ‘Telephone1 3’ was chosen. This happened because: a) witness par-
tition for ‘Telephone1 2’ also satisfies the guard requirements for DisconnectB
and b) ‘Switch1 2’ & ‘Switch1 3’ are in same behavioral partition. And since we
maintain the association information between partitions and not objects in the
symbolic execution semantics, this choice of partitions executes fine in symbolic
simulation. However, due to exact association information being maintained in
Murphi, this spuriousness gets detected and deadlock is reported.

7Note that a trace is simulated using the cut-off number of objects in Murphi.
8TelephoneI N indicates Nth object of TelephoneI process class. Similar notation is used

for various Switch classes.
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connected11[Telephone1 1][Switch1 1]:1
connected11[Telephone1 2][Switch1 3]:1
connected11[Telephone1 3][Switch1 2]:1
connected22[Telephone2 1][Switch2 1]:1
connected22[Telephone2 1][Switch2 2]:1
connected33[Telephone3 1][Switch3 1]:1
connected12[Switch1 1][Switch2 2]:1
connected12[Switch1 2][Switch2 1]:1
connected13[Switch1 3][Switch3 1]:1
Telephone1 lts[Telephone1 1]:st telephone3 –Correponds to PhoneCW LTS state ‘Ea’
Telephone1 lts[Telephone1 2]:st telephone4 –Correponds to PhoneCW LTS state ‘E’
Telephone1 lts[Telephone1 3]:st telephone4
Telephone1 dfa1[Telephone1 1]:d telephone 12
Telephone1 dfa1[Telephone1 2]:d telephone 11
Telephone1 dfa1[Telephone1 3]:d telephone 11
Telephone1 dfa2[Telephone1 1]:d telephone 21
Telephone1 dfa2[Telephone1 2]:d telephone 21
Telephone1 dfa2[Telephone1 3]:d telephone 22
Telephone1 callWaitMode[Telephone1 1]:false
Telephone1 callWaitMode[Telephone1 2]:false
Telephone1 callWaitMode[Telephone1 3]:false
Telephone2 lts[Telephone2 1]:st telephone4
Telephone2 dfa1[Telephone2 1]:d telephone 11
Telephone2 dfa2[Telephone2 1]:d telephone 21
Telephone2 callWaitMode[Telephone2 1]:true
Telephone3 lts[Telephone3 1]:st telephone4
Telephone3 dfa1[Telephone3 1]:d telephone 11
Telephone3 dfa2[Telephone3 1]:d telephone 21
Telephone3 callWaitMode[Telephone3 1]:false
Switch1 lts[Switch1 1]:st switch3 –Correponds to SwitchCW LTS state ‘6’
Switch1 lts[Switch1 2]:st switch3
Switch1 lts[Switch1 3]:st switch3
Switch2 lts[Switch2 1]:st switch3
Switch2 lts[Switch2 2]:st switch3
Switch3 lts[Switch3 1]:st switch3

Table 3: Deadlocked state from Murphi

Ruleset i1:Telephone2; i2:Switch2; i3:Switch1; i4:Telephone1 Do
Rule “Execute DisconnectB”

(Count = 11
& Telephone2 callWaitMode[i1] = true
& Telephone2 lts[i1] = st telephone4 –checking for source control state
& Telephone2 dfa1[i1] = d telephone 11 –checking for source dfa state
& Telephone2 dfa2[i1] = d telephone 21 –checking for source dfa state
& Switch2 lts[i2] = st switch3 –checking for source control state
& Switch1 lts[i3] = st switch3 –checking for source control state
& Telephone1 callWaitMode[i4] = false
& Telephone1 lts[i4] = st telephone4 –checking for source control state
& Telephone1 dfa1[i4] = d telephone 11 –checking for source dfa state
& Telephone1 dfa2[i4] = d telephone 21 –checking for source dfa state
& connected11[i4][i3] = 1
& connected22[i1][i2] = 1
& connected12[i3][i2] = 1 )
.
..

Table 4: Guard of DisconnectB from Murphi
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