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ABSTRACT

The need for performance and energy efficiency in mobile devices
is apparent with the obvious shifting of more intensive computation
to mobile platforms. In this paper, we first make a clear distinc-
tion between performance and energy issues. Apart from show-
ing that performance efficiency is neither co-related with energy-
efficiency nor inefficiency, we focus on programming methodolo-
gies and software validation approaches for producing energy ef-
ficient mobile software. These include reviewing recent works on
energy-aware programming and non-functional testing to expose
energy and performance issues in mobile software. As mobile plat-
forms continue to evolve, new scenarios and use-cases involving
mobile devices are on the rise. We speculate on scenarios involv-
ing energy hungry mobile software in near future, and how exist-
ing software engineering techniques can evolve to combat energy
inefficiency in such scenarios. These include the need to effec-
tively manage the energy-consumption of software-controlled per-
sonal drones which are likely to become main-stream in near future.
We suggest integration of concepts from price theory in Economics
to build a distributed energy management framework for software-
controlled personal drones.

1. INTRODUCTION

The mobile device ecosystem is evolving rapidly. Mobile de-
vice usage has evolved from smart-phones to tablets, smart watches
and personal drones. From the time when the first Android based
mobile devices were launched in 2008, to the time of this writ-
ing, nearly 12 versions of Android operating systems (OS) have
been released [1]. In comparison, the biggest Desktop OS mar-
ket share holder, Microsoft, has only released 4 versions of Win-
dows OS during the same time period [2, 3]. Even the hardware
powering these mobile devices has been evolving steadily. Pro-
cessing power, screen sizes, resolution, sensors, cellular radios, etc
have all evolved steadily to keep pace with the changing needs
of mobile users [4]. For instance, processor designers, such as
ARM, have introduced heterogeneous computing platforms such as
big. LITTLE [5] architecture to address the need for better perfor-
mance and energy-efficiency in mobile devices. For location sens-
ing, mobile devices often carry an A-GPS, instead of the conven-
tional GPS, in order to increase precision, performance and energy-
efficiency. These are but a few examples which show the efforts that
hardware manufactures are putting in to make devices that are more
suitable for the mobile ecosystem. Unfortunately, the same cannot
be said for app development side of the mobile device ecosystem.
This is the topic we address in this paper.

The lack of appropriate software development practices in var-
ious stages of the app development life-cycle may lead to ineffi-
cient or buggy code. This is even more so true in the case of non-

functional properties, such as performance and energy-efficiency.
A study we conducted on 170,000 user reviews collected from
Google Play app store revealed that users are more likely to unin-
stall an app if it shows energy-inefficient behaviour as compared
to other kinds of inefficient behaviors (see Section 5.2). Existing
research works [6, 7] have also presented studies that show ineffi-
cient performance, energy-consumption behaviour in popular mo-
bile apps. At this point, we would like to highlight that energy-
efficiency and better performance are not synonymous in the con-
text of mobile apps (see Section 2). In particular, there is a more
urgent need to develop suitable methodologies for energy-aware,
app development because of the battery-constrained nature of mo-
bile devices. Despite the recent research in this area (see Section
3), developing an energy-aware programming framework is a chal-
lenge. On this topic, we shall discuss ideas that can help achieve
the goal of energy-aware programming for all stages of the app de-
velopment life-cycle — from design to maintenance (see Sections
4 and 5). In particular, we propose an automated energy-aware
maintenance framework that monitors user reviews to detect signs
of undesirable behaviour (such as bugs), converts them into test
cases using techniques from natural language processing and sub-
sequently helps the developer by localizing, visualizing and patch-
ing the undesirable behaviour.

Finally, we discuss a potential evolution of the mobile device
ecosystem that includes personal drones. Drones, like smartphones,
often face real-time constraints due to the nature of their operations.
In addition, these constraints must be met while using the limited
on-board battery. As a result, judicious use of on-board battery
power is crucial for effective operation of drones. Developing a
holistic energy management strategy for drones is challenging be-
cause it often operates in an unpredictable physical environment, as
a result all the performance, energy-consumptions scenarios may
not be known beforehand. To address this challenge we propose
a distributed energy management strategy that uses Price Theory
from Economics to seamlessly integrate several objectives, such
as task-priorities, robustness, fairness and power-saving techniques
(see Section 6).

2. PERFORMANCE VS. ENERGY

In the following, we discuss the co-relation between energy-
efficiency and performance in the context of mobile-devices.

CPU Scaling. CPU frequency scaling has a significant impact
on performance, fluidity (of user interface) and battery-consumption
of a mobile device. As a result, Android enthusiasts may choose
from hundreds of automated CPU frequency scaling mechanisms
(called CPU governors), that best suit their specific needs [9]. For
instance, the OnDemand governor increases the CPU frequency as
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Figure 1: Energy-consumption measurement on Samsung S4

soon as the load hits a predefined threshold, as a result, provides
good UI fluidity. Whereas other governors such as Performance
and Powersave set the CPU frequency to highest and lowest, in
order to achieve better performance and energy-efficiency, respec-
tively.

do{
scrape_puzzle(); // I/0 intensive
process_puzzle(); // CPU intensive
}while (more puzzles to scrape);

Figure 2: Relevant portions of Shortyz app

To observe the impact of CPU scaling on performance and energy-
consumption we devised a simple experiment using a portion of the
Shortyz crossword mobile app [10]. The portion relevant to our
experiment has a structure as shown in Figure 2 and consists of
scraping and processing of crossword puzzles. The scraping part
of the app is I/O intensive whereas the processing part of the app
is CPU intensive. We ran the app on several different CPU fre-
quencies on a rooted Samsung S4 device, the results for which are
shown in Figure 1(a). We observed that the app ran fastest when
the CPU frequency was set to 1.6 GHz, while on average it took
the longest amount of time when the CPU frequency was set to 400
MHz. This is expected behavior as setting higher CPU frequen-
cies would lead to faster processing of the CPU intensive parts.
However, the interesting observation is that the average energy-
consumption of the app is not the smallest in either of the cases
where CPU frequency is set to highest (1.6 Ghz) or lowest (400
Mhz). Instead the case where the CPU frequency is set to 800 Mhz
has the lowest energy-consumption. For this particular experiment,
increasing the frequency from 400 Mhz to 800 Mhz has a definite
advantage as execution time drops by half, however subsequent fre-
quency increases by the same amount (400 MHz) do not result in
similar reduction in execution time. The energy-consumption of
the CPU is directly influenced by the CPU frequency; higher CPU
frequency causes more power consumption. Considering these ob-
servations, one might argue that energy-efficiency follows the law
of diminishing returns, which states that "adding more of one factor
of production, while holding all others constant (’ceteris paribus’),
will at some point yield lower incremental per-unit returns" [11]. In
this example, "factor of production" is battery-power which is used
to obtain better performance, while "per-unit returns” corresponds
to energy-savings as a result of shorter execution times.

Network Operations. : Network interfaces on mobile device
use different communication protocols and have varying perfor-
mance and energy-consumption characteristics. For instance, real-
life transmission rates of cellular radio (GSM, 3G and 4G) can
vary from 10 Kbps to 10 Mbps [12], whereas it is not unheard

of to obtain WiFi transmission rates of a few hundred mega bytes
per seconds [13]. Obviously faster transmission rates would lead
to faster downloads (or uploads), leading to faster, more response
apps. However, faster transmission rates may not necessarily mean
lower energy-consumption for network operations. In Figure 1(b),
we recapitulate an experiment reported in Section 3.6 of [8]. It sim-
ply plots the energy-consumption of various network components
for transmitting data packets of different sizes. This graph clearly
shows that faster is not always better, for instance 3G consumes
more energy than GSM for smaller data sizes.

3. RELATED WORKS

The hardware components that constitute a mobile device, play
a crucial role in determining its energy-consumption characteris-
tics. However, actual energy-consumption of the device depends
not only on its hardware components, but also on the design of the
app that runs on it. Therefore, in order to develop energy-efficient
apps it is important to understand both, the hardware, and the soft-
ware aspects of energy-consumption. In Section 3.1, we shall dis-
cuss some of the efforts that were made to understand the energy-
consumptions properties of hardware components. Next, in Sec-
tion 3.2, we shall discuss some works that provide insights into the
energy-consumption properties of software.

3.1 Hardware Modeling

Early works [14, 15] on hardware modelling for energy con-
sumption were primarily focused on the CPU, possibly because
CPU was the most energy-consuming component in the systems
studied in those times. For instance, [14] proposes an approach
for energy-aware, instruction-level energy-consumption modelling
framework that could be applied to embedded system. Given a
per-instruction energy-consumption model for a system, it calcu-
lates the net energy-consumption of an application (for that sys-
tem) by simply adding up the energy-consumption cost of each
instruction in the application. Since inter-instruction effects are
not accounted for in the approach of [14], it would not be appli-
cable to contemporary systems. More recent works [16—19] have
proposed similar approaches for hardware modelling, albeit they
consider more complex microprocessors in their study. They also
employ a higher level of hardware abstraction when constructing
the energy-consumption models. For instance, [16] proposes an
energy-consumption modeling for functional blocks, such as digital
signal processors (DSPs), instead of the per-instruction modelling
as proposed in [14].

The imprecise results generated by some of the approaches dis-
cussed in the previous paragraph, as a result of neglecting inter-
instruction effects, can be avoided by the use of cycle-accurate
power simulators. SimplePower [20] and Wattch [21] are two such



cycle-accurate power estimation tools designed for the SimpleScalar
architecture [22]. The simulation method itself is relatively straight-
forward; for each clock cycle, the tool simulates the execution of
all active instructions and estimates the power consumption for
each active functional unit in that cycle. Simulation continues until
the halt instruction is fetched, after which any remaining instruc-
tions in the pipeline are executed before concluding the simulation.
Overall, developing cycle accurate simulators is tedious, and given
the fragmentation of possibilities in the mobile platform market, it
is burdensome to develop cycle accurate simulators for individual
processors.

3.2 Profiling, Test Generation & Optimization

In recent times, due to prevalence of smartphones and mobile
apps, studying energy-efficiency of apps on such platforms has
garnered substantial interest. Recent works such as [7, 23] have
presented profiling-based approaches to study energy-consumption
characteristics of mobile apps. In particular, [7] has shown the ex-
istence of energy-inefficient behavior in popular mobile apps such
as Facebook. Another recent work [24] has extended the concept to
energy-aware profiling to source-line power measurement for mo-
bile apps. Such a tool could be of use to app developers while trying
to understand the energy-impact of a given line, function or thread
within their app code.

A key shortcoming of profiling-based techniques is that they re-
quire test-inputs to generate the profile. Randomly finding test in-
puts that lead to energy-inefficient behavior is usually non-trivial
for most real-life apps. Designing a framework that can automat-
ically generate energy-inefficient inputs for an app requires solv-
ing two challenges: (i) designing a mechanism to detect energy-
inefficient behavior and (4¢) designing a mechanism to systemat-
ically explore an app. It is worthwhile to know that designing a
mechanism to detect energy-inefficient behavior solely based on
energy-consumption data would not be possible. This is because
high energy consumption by itself may not indicate energy-inefficient
behavior. For instance, consider a scenario where two apps say A1
and A, have similar energy consumption characteristics. However,
app A: has a much higher utilization of its hardware resources
(such as CPU, WiFi, etc) as compared to app A2. In such a sce-
nario, app A; is more energy-efficient than app Az. Therefore, in
order to detect energy-inefficient behavior it is important to define
an appropriate metric for energy-inefficiency. The work of [25] ad-
dresses both these challenges, that are, defining a metric for energy-
inefficiency and designing a framework for systematic app explo-
ration.

There are several approaches to achieve energy-efficient soft-
ware. For instance, approaches described in the previous paragraph
explicitly finds test cases that reveal inefficient behavior prior to re-
pair and/or optimization. There are however a number of works
[26-28] which follow an alternative approach. For instance, the
works of [26,27] use insights gathered from empirical studies to
recognize behaviors that are in general energy-inefficient and sub-
sequently developed tools that could rectify such inefficient be-
havior at runtime. [26] in particular reports that small HTTP re-
quests are common characteristics of mobile apps and can lead to
energy-inefficiency. Therefore, it proposes a mechanism that can
detect and bundle small HTTP requests into bigger bundles thereby
reducing the overall energy consumption. The work of [27] fo-
cuses on smartphone displays. Smartphone display are one of the
most power consuming components in a smartphone. Increasingly,
newer smartphones are being shipped with organic light-emitting
diode (OLED) displays which, unlike conventional liquid crystal
displays, have energy-consumption characteristics that are heavily

influenced by the colors that are on the display. In general, display-
ing brighter colors (such as white), on a OLED display may lead to
higher power consumption. This can be a cause of concern for the
smartphone battery life when browsing websites, which are often
brightly colored [27]. To address this issue [27] proposes a frame-
work that can be used to dynamically change the colors of web con-
tent while browsing on a smartphone. The work of [28] studies the
use of genetic programming in reducing the energy-consumption of
applications. In particular, it endeavors to generate energy-efficient
versions of MiniSAT, a popular Boolean satisfiability solver.

4. POWER MEASUREMENTS

Writing energy-efficient applications for mobile platforms re-
quires a thorough understanding of the energy-consumption char-
acteristics of the hardware platform on which the application is
intended to run. In addition, energy-aware test-generation frame-
works (such as [25]), require an online power measurement tech-
nique. The work of [29] presents such a technique where the energy-
consumption characteristics of Openmoko Neo Freerunner, HTC
Dream and Nexus One mobile devices are studied. These devices
are relatively old (launched during 2008 to 2010). Therefore, we
conducted experiments to observe the energy-consumption charac-
teristics of a few contemporary mobile devices (see Table 1).

4.1 Online Power Measurement

In order to fully understand the energy-consumption character-
istics of an app, it must be executed on the target device. One
of the earlier works [29] proposed an online power measurement
technique, where instantaneous currents and voltages were mea-
sured across individual hardware components of the mobile de-
vice. Although such a technique is likely to produce precise power
consumption estimates, it would be quite difficult to recreate the
setup (of [29]) for more recent mobile devices. This is because un-
like the highly-customizable, open-source device (Openmoko Neo
Freerunner) used in the work of [29], commodity mobile devices
are not very amenable to customization. Subsequent works, such
as [25], therefore use a different, more abstract approach for power
measurement (setup shown in Figure 3). Instead of measuring cur-
rent/voltage for individual components of the device, instantaneous
power consumption across the battery was measured in this setup.
This meant that as long as the battery compartment of the mobile
device was accessible (such as in Samsung S4), a power meter
could easily be used for online power measurement. However, with
the newer models of mobile devices even this method of power
measurement has become obsolete. This is because current gen-
eration of mobile devices, such as those shown in Table 1, do not
provide an easy access to the battery compartment. Therefore, yet
another technique for power measurement is needed. Ideally, such
a power measurement technique should have the following charac-
teristics: (a) capable of online power measurement, (b) does not
require access to the battery compartment, or any of the hardware
components within the mobile device, and (c) does not require root-
ing the mobile device, as in some cases this may lead to voiding the
warranty of the device [30].

Filtering by these criteria, we noted two approaches for online
power measurement in the existing literature. They are (i) Pow-
erTutor [31] and (ii) Dumpsys [32]. In particular, PowerTutor is
a research prototype that uses its in-built power model to gener-
ate power-consumption estimates for an app under execution. To
use PowerTutor, a user must install (and run) the app on the target
device manually. The Dumpsys utility, on the other hand comes
standard with the Android distribution and can generate battery us-
age information, among several other statistical data relevant to an



Table 1: Devices

Device SoC CPU RAM WiFi GPS Display Battery | Android
Name 5 (GB) (mAh) Version
Samsung S4 Exynos 5410 Octa | Cortex-A15,A7 2 Wi-Fi 802.11 | A-GPS, GLONASS | AMOLED 2600 5.0.1
Samsung S6 Exynos 7420 Octa | Cortex-A57,53 3 Wi-Fi 802.11 | A-GPS, GLONASS | AMOLED 2550 6.0.1
BDS
Samsung Galaxy Snapdragon 617 Cortex-A57,53 2 Wi-Fi 802.11 | A-GPS, GLONASS | AMOLED 3300 6.0.1
J7 Exynos 7870 Octa BDS
Samsung Galaxy | Exynos 7420 Octa | Cortex-A57,53 4 Wi-Fi 802.11 | A-GPS, GLONASS | AMOLED 3000 6.0.1
Note 5 BDS
HTC One M8 Snapdragon 801 Krait 400 2 Wi-Fi 802.11 | A-GPS, GLONASS LCD3 2600 6.0.0

app. In the following paragraphs we discuss a set of experiments
that we conducted to observe the efficacy of these alternative power
measurement techniques. The subject device for our experiments
was a Samsung S4, with an Android OS v5.0.1 (see Table 1). In
addition, a Monsoon power meter was used to measure the power
consumption of the mobile device.

Measure Current
Battery | |

Meter

Mobile Device

Measure Voltage

Figure 3: Block diagram for measurement setup [33]

CPU/Memory Micro-benchmark. To measure power con-
sumption of CPU and Memory subsystems, we created a compute-
intensive micro-benchmark. In particular, this micro-benchmark
encrypts a string object using Advanced Encryption Standard (AES)
encryption that is implemented in the javaz.crypto.Cipher li-
brary. To achieve a substantial runtime for the benchmark, 300
iterations of the encryption are executed. The encrypted string
generated from one iteration is used as an input for the next iter-
ation. This prevents speed-ups due to spatial-locality. Additionally,
to prevent memory overflows, the length of the input string is re-
stricted to 100, 000 characters. The micro-benchmark starts exe-
cution after the display timeout period of 15 seconds. This helps
in minimizing the impact of display power consumption. Once
started, the micro-benchmark does not perform any input/output
operation, except for one single beep tone that indicates the com-
pletion of the micro-benchmark (after which power-measurements
for the micro-benchmark are recorded). The energy measurements
for the CPU micro-benchmark are shown in Figure 4.

Display Micro-benchmark. The usual behavior for mobile
devices, such as smart-phone and tablets, is to go to an idle (or
sleep) state, after a period of user-inactivity. In order to measure the
power consumption of device display, this micro-benchmark uses
the WindowM anager [34] utility in Android, to delay the tran-
sition of device display to an idle state. In particular, the screen is
kept on for a duration of 180 seconds, while the energy-consumption
is measured. The energy-consumption measurement for the display
micro-benchmark are shown in Figure 4.

WiFi/SD-Card Micro-benchmark. To measure power con-
sumption of WiFi and SD Card, we created a micro-benchmark that
downloads a 100 MB file over the Internet and subsequently writes
this downloaded file to the SD Card. This micro-benchmark is im-
plemented using the F'ileUtils API from org.apache.commons li-
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Figure 4: Power measurements for Micro-benchmarks

brary. To minimize the impact of display power consumption on
the measurements, this micro-benchmark starts execution after the
display timeout period of 15 seconds. The energy-consumption for
this micro-benchmark is shown in Figure 4.

GPS Micro-benchmark. The GPS micro-benchmark is imple-
mented using a LocationListener [35] service, that requests for
location updates on the mobile device. It is worthwhile to know
that Android apps can use several strategies to acquire location
of the device, not all of which may necessarily use the GPS sen-
sor [36]. Therefore, prior to running the GPS micro-benchmark
we disabled all location sensing strategies other than that provided
by the GPS sensor. The location updates in this micro-benchmark
were requested for a period of 180 seconds. Similar to previous
experiments this micro-benchmark starts execution after the dis-
play has timed out so as to minimize the impact of display power
consumption. The energy-consumption measurements for the GPS
micro-benchmark are shown in Figure 4.

4.2 Observations

In Figure 4, we observed that measurements by PowerTutor and
by Android Dumpsys were lower as compared to the measurements
obtained by the power meter. Both, PowerTutor and dumpsys pro-
duce power consumption estimates of an app by monitoring usage
of device’s hardware components. The PowerTutor app also tracks
the power states in which the hardware components are, while they
are being used by an app. It then combines this information with
its inbuilt power model to generate power consumption estimates.
The research article behind PowerTutor [31] states that the power
model used in the PowerTutor was built using HTC G1, HTC G2
and Nexus One mobile devices. However, in our experiments (Sec-
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Figure 5: Power Profile for devices listed in Table 1

tions 4.1 to 4.1) we used a Samsung S4 that has a different, possibly
more power hungry, hardware composition. As a result, power es-
timates obtained using PowerTutor were under-estimated for some
of the micro-benchmarks.

The Dumpsys utility on the other hand does not use a hand-
crafted power model like PowerTutor. Instead it relies on the (OEM
provided) power model, which usually ships as standard with An-
droid devices. This information can usually be found in a XML
file (power_pro file.xml) within the framework-res.apk of the de-
vice. For instance, we could easily obtain power model informa-
tion for the devices listed in Table 1. Figure 5 shows a pictorial
representation of some of the information contained in these files.
According to these XML files, the Samsung S4 display has a signif-
icant power consumption. However, the Dumpsys utility reported
a near-zero power consumption for the display micro-benchmark
(see Section 4.1). On a closer look we observed that the Dumpsys
utility did indeed note that the display consumed about 11.3 mAh
(power meter reported 13.1 mAh), however, it failed to attribute
this power-consumption to the app which was responsible for keep-
ing the display in a high-power state (in this case the display micro-
benchmark). In short, PowerTutor generated incorrect estimates
because of an outdated power-model, whereas, dumpsys reported
incorrect estimates because of incorrect power-accounting.

The results for the power-measurements for the CPU/Memory
micro-benchmark for the devices in Table 1 are shown in Table 2.
We used PowerTutor in these measurements. Note that PowerTu-
tor reports energy-consumption in Joules, however other measure-
ments (from power meter, dumpsys) were reported in milli-ampere-
hour (mAh). Therefore, to maintain consistency across all the pre-
sented results we converted the PowerTutor generated estimates to
mAh. An interesting observation from Table 2 and Figure 5 is that
neither the most power-hungry CPU (Samsung S4), nor the least
power-hungry CPU (Samsung Galaxy J7), were most efficient in
executing the CPU/memory micro-benchmark. Plausible explana-
tion for such behavior can found in the discussion of Section 2.

5. ENERGY-AWARE PROGRAMMING

The development life-cycle of an application has several stages.
Some of the well-known stages of development life-cycle are plan-

Table 2: Energy-consumption of the devices in Table 1 for the
CPU/Memory micro-benchmark

Device | Battery Energy
Volts Joules Wh Ah mAh
S4 42 114 0.03166 | 0.00753 | 7.53
S6 4.197 16.4 0.00455 | 0.00108 | 1.08
17 3.765 615 0.17083 | 0.04537 | 45.37
Note 5 4.192 15.2 0.00422 | 0.00100 | 1.00
M8 3.897 230 0.06388 | 0.01639 | 16.39

ning, design, implementation, testing and maintenance. Until re-
cently, the key focus of these life-cycle stages was on or around the
functional aspects of the application. However, as mobile apps gain
prominence, non-functional properties such as energy-efficiency,
are increasingly becoming more important during software devel-
opment life-cycle. In the following sections, we shall discuss the
emergence of an energy-aware programming ecosystem that can
address this need. We shall then discuss some parts of this ecosys-
tem that have not received due attention hitherto, why it needs at-
tention from the research community and how it can be provided.

5.1 Energy-aware Ecosystem

Designing for energy-efficiency is not only crucial but also rela-
tively straightforward, in context of mobile apps. This is because in
mobile apps a given functionality can be achieved through a num-
ber of means, some of which are more energy-efficient than oth-
ers. For instance, a computationally-intensive task, can performed
locally or offloaded to a remote server, based on acceptable per-
formance energy trade-offs and service-level agreements [37]. A
data packet that needs to be sent/received from a mobile app can
be transmitted/received over either WiFi or cellular radio, both of
which have different performance and energy-consumption charac-
teristics. Location updates, in mobile apps, can be gathered using
several different strategies, where some of the strategies are less
precise but more efficient than others [36,38].

Even the choice of programming languages can influence the
energy-consumption behavior of an app. Consider the work of [39],
which proposes a new programming languages ET. The key nov-
elty of ET lies within its new energy-aware, type system. Even



when developing applications using conventional languages such
as Java, it is possible to construct a more energy-conscious appli-
cation. For instance, the work of [40] presents an idea related to
approximate-computing that can be useful in context of developing
energy-efficient applications. It is possible to improve the energy-
efficiency of an app, even after development. For instance, the work
of [25,41,42] propose approaches for energy-aware test-generation,
re-factoring and optimization, respectively.

One life-cycle stage of energy-aware programming ecosystem
that has not received as much attentions as others is the software
maintenance stage. It is worthwhile to know that for mobile-apps
it is during this stage that apps are used by their intended user and
possibly provide financial benefits for its creators. So it is impor-
tant to provide more attention to this stage of app development
life-cycle. Following section discus some of the issues that users
complain about while using mobile apps.

5.2 Why do Users Downvote Apps?

Unlike the days of past, when users and app-developers often
did not have a direct line of communication, nowadays users can
provide immediate feedback to the app-developers, by means of
social-media and on app-hosting platforms. Particularly, on app-
hosting platforms such as Google Play, app-users can provide feed-
back of their experience with an app through a star-based rating
system as well as their reviews. This feedback provides a mecha-
nism by which a user can upvote or downvote apps and therefore
it may be a key indicator of success or failure of an app in the app
store. An user may give a sub-par rating (i.e. downvote an app)
to an app, if they are discontented with either functional or non-
functional aspects of the app. The reason for dis-contention often
find its way into the user’s review for the app. Therefore, in order
to gain insights into the problems that app-users were facing, we
created a dataset by looking at approximately 170,000 Android
apps in Google Play store (this is equivalent to about 10% of the
apps hosted in Play Store [43]). We also gathered the reviews and
stars awarded for each review, for all apps in our dataset. We ob-
served that the user reviews were, in general, short and averaged to
about 18 words per comment. We observed that users who were
contented with an app provided five (out of five) stars, while less-
contented users provide four or less stars to the app. Users also
provide a short description of the issues with the app. By man-
ual investigation we were able to categorize these issues into the
following five categories:

e Crash Related: One of the major issues users report is that
the app crashes while in use. Often app crashes are observed
(and reported) after an update. Following user review pro-
vides one such example:

AirAsia Mobile  Used to be 5stars but after the last
22 March 2016 update, app just crashed all the time....

o Advertisement Related: In-app advertisements (Ads) can be a
source of revenue for the app-developer. However, excessive
or objectionable advertisements can cause a user to downvote
an app. Following user review provides one such example:

Utorrent Client  Full screen, full volume ads? I'd give
27 February 2016  this zero if I could . ..

e Performance Related: Sluggish or unresponsive apps can
also be a source of annoyance to app-users. Following user
review provides one such example:

NASA App Nothing loads :( Not even menus load
22 Sept 2015 in under minute, ... It’s slow and clumsy

e Energy-consumption Related: Mobile devices such as Smart-
phones are energy-constrained and therefore must be opti-
mized for energy-efficiency. Especially, energy-efficiency is
important for those apps which are designed to run for long
durations of time. Following user review provides one such
example:

Automatic  Going bad now This app drained my
Call Recorder  battery even on idling it only take 20
28 March 2016 minutes to drain 10 % of my battery

o Other (Functionality Related): All other review which do not
have five stars and cannot be classified as crash, ads, perfor-
mance or energy related, fall in this category. Often such
issues are due to the functionality of the app. Following user
review provides one such example:

Hulu  Can’t watch Won'’t play over WiFi, saying
13 April 2016  time and date are wrong

We used user-ratings as well as keywords to classify the user
reviews into the aforementioned categories. Figure 7 (primary ver-
tical axis) shows a logarithmic plot of the issues observed in the
user reviews in our dataset. We observed that a substantial number
of less-than-5 user-ratings where due to unsatisfactory functional
behavior of the app. However, quite interestingly, we observed
that a substantial number of user-reviews which were categorized
as energy-efficiency related suggested that either the user had or
wanted to uninstall the app. User review box 1 provides such an
example. To see if such a trend was widespread throughout our
dataset we conducted an experiment to check the correctness of
Hypothesis 1.

User Review Box 1 : AirWatch Agent

22 March 2016: This app is the biggest battery hog out
of all my apps on my LG G2 If it wasn’t mandatory
for me to have it installed in order to access my work
emails/calendar I would uninstall it immediately. Sur-
prised to see such a piece of junk coming out of VMware

Hypothesis 1: A user is more likely to uninstall an app, if it has
energy-efficiency related issues as compared to crash, advertise-
ment, performance or other issues

For this experiment we measured the Uninstall Ratio for each
type of issue recorded in our dataset, as described in Equation 1.

U ; t llca egor
Uninstall Ratio = |Uninstalleategory|

: * 1000 (1)
| Reviewscategory|
where category is an element of the set {Good, Crash, Ads,
Performance, Energy, Other}. ReviewScategory 1S the set of user
reviews in our dataset that have keywords for the respective cate-
gory whereas Uninstallcategory is the set of user reviews in the set
Reviewscqtegory that have the keyword ’uninstall’ in them. Es-
sentially, Uninstall Ratio measures the likelihood that a user will
uninstall an app if she/he provides a review that is classified into a
given category.
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Figure 7: Plots showing the number of user reported comments
observed in each category

Figure 7 (secondary vertical axis) shows the Uninstall Ratio for
each category, using all the comments in our dataset. We observed
that indeed energy-efficiency related issues have the highest Unin-
stall Ratio amongst all category of issues. Therefore, Hypothesis
1 one is correct. One plausible reason for such behavior might
be that having issues that are not energy related (i.e. crash, ads,
performance or functionality) only influences the utility of the af-
fected app, whereas, an energy-efficiency related issue can influ-
ence the utility of the entire smartphone by drastically reducing its
battery life. As a result, app-users may be compelled to uninstall
an energy-inefficient app with haste.

5.3 Automated Energy-aware Maintenance

The best-case scenario would be where bug-indicating user re-
views can automatically be converted into patches. However, user
reviews are usually provided in natural language. Often user re-
view contain clues that may be helpful in identifying suboptimal
behaviour in programs. However, using the user reviews verba-
tim may not be suitable for test generation and debugging. This
is because often the user reviews contain a partial description of
the temporal ordering between the states (or state transition) within
the app. Consider the scenario as shown in Figure 8. The user
may observe (and report) that suboptimal behaviour is noticeable at
state Z when the execution passes through state X after App Start.
However, the user review does not provide information about the
intermediate states. For instance, in the example of Figure 8 inter-
mediate states would be states A and B.

App Start } — — — _

N\ N ~ N
o Y
(State A) ( State B)

Figure 8: Example state diagram for reference in user review

User _,| Formula LTL Formula
Comments Extraction representing user review
Test Test
Generator Cases
App  _| Model App
Source Generator Model

The challenge here is to device a technique by which user re-
views, that are usually provided in natural language, can be rep-
resented more concretely, while being flexible enough to accom-
modate the app-behaviour that has not be mentioned in the review.
To address this challenge, we studied user reviews obtained from
Github and observed that user reviews that describe the faulty be-
haviour are generally composed of three types of keywords:

1. Event Keywords: This includes keywords that represent phys-
ical interactions (by the user) with the UI states of the app or
external events (such as change in network strength, accel-
eration, etc) from the environment. Examples of events are
open(app), click, tap, drag, etc.

2. Temporal Keywords: This includes the keywords that indi-
cate temporal ordering, usually between two or more user
events. Examples of temporal keywords are then, until, fi-
nally, after, efc.

3. Hardware State Keywords: This includes words (or phrases)
indicating the state of hardware components. Examples of
hardware states are GPS is on, Screen is bright, etc. It is
worthwhile to know that certain hardware states consume
more power than others on mobile devices (see Figure 5),
therefore keeping track of hardware states may be essential
in debugging energy-efficiency related issues.

4. Ul State Keywords: This includes words (or phrases) that re-
fer to different Ul states of the app. Often transition between
two Ul states occurs as a result of arrival of an event.

Based on these observations, we concluded that if one could de-
sign a mechanism which could shortlist useful user reviews based
on whether a review describes (i) what was the faulty behaviour?
(ii) how the faulty behaviour can be re-created? and (iii) which
components (on the mobile device) were affected by the faulty be-
haviour? it might be possible to develop an energy-aware, auto-
mated maintenance framework. Such a framework could use these
shortlisted reviews to generate bug-revealing test-cases and subse-
quently, prepare a patch for the app while alerting the developers.
User review box 2 shows an of example of one such user reviews
from our dataset.

User Review Box 2: Owncloud, Issue 121

5 December, 2013: Confirmed Still takes forever to refresh
a large amount of files Appears to be pounding the CPU
nonstop resulting in rapid battery drain Only way to stop
it is to force close the app

Figure 6 shows an outline for such an automated energy-aware
maintenance framework. The framework takes in two inputs, a

Formula 4 "

Checker W
l Localization

App Fault
Execution Logs —»|| Debugger Visualization

- - Patch
Selective Logging Suggestion

Figure 6: Overview of proposed energy-aware, automated, maintenance framework



Table 3: Tasks, their priorities, task-to-resource mapping and minimum resource costs for the drone

Task Name Camera (R:) | Sensors (Rs) | GPS (Ry) | Propulsion (R;) | Processor(/2,) | Radio(R,) | Priority
Stabilization,
Obstacle Avoidance (T%s) v v v 3
Navigation (7%,) v 2
Data Gathering, Processing (71};) v v 1
Receive Commands,
Send Telemetry (7¢) v v 2
[ Recommended Price Per-unit | 3 | 1 | | 3 | 1 | 2 | |

list of user reviews for the formula extraction module, and the app
source (or apk) for the model generation module. The formula ex-
traction module filters and selects the user reviews that have rele-
vant keywords (as described in previous paragraph). The selected
user reviews are then converted into a linear temporal logic (LTL)
formula ¢, that has structure as shown in Equation 2. Here symbols
X, G, F,U are temporal logic operators representing next, glob-
ally, finally and until, respectively. Symbols —, A, V represent log-
ical connectives compliment, disjunction and conjunction, respec-
tively. Finally, the symbol e represents an element from the set of
user event keywords and the symbol h represents an element from
the set of hardware state keywords.

¢ = elhl-¢ldAGldVYIXPIGPIFploUd (2)

The model generation module automatically explores and gener-
ates an UI model of the app and can be implemented as described
in one of our previous works [25]. The purpose of the test gener-
ator module is to combine the bug-describing, LTL formula with
the app model to generate a feasible test-case for the app. Imple-
menting the test generator module might be challenging because
the user reviews and therefore the LTL formulae may contain only
a partial description of the ordering between the UI states within
the app (cf. Figure 8). Therefore, the implementation of the test
generator module may require the use of suitable search heuristics.

The selective logging module executes the potentially-buggy app
on the target device to recreate the buggy-scenarios as described by
the user review. However, before executing the app, it is instru-
mented to log the execution of selected event-handlers and APIs.
One of our previous works [33] provides an automated instrumen-
tation tool for Android apps and can be used for this purpose. The
logs thus generated can then be scrutinized for the presence of
energy-inefficient execution patterns. [33] proposes a set of such
energy-inefficient patterns using context free grammar. It also pro-
poses a technique for automated localization, visualization and patch
suggestion of energy bugs and hotspots in Android apps. A tech-
nique such as this can be used in the last stage of the automated
energy-aware maintenance framework to assist with the debugging
of reported field-failures.

6. ENERGY MANAGEMENT IN DRONES

The dramatic increase in adoption of mobile phones has been
fueled by innovations in both hardware and software technologies.
Now, it might be possible that we are witnessing the beginnings
of another such growth spike, albeit in a different kind of mobile
technology: personalized unmanned aerial vehicles, or personal-
ized drones as they are popularly referred to in colloquial conver-
sation. It is worthwhile to know that drones are not a new concept.
In-fact, it’s origins can be traced back at-least to the early years
of the last century (see Hewitt-Sperry Automatic Airplane [44]).
However, the concept of personalized drones is relatively new. In
the recent years, a number of academic [45], as well as commer-
cial [46,47] institutions are developing technologies and products

related to personal drones. Even though early prototypes of per-
sonal drones were merely flying robots and could have been clas-
sified as toys, increasingly such devices are being used in more
practical applications such as navigation [45], disaster manage-
ment [48], reconnaissance [49], photography [46], etc.

Drones, like smartphones, often face real-time constraints due to
the nature of their operations. In addition, these constraints must
be met while using the limited on-board battery as the only source
of power. As a result, judicious use of on-board battery power is
crucial for effective operation of drones. One approach of power-
management in such systems would be to create a centralized con-
troller which governs the power consumption for all tasks at any
given point of time. The key challenge in making such a central-
ized controller effective would be to encode all possible (power-
consumption) scenarios in its design. Failing to do so might lead
to unexpected behaviour, including crashes, damage to hardware,
personnel or both. However, encoding all possible execution sce-
narios might be impractical. This is because a drone (or any other
cyber-physical system), can go through an exponential number of
operational scenarios, on account of it operating in an unpredictable
physical environment. The alternative to centralized control would
be distributed controlled, where power allocation decisions are dis-
tributed amongst several tasks that constitute the system. The work
of [50] discusses such a distributed power management approach,
albeit in context of heterogeneous, multi-core systems. In the fol-
lowing paragraphs, we shall discuss how such a distributed power
management approach can be adapted for effective power manage-
ment on drones.

To keep the subsequent discussion concrete we shall base our
discussion on a hypothetical disaster management and monitoring
drone which have four basic tasks, that are stabilization and ob-
stacle avoidance, navigation, data gathering and processing and fi-
nally receiving commands and uploading telemetry data to the user.
These tasks require different resources to operate, as shown in Ta-
ble 3. In addition, some of the tasks are higher priority than others,
as indicated in the last column of Table 3. It is also worthwhile to
know that frequency of arrival of these tasks may vary, some tasks
such as stabilization and obstacle detection may be more frequent
than other tasks, such as receiving commands from the user and
sending telemetry data.

The distributed power management approach that we shall dis-
cuss in subsequent paragraphs takes inspiration from Price Theory
in Economics. Very briefly, Price theory [51] provides the basic
principles by which the prices of goods and services in the market
can be determined by analyzing the supply and demand (for goods
and services). Further simplifying the implications of price theory,
it can be said that higher demand for goods or services (with supply
unchanged), will lead to higher prices. This may lead to lowering
in demand or increase in supply. Similarly, lower supply for goods
and services (with demand unchanged), will lead to higher prices
as well. This again may lead to increase in supply or decrease in
demand. The market reaches an equilibrium point when the sup-



ply (of goods and services) matches the demand of agents (who
place the demand). The elegance of price theory is that it allows
for dynamic price changes based on market conditions. This is the
property that we wish to have in our distributed power management
approach as well.

Figure 9 shows an overview of the price theory inspired, dis-
tributed power management approach. The key idea behind this
approach is that there is a virtual market place wherein, task agents
bid for services provided by resources, using virtual credits, thereby
creating demand. Resources supply the demanded services, in ex-
change for credits, which they then spend to get raw products,
which in this particular case is battery charge. In particular, this
approach has three sets of agents.

o Task Agent:
A task agent ¢ € {Ts,T,,Tq,Tc} (see Table 3) represents
and bids for their respective tasks. The bidding is done (ev-
ery iteration), based on the virtual credits that they have and
workload of their respective tasks. Each task has priority (P;)
that is assigned to it by the user.

® Resource Agent:

A resource agent r € {Rc, Rs, Ry, Ri, Rp, R} (see Table
3) represents and receives bids for services provided by their
respective resources. After a bidding round is complete and
credits have been delivered, the resource agent uses the cred-
its to buy battery charge. The battery charge is then used to
produce (and supply) the services to the task agents who paid
credits for the same.

e Battery Agent:

There is a single battery agent in the system. Its purpose is to
maximize the number of completed tasks, while remaining
in the permissible battery discharge rate, Cnqz. The battery
discharge rate is calculated based on several factors such as,
remaining battery charge, expected distance of flight, rate of
charge (for drones with solar cells), etc. The battery agent
also controls the flow of virtual credits in the market.

‘ Charge (maximum permissible

discharge rate C,,,)

h,
o Ve
Teo »

Resource Agents

Battery Agent

credits

Task Agents

Processing Power

Figure 9: Overview of the distributed power management approach

Bidding. The maximum number of credits that a task agent can
bid in round n is restricted to the summation of credits it has been
allocated in that round (A"™) and the credit savings it has acquired
until that rounds (V,,). A task agent ¢ chooses to bid B}, credits
for round n (as shown in Equation 3), by looking at the supply
(St,r), demand (D ) and price (P,) for the services provided by
resource (). In case the bid in the (n — 1) round was just enough
to meet the demand, the task agent keeps the bid for the nt" round
unchanged.

By, = MIN((A™ + V™), (B} + (D — Ser) X Pr)) (3)

Price Determination. The price (P,) for the services provided
by a resource r is calculated as shown in Equation 4, assuming
that the total supply is S;. Subsequently, a task agent gets units of
services calculated by the formula ”;f .

P,

p, = &t )

Credit Allocation, Savings, Inflation, Deflation. The bat-
tery agent distributes credits to each task agent. Unspent credits
from a previous can be saved and subsequently used to outbid other
agents. However, too much savings may lead to resource-hogging
by less power-hungry tasks at the time of emergencies. Therefore,
maximum savings per round must be capped (the cap is decided
by the user). If during a round any tasks remain uncompleted due
to unmet demand, the battery agent may increase the credit alloca-
tion in the subsequent round. Allocation of additional credits may
cause a task agent to place higher bids, thereby causing price in-
flation. To combat inflation, a resource agent may increase supply
(of services) by switching the resource to a higher power state (say
by employing DVES). In case of deflation, a resource agent may
reduce the supply of their respective resources. In the special case
where the price for a particular resource falls to zero, the task agent
may switch-off the resource, thereby saving power. Finally, in the
scenario where battery discharge rate exceeds C,qq, credit alloca-
tion is reduced proportional to the amount by which the discharge
rate exceeds Chnaz.

Table 4 shows an example for such a power-management ap-
proach in operation. We make the following assumptions in this
example.

1. Only task agents T’s and T} are active.

2. At the start (round 1), per-round credit allocation for T, Ty
is 12 and 4 credits, respectively. This allocation is propor-
tional to their priorities.

3. Saving are capped at 5 credits per round, per task agent.

4. At the start, all resources are active and are supplying 2 units
of services.

5. Resources can only run at discrete power states. Therefore,
inflation (deflation) does not cause increase (decrease) in sup-
ply until the demand for a resource does not inflates (deflates)
to support its next higher (lower) power level. For instance,
in this example the processor can only operate at power lev-
els of 1, 2 and 3, producing a processing capacity of 1, 2 and
3, respectively.

6. If a resource is going to increase (decrease) supply in the
next round, all bids, as well as, per-task credit allocation are
frozen. This is done so that all task agents can see the effects
of increased (decreased) supply on the prices.

7. In case tasks have unmet demanded for a given resource r,
the battery agents increases the credit allocation by 25 x
-

D
By, for all tasks ¢.

For the purposes of simplicity we do not show the dormant tasks
T, and T, and the unused resources 2y and R, in the example
of Table 4. In round 1, task 7 require 1 unit each of sensors,
propulsion and processing. Therefore, it places its bids as per the
recommended price per unit of these resources (see last row of Ta-
ble 3). Similarly, task 7y places a bid for 1 unit each of camera



Table 4: An example of distributed power management on a drone

Credits Remaining Bids Units Needed, Obtained Supply, Price-per-Unit
Round Ts Ta Ts Ta Ts Tq

A"+ V™ | A+ V" R TR | Rp, [ Re | Rp | Rs | R; Ry R R, R R; Ry R

1 12+0 4+0 1 3 1 3 1 12 | 1,2 1,1 1,2 1,1 2,05 [ 2,15 2,1 2,15
Supply reduced for sensors, propulsion and camera; GPS and radio switched off
2 12+5 4+0 1 3 1 3 1 1,1 | 1,1 1,1 1,1 1,1 1,1 1,3 2,1 1,3
3 12+5 440 1 3 2 3 1 L1 | 1,1 | 2,134 | 1,1 | 1,0.66 1,1 1,3 2,1.5 1,3
Credit allocation increased
[ 4 [ 127+5 ] 43+0 [ 1 [ 3] 3 [ 3 J13]L1I[11]2140[11]1060] 1.1 [ 1,3 [2215] 13 ]
Processor jumps to next power state, supply increased

5 12.7+5 43+0 1 3 3 3 1.3 L1 | 1,1 | 221 | L1 1,0.9 1,1 1,3 3,1.43 1,3
6 12.7+5 43+0 1 3 | 285 3 1.3 | 1,1 | 1,1 | 2206 | 1,1 | 1,094 1,1 1,3 3,1.38 1.3
7 12.7+5 43+0 1 3 2.7 3 13 1,1 | 1,1]2203 1,1 | 1,097 1,1 1,3 3,1.33 1,3

and processing, as per the recommended price. Observe that due
to assumption 4, there is an excess supply of all resources but the
processor. Therefore, prices of services provided by R, R; and R,
have deflated below the recommended price in round 1. Although
the GPS and radio are not shown in Table 4, the price of the ser-
vices have also fallen to O credits/unit, because no active task had
placed a bid for their services. Therefore, in round 2 the supply
from R, R; and R, is reduced to 1 unit. Additionally, GPS and
radio are switched off. Also observe that during the supply changes
in round 2 all bids and per-task credit allocation are frozen. After
round 2 has completed all resources are supplying their services at
recommended price, therefore, if no change in supply or demand
happens the system will stay in this equilibrium state.

For the sake of this discussion we assume that in round 3 the
stabilization tasks needs more processing power, say due to a po-
tential hazard in the flight path. Therefore, it increases its demand
for processing services to 2 units. It also increases its bids for
processing services to 2 credits, based on the market price of 1
credit/unit from the previous round. However, in round 3, the total
supply for processing services is only 2 units, as results a higher
bid leads to an inflationary situation, where the price of process-
ing services is ramped up to 1.5 credits/unit, as per Equation 4.
Factoring in the new price, T’s gets only 1.34 units of processing
services in round 3, while 73;’s bid only bought it 0.66 units of pro-
cessing services. Interestingly, in round 3 since the per-unit price
of processing services has not inflated up to the next power level,
therefore, the R, cannot increased the supply in round 4 (as per
assumption 5). Therefore, the battery agent steps in, and increases
the allocation of T’s and Ty by 0.7 and 0.3 credits, respectively (as
per assumption 7). In round 4, T’ bids 3 credits for the 2 units of
processing power based on the observed price of 1.5 credits/unit in
round 3. Ty which needs 1 unit of processing power can only bid a
maximum of 1.3 credits as per the Equation 3. With this new influx
of credits, the price of processing services inflates to 2.15 cred-
its/unit in round 4. As a result, the supply of processing services
can now be increased to 3 units (see assumption 5). In round 5, the
bids and per-task credit allocation are frozen as per assumption 6.
An increase in supply of processing service brings down the prices
to 1.43 credits/unit at the end of round 5. However, agent T is
now receiving more processing services than it needs, therefore, it
reduces its bids for processing services in subsequent rounds using
Equation 3. As a result, after a couple of rounds of bid adjustment,
both tasks agents 7T’s and T} receive exactly the units of processing
services they had demanded for in earlier rounds.

Such a distributed approach of power management is capable
of seamlessly integrating several objectives, such as task-priorities,
power requirements, fairness, power-saving techniques (e.g., DVES).
In addition, it is also able to adequately react to unpredictable situ-

ations that are a common occurrence in real-life drone operations.
To highlight these scenarios, in round 2, the unused (less-used) re-
sources were automatically switched-off (scaled back). In rounds
3 — 4, a higher priority task was given more resources in times of
emergency, even though the supply of resources could not be in-
creased immediately. Also observe that in rounds 5 and later the
tasks themselves decided upon the resource allocation as per their
respective demands and subsequently came to an equilibrium point
where supply equaled the demand for all services.

Concluding remarks. In this article, we studied non-functional
properties of mobile software, first distinguishing between perfor-
mance and energy-efficiency. We discussed some of the challenges
in obtaining accurate power measurements, a feature that is cru-
cial for developing an energy-aware programming framework for
mobile apps. We presented a proposal for an energy-aware mainte-
nance framework where user reviews on energy issues in an app can
be utilized to automatically construct test cases for the purpose of
debugging and improving the app. We conclude the article with a
forward looking view where we study energy management issues in
software for personal drones. Since personal drones will operate in
unpredictable environments - energy management requires a flex-
ible on-the-fly approach. We proposed a distributed energy man-
agement strategy, using concepts from price theory in economics,
for tacking any unexpected scenarios in the operation of personal
drones.
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