
A

Software Change Contracts

Jooyong Yi, Dawei Qi, Shin Hwei Tan, Abhik Roychoudhury, National University of Singapore

Software errors often originate from incorrect changes, including incorrect program fixes, incorrect feature
updates and so on. Capturing the intended program behavior explicitly via contracts is thus an attractive
proposition. In our recent work, we had espoused the notion of “change contracts” to express the intended
program behavior changes across program versions. Change contracts differ from program contracts in that
they do not require the programmer to describe the intended behavior of program features which are un-
changed across program versions. In this work, we present the formal semantics of our change contract
language built on top of the Java Modeling Language (JML). Our change contract language can describe
behavioral as well as structural changes. We evaluate the expressivity of the change contract language via a
survey given to final year undergraduate students. The survey results enable us to understand the usability
of our change contract language for purposes of writing contracts, comprehending written contracts, and
modifying programs according to given change contracts.

Finally, we develop both dynamic and static checkers for change contracts, and show how they can be used
in maintaining software changes. We use our dynamic checker to automatically suggest tests that manifest
violations of change contracts. Meanwhile, we use our static checker to verify that a program is changed
as specified in its change contract. Apart from verification, our static checker also performs various other
software engineering tasks, such as localizing the buggy method, detecting/debugging regression errors, and
classifying the cause for a test failure as either error in production code or error in test code.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Pro-
gramming by contract; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs

General Terms: Languages, Reliability, Theory, Verification

Additional Key Words and Phrases: Software changes, dynamic checking, static checking

ACM Reference Format:
Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury, 2014. Software Change Contracts. ACM
Trans. Softw. Eng. Methodol. V, N, Article A (January YYYY), 44 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Programmers often toil for hours or even days to find the root-cause of a single per-
nicious “bug” or observed error. What makes debugging so difficult? The difficulty in
debugging primarily comes from the lack of capture of intended program behavior.
Whenever a test case fails, it is due to an “unexpected” observable event — an unex-
pected output, or a program crash. Yet, what is “expected” from the program is hardly
ever formally captured.

An earlier version of this article [Yi et al. 2013] was published in ISSTA 2013. Section 7 of this ar-
ticle is an original extension of this article. This work is partially supported by Singapore Ministry of
Education research grant MOE2010-T2-2-073 and T1 251RES1314. Author’s addresses: School of Com-
puting, National University of Singapore, Computing 1, 13 Computing Drive, Singapore 117417; email:
{jooyong,dawei,shinhwei,abhik}@comp.nus.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 J. Yi et al.

Program contracts, or Design by Contract programming [Meyer 1997; Burdy et al.
2005; Barnett et al. 2004] provide an alternative in this regard since they recommend
writing contracts to express intended program behavior. Contracts may appear in the
form of pre- and post-condition of methods, as well as invariant properties whose cor-
rectness is preserved by the method execution. However, this puts the task of writing
contracts squarely on the programmer. This typically leads to lack of widespread adop-
tion of program contracts by programmers [Parnas 2011].

In our previous paper [Qi et al. 2012], we have espoused the notion of “change con-
tracts” where the intended behavior of program changes are expressed in a customized
change contract language. Change contracts focus only on the program changes and
their intended semantic effect. We believe this eases the task of writing contracts for
several reasons. First of all, program behavior that is unchanged across versions does
not need to be captured. Secondly, while contracts describing the intended behavior
of a program typically capture the intended input-output relationship in a program,
change contracts also retain the flexibility of describing the output-output relation-
ship across program versions. Thus, it can describe properties like

whenever in > 0 holds, out′ == out+ 1

or even a property like

whenever out > 0 holds, out′ == out+ 1

where in denotes input, out′ denotes output of the updated program version and out
denotes output of the previous version. As we show throughout this article, such de-
scriptions are likely to be more concise than a usual program contract of the following
form:

whenever ϕ(in) holds, out′ == f(in)

where ϕ(in) is a constraint on the input, and the function application f(in) expresses
the intended output of the changed program version as a function of input in. Unlike
in our change contract where the outputs of two versions are compared to each other,
a program contract does not reveal changes explicitly. Also, in the above program con-
tract, both ϕ(in) and f(in) can often be fairly complicated. The additional flexibility
of relating the program outputs across program versions often leads to concise and
intuitive change contract specifications.

In this article, we study the expressivity/usability of our change contract language
via a detailed user survey as well as by developing change-contract based infra-
structures to help debug change-related errors or verify the absence of such errors.
The contributions in this article are now stated in the following paragraphs.

Our change contract language is built on top of the Java Modeling Language
(JML) [Burdy et al. 2005]. Unlike the conventional program contract languages which
typically provide pre/post condition of methods — we describe how the post-conditions
of the same method in two consecutive versions relate to each other, under certain pre-
conditions. Exceptional behavior, as well as structural changes (such as introduction
or removal of parameters/fields etc) and conditional refactoring (i.e., refactoring under
a certain condition) are also supported. We present in Section 3 our change contract
language along with its syntax and formal semantics.

To evaluate possible field usage of change contracts, we conducted a survey of sixteen
(16) final year undergraduate students in a senior year course at the National Univer-
sity of Singapore. The survey was administered as a mini-test with 20 questions lasting
60 minutes, accounting for 10% of grade in the course. The students participating in
the survey had no prior background of program contracts or change contracts or JML.
They were only provided one tutorial on these topics in a single week’s lesson. The

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:3

questions in the survey involved comprehending/writing change contracts and modify-
ing code based on change contracts for small programs, as well as fragments of real-life
programs. The results from the survey point to the possible ease of using our change
contract language — with an overall correct answer rate of 92% from the respondents,
in less than one hour for 20 questions.

Finally, we develop checkers for change contracts and show how they can be used
in maintaining software changes. We develop both dynamic and static checkers in this
article. Our dynamic checker monitors executables, whereas our static checker ana-
lyzes source code to check change contracts. As usual in program analysis, both are
complementary to each other.

We use our dynamic checker to suggest tests, each of whose execution leads to a vio-
lation of a given change contract. To do so, we first modify Randoop [Pacheco and Ernst
2007] and apply it to a previous-version program to generate tests, each of whose exe-
cution leads to a program state required to be changed according to a given change
contract. Afterwards, we run those generated tests against the updated version to
monitor whether the updated version behaves as specified in a given change contract.
We also provide tool support for repairing tests which are broken due to structural
changes across program versions (e.g., a new method parameter can be added in an
updated version). We present experimental evaluation results summarizing the size of
the change contracts, time taken to generate tests, and whether change contract vio-
lation (if any) is detected. All the results are obtained from the well-known software
project Ant 1, a Java library to build Java applications. The experiments point to the
efficacy of our dynamic checker in detecting the violations of change contracts.

Meanwhile, we use our static checker to verify that a program is changed as in-
tended (i.e., as specified in its change contracts). To do so, we customize the existing
automated program verification technique such as ESC/Java [Flanagan et al. 2002].
For scalability, we support modular checking – i.e., when encountered with a method
call, our modular checker interprets the change contract of that callee without looking
into its body (callees that do not change across versions are deemed to have implicit
change contracts that specify no change). Although modular checking is the norm in
program verification, it is not trivial to support modular checking with change con-
tracts. Interpreting a change contract is significantly different from interpreting a pro-
gram contract. The conventional simple modular rule to interpret a program contract
– asserting the precondition of a callee followed by assuming the postcondition of a
callee – cannot be used for a change contract. To see this, consider again the change
relationship, “whenever out > 0 holds, out′ == out+1,” as the change contract of a callee.
Depending on whether out of the previous version is positive or not, out′ of the updated
version should either increase by one (if out > 0) or remain the same as before. This
additional version-related context calls for an alternative modular rule that can inter-
pret a change contract correctly. We introduce in this article an alternative modular
rule for change contracts. We also show how we enforce that alternative rule in our
static checker.

Our static checker is an extension of OpenJML [Cok 2014]. We present experimental
evaluation results summarizing the size of the change contracts, time taken to verify
change contracts, and whether change contract can be verified. All the results are
obtained from Joda-Time,2 an open-source date/time library for Java. The experiments
point to the efficacy of our static checker in verifying change contracts at reasonable
cost – verification takes on average 7.4 seconds, and we wrote on average, 2.7 lines of
change contracts for methods that change across versions.

1http://ant.apache.org/
2http://www.joda.org/joda-time/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://ant.apache.org/
http://www.joda.org/joda-time/

A:4 J. Yi et al.

previous system S
commit //

file changes

change contracts

commit message

update // updated system S′

Fig. 1: Change contracts are to be maintained in a version control system along with file changes
and commit message.

Finally, we also report various usage of our static checker. Using our static checker,
we perform not only verification, but also other tasks, such as (1) localizing the buggy
method, (2) detecting /debugging a regression error, and (3) classifying the cause for a
test failure as either error in production code or error in test code. The change contracts
we used to evaluate our dynamic/static checker are available at the following web site:
http://www.comp.nus.edu.sg/∼abhik/CC-survey/SCC.htm.

2. OVERVIEW
Figure 1 shows how change contracts are to be configured in the history of a software
system. Change contracts are to be maintained in a version control system (VCS) such
as Git or Mercurial. When a user commits changes to a VCS, not only file changes and
commit messages are stored in VCS as usual, but also change contracts can be stored
in a VCS at the same time. While file changes represent actual code changes, change
contracts capture the underlying intended changes.

Figure 2(b) shows an example of a change contract for the execute method of software
Ant. It almost looks like a typical JML annotation except that it uses a couple of extra
keywords such as “changed behavior” and “when signaled”. While the meaning of those
keywords is described in Section3 in detail, changed behavior indicates that its following
contents are for a change contract, not for a program contract, and when signaled is used
to describe the output condition of the previous version method while signals can be
used for the output condition of the updated version. While when signaled and signals
are for abnormal termination that signals an exception, output conditions for normal
termination can be described with when ensured and ensures. Meanwhile, to describe
the shared input condition of the previous/updated versions, a requires clause is used.

Notice that a change contract is provided as a separate file, instead of annotating
the program files. The change contract in Figure 2(b) is the contents of a contract file
XMLResultAggregator.scc, and it describes behavioral changes between two consecutive
versions of Java file XMLResultAggregator.java.

The change contract of Figure 2(b) is a counterpart of a verbal description given in
a bug report of Figure 2(a). This bug report describes (i) an observed symptom (i.e.,
“Fails with: ”Use of the extension ...”) and (ii) necessary conditions to reproduce that
symptom (i.e., “broken on JDK 7 when a SecurityManager is set”). A change contract
expresses those descriptions programmatically. In our example, the above symptom is
described with a when signaled clause to specify that a behavior change is necessary
when a BuildException is signaled in the previous version along with the error message
described in that when signaled clause.

Meanwhile, a requires clause is used to describe the necessary condition to reproduce
the symptom. Its predicate expresses, using the standard methods of Java, the two
conditions to reproduce the symptom, (i) a SecurityManager is set and (ii) JDK version
is 7. In addition, it is also assumed that the destination XML file that is supposed to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.comp.nus.edu.sg/~abhik/CC-survey/SCC.htm

Software Change Contracts A:5

Bug 51668 - <junitreport> broken on JDK 7 when a SecurityManager is set Fails with:
”Use of the extension element ’redirect’ is not allowed when the secure processing feature is set
to true.” It turns out to apply to any environment in which there is a system security manager
set. JDK 7’s TransformerFactoryImpl constructor introduced:

i f (System . getSecurityManager () != nu l l) {
isSecureMode = true ; isNotSecureProcessing = fa lse ;

}

which conflicts with <redirect:write>.

(a) A sample Bugzilla report for software Ant

/ / f i l e : XMLResultAggregator . scc
package org . apache . too ls . ant . taskdefs . opt ional . j u n i t ;

publ ic class XMLResultAggregator extends Task implements XMLConstants {
/∗@ changed behavior

@ requires System . getSecurityManager () != nu l l &&
@ System . getProperty (” java . runtime . version ”) . s tar tsWith (” 1 . 7 ”) &&
@ getDest inat ionFi le () . ex is ts () == fa lse ;
@ when signaled (BuildException e) e . getMessage () . contains (
@ ”Use of the extension element ’ red i rec t ’ i s not allowed ” +
@ ”when the secure processing feature i s set to true . ”) ;
@ signals (BuildException e) fa lse ;
@ ensures getDest inat ionFi le () . ex is ts () ;
@∗ /

publ ic void execute () throws BuildException ;
}

(b) A change contract corresponding to the bug report in (a)

/ / f i l e : SourceTypeBinding . scc
package org . ecl ipse . j d t . i n te rna l . compiler . lookup ;

class SourceTypeBinding extends ReferenceBinding {
/∗@ changed behavior

@ requires method . parameters . length > 0;
@ when ensured method . parameterNonNullness [0] . booleanValue () ==>
@ isNonNull (method . sourceMethod () . arguments [0]) == fa lse ;
@ ensures method . parameterNonNullness [0] . booleanValue () ==>
@ isNonNull (method . sourceMethod () . arguments [0]) == true ;
@∗ /

publ ic MethodBinding resolveTypesFor (MethodBinding method) ;

/∗@ pure model boolean isNonNull (Argument arg) {
return (arg . binding . tagBi ts & TagBits . AnnotationNonNull) != 0; } @∗ /

}

(c) A core-developer-level change contract

Fig. 2: The examples of change contracts

be generated after a successful run of the execute method (i.e., the target method of the
above change contract) does not yet exist.

Once a symptom and reproduction conditions are recognized, one may wish to
change the behavior in a specific way. In the case of the above example, it is obvious
that the same exception should not be signaled in the updated version. Instead, (i) the
execute method should terminate normally and (ii) the destination XML file should be
successfully generated. Notice in the above change contract that these two intentions

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 J. Yi et al.

1 publ ic class DirectoryScanner implements FileScanner {
2
3 pr ivate /∗@ new field @∗/ i n t mode;
4
5 / / I f ! cs at the entry of the method , the behavior of the method changes .
6 / / I f cs at the entry of the method , the behavior of the method is preserved .
7 /∗@ changed behavior
8 @ when required true ;
9 @ requires ! cs ;

10 @ ensures /∗ omitted : descr ipt ion about behavioral changes ∗/ ;
11 @ preserves when cs ;
12 @∗/
13 Fi le f i ndF i l e (F i le base , Str ing path , /∗@ old param @∗/ i n t mode, /∗@ new param @∗/ boolean cs) ;
14 }

Fig. 3: DirectoryScanner.scc: a change contract involving structural changes such as adding/re-
moving a parameter/field

are expressed with the signals clause (by using false as a predicate) and ensures clause,
respectively.

While the level of the intentions expressed in our first change contract example
is close to the one of an end-user, lower level intentions made by core developers of
software can also be expressed in a change contract. Figure 2(c) shows such a low-
level change contract for the resolveTypesFor method of Eclipse JDT (Java Development
Tools) 3. This change contract equivalent to the JDT’s Bugzilla report number 388281
expresses the intention to fix the mismatch between method.parameterNonNullness[0]
(a boolean value) and method.sourceMethod().arguments[0] (a bitmask). The when ensured
clause of Figure 2(c) describes that the bitmask was not properly set in the previous
version; the following ensures clause specifies that, in the updated version, the bitmask
should be properly set instead.

We use a pure model method, isNonNull, in Figure 2(c) to improve the readability of
a change contract. A pure model method is essentially an extra specification-purpose
method whose execution does not alter the functional behavior of the program in a
noticeable way. In JML upon which our change contract language is based, a pure
model method is described between “/*@ pure model” and “@*/”. It is often handy to
define a pure model method and use it in a change contract as a predicate.

One may argue that existing program contract languages such as JML can already
express the behavior described in the above examples. Indeed, one can write JML
specifications corresponding to Figure 2(b) and Figure 2(c) without using change con-
tract’s when signaled and when ensured clauses. Instead, one can calculate the weakest
pre-condition (viz., input condition) under which the observed symptom (viz., output
condition) is bound to be reproduced, and write in a contract input-output relationship
instead of writing output-output relationship of a change contract.

However, such specifications that solely rely on input-output relationship are, in gen-
eral, not as intuitive as our change contracts for the following two reasons. First, while
change contracts can clearly show the symptoms observed in the previous version such
as throwing an exception, program contracts can hardly reveal those symptoms. After
all, program contracts do not distinguish the previous version form the updated ver-
sion. Second, it is often the case that output-output relationship is simpler and thus
more comprehensible than its equivalent input-output relationship. For example, in
Figure 2(b), imagine calculating the weakest pre-condition that induces at the method
exit a BuildException along with the particular error message. Such a pre-condition can

3http://www.eclipse.org/jdt/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.eclipse.org/jdt/

Software Change Contracts A:7

be quite long and complex depending on how complex the method body is and how
specific the symptom is.

Our change contract can express not only behavioral changes but also structural
changes such as adding/removing a new method parameter/field. Figure 3 shows such
an example. In line 13, the removal of a parameter mode and the addition of a parame-
ter cs are described with modifiers /*@ old param @*/ and /*@ new param @*/, respectively.
Similarly, the /*@ new field @*/ modifier in line 3 describes the addition of a new field.
Also, the “preserves when cs” clause in line 11 expresses the expectation that, when cs
is true, the updated version of findFile should find and return the same file as in the
previous version, given the same base and path. Meanwhile, the behavioral changes
expected to be made when cs is false (i.e., requires !cs in line 9) is also described in the
ensures clause in line 10. Lastly, the when required clause is used in line 8 to describe
the input condition of the previous version, because the input condition of the updated
version – requires !cs – cannot be shared in the previous version; notice that cs does not
exist in the previous version.

3. CHANGE CONTRACT LANGUAGE
To express intended program changes, we extend a subset of JML [Burdy et al. 2005],
the de facto lingua franca when giving checkable formal specifications to Java pro-
grams. In fact, one of our goals in designing a change contract language is to be as
close to an existing popular specification language as possible to lower the learning
barrier, and our syntactic extension to JML is very limited. However, JML or any other
specification languages, to the best of our knowledge, is not expressive enough to ex-
press program changes across two consecutive versions, and this requires us to propose
non-trivial semantic extensions.
Notes on Expressivity. While the main objective of our change contract language is to
specify behavioral changes that occur between two consecutive versions of a method,
it is also possible to specify with this language accompanying structural changes such
as adding/deleting method parameters or fields. While our change contract language
captures the relationship among program variable values at the input/output points of
the previous/updated program versions - it is not powerful enough to express temporal
properties of changes in variable values, as in temporal logics. Lastly, as in JML, we are
concerned only with sequential Java programs, and do not consider multi-threading.

A change contract is specified above the signature of a method m as an annotation
between “/*@ changed behavior” and “@*/”. We call such a method m the target method of
a given change contract. We require that expressions used in a change contract, includ-
ing method calls, must be free of side effects and exceptions. Also, their execution must
terminate. A change contract is maintained as a contract file (e.g., XXX.scc) separated
from Java files.

3.1. Syntax
Figure 4(a) shows the syntax of our change contract language. The keywords in bold
face are extensions to the standard JML. A change contract starts with the keyword
“changed behavior” followed by clauses that describe the pre/post conditions of a common
target method of the previous/updated versions. To describe the pre-/post-conditions
of an updated version, we use the existing JML clauses: a requires clause for a pre-
condition and ensures/signals clauses for post-conditions; ensures expresses the post-
condition at normal method termination (i.e., termination without throwing an excep-
tion), and signals the post-condition at abnormal method termination (i.e., termination
with an exception thrown). Meanwhile, to describe the counterparts of the previous
version, we introduce additional clauses: when required, when ensured, and when signaled.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 J. Yi et al.

method-spec ::= spec-case-seq

spec-case-seq ::= spec-case [also spec-case]∗

spec-case ::= changed behavior clause-seq

clause-seq ::= [clause]∗

clause ::= requires pred; | ensures pred; | signals (reference-type [ident]) pred;

| when ensured pred; | when signaled (reference-type [ident]) pred;

| when required pred; | preserves when pred;

exp ::= . . . | \result | \old(exp) | \prev(exp)

param-modifier ::= . . . | new param | old param

jml-modifier ::= . . . | new field | old field

(a) The grammar of our change contract language, which is an extension of a JML subset; stan-
dard regular expression notation ∗ is used.

/ / the f u l l change con t rac t , (ϕ,ψ, θ;ϕ′, ψ′, θ′)
/∗@ changed behavior

@ when required ϕ ; when ensured ψ ; when signaled (T1 x) θ ;
@ requ i res ϕ′ ; ensures ψ′ ; s i gna l s (T2 x) θ′ ;
@∗ /

(b) A boilerplate for the full change contract; the greek letters denote predicates, and T1 and T2

represent exception types.

Fig. 4: Our change contract language

For simplicity, we often use a shorthand notation (ϕ,ψ, θ;ϕ′, ψ′, θ′) to mean the full
change contract shown in Figure 4(b).

In the above, greek letters (i.e., ϕ,ψ, θ, and their primed variants) denote predicates,
and T1 and T2 represent exception types (i.e., subtypes of java.lang.Exception). Also, vari-
able x, which refers to the exception of type T1 (or T2) signaled when the previous (or
updated) version of the method exits, can appear in θ (or θ′). One can consider x as a
quantified variable associated with quantifier when signals (or signals). Thus, variable
capture should be avoided in θ and θ′. Note that not all clauses need to be present in a
change contract. When a certain clause is omitted, a default predicate for that clause
is used as detailed in Section 3.2.4.

A requires clause often is shared between the previous/updated versions as a common
pre-condition. A when required clause is used only when it is necessary to distinguish the
pre-conditions between the previous version and the updated version. For example, if
the pre-condition of the updated version depends on a newly added method parameter,
then the same pre-condition cannot be used for the previous version. In such a case, the
pre-condition of the previous version can be separately expressed with a when required
clause.

The keyword \prev constructs a “prev” expression that accesses the previous-
version value from an updated-version context. For example, one can write “ensures
x==\prev(x)+1;” to express the intention that the value of x at the post-state of the up-
dated version should be greater by one than the value of x at the post-state of the
previous version. Readers familiar with JML could find the similarity between \prev

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:9

and the \old of JML. While \old makes a value of a pre-state available at a post-state,
\prev makes a value of the previous version available at the updated version.

Our change contract language can also express structural changes such as addi-
tion/removal of parameters/fields. As shown in Figure 3, a new parameter can be recog-
nized by the /*@ new param @*/ modifier. Conversely, a removed parameter is annotated
with the /*@ old param @*/ modifier.

When reading the method signature of a change contract, one can get the signature
of the previous version by including parameters annotated with /*@ old param @*/ and
non-annotated parameters while excluding parameters annotated with /*@ new param
@*/. The signature of the updated version can also be obtained in the opposite way. No-
tice that the order of the parameters and parameter names are preserved in a change
contract. Similarly to parameter changes, field addition and removal are annotated
with /*@ new field @*/ and /*@ old field @*/ modifiers.

Lastly, clause “preserves when ϕ” is a syntactic sugar for the following combination of
clauses that dictate that if ϕ holds at the entry of the updated version, then the output
should be preserved across versions:

/∗@ changed behavior
@ when required true ;
@ requires ϕ ;
@ ensure out == \prev(out) ;
@ signals (Exception e) \typeof (e)==\typeof(\prev(e)) && out == \prev(out) ;
@∗/

In the above, out denotes method output such as the return value of the method.

3.2. Semantics
3.2.1. Execution Model. It is convenient to conceptually assume that two versions of a

program are run in parallel when considering the semantics of a change contract be-
tween two versions of a program. Recall that a change contract concerns currently only
sequential programs as JML does, and the introduced parallelism is not intended to
interfere with Java’s multi-threading. The overall semantic rule shown in Figure 5(b)
clarifies such a parallel execution model. Given two commands, c1 and c2, that rep-
resent the method bodies of the previous and the updated versions respectively, we
assume that they are run in parallel as denoted with c1 || c2.

Nonetheless, not all parallel executions c1 || c2 are interesting to the users of a
change contract. For example, given a change contract, ensures \result==\prev(\result)+1,
of a method m(int x), one would expect the increase of the return value only when the
same integer value for parameter x is given to both versions. Roughly speaking, input
equality between the two versions needs to be assumed when considering a change
contract. However, naive input equality is not enough for two reasons. First, the above
parameter x may not be of a primitive type but of a subtype of Object. If that is the
case, simple reference comparison is inappropriate. Second, there may be structural
changes such as addition of a method parameter or a field.

To address the first issue, we compare object graphs instead of object references.
Conventionally, two graphs are considered isomorphic if there is a unique one-to-one
correspondence between the vertexes and edges of the two graphs. If, in addition, all
the one-to-one corresponding vertexes that represent primitive values of the two object
graphs contain the same values, the two object graphs are considered isomorphic. We
extend this notion of isomorphism to the program state level as follows. Note that a
program state consists of a store σ and a heap h.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 J. Yi et al.

DEFINITION 1 (ISOMORPHIC PROGRAM STATES). Two program states, (σ1, h1) and
(σ2, h2), are considered isomorphic to each other, if for all variables x that commonly
exist in the domain of σ1 and σ2, the two object graphs that σ1(x) and σ2(x) respectively
refer to are isomorphic to each other. We denote the fact that two program states, (σ1, h1)
and (σ2, h2), are isomorphic to each other with notation (σ1, h1) ≈ (σ2, h2). As usual in
Java programs (and other object-oriented programs), the receiver of an object (i.e., this) is
considered an implicit parameter of a non-static method, and thus this is in the domain
of σ1 and σ2.

Note that in Definition 1, heaps (h1 and h2) are consulted if necessary when con-
structing object graphs. As in variables, only the fields that commonly exist in h1 and
h2 are compared to each other. This resolves the second issue about structural changes;
when comparing object graphs, we exclude method parameters and fields that are not
in common between two versions. Notice that our overall semantic rule in Figure 5(b)
has (σ1, h1) ≈ (σ2, h2) in its premise to force isomorphic inputs.

Our execution model based on isomorphic program states imposes one restriction. A
change contract should not contain an expression such as \prev(this)==this that compares
the reference of the previous version with the reference of the updated version, because
the reference value of a non-primitive variable will be different at each version. For
the same reason, an expression such as \prev(o.hashCode()) == o.hashCode() should be
avoided. In fact, programmers usually do not expect reference values to be preserved
across versions, when making changes to their programs.

We impose one more restriction on our parallel semantics. Executing two versions
of a method in parallel should not interfere with each other. Recall that we use paral-
lelism only for the purpose of analyzing behavioral changes across versions. To guaran-
tee non-interference, we maintain a disjoint heap for each version of a method. More
precisely, the domains of the two heaps, h1 and h2, are forced to be disjoint, and we
denote such a constraint with h1⊥h2 as shown in the premise of our overall semantic
rule (i.e., Figure 5(b)).

Once two input states, (σ1, h1) and (σ2, h2), satisfy the isomorphism condition (i.e.,
(σ1, h1) ≈ (σ2, h2)) and the heap disjointness condition (i.e., h1⊥h2), the two versions
are run in parallel in an obvious way without interfering with each other. As a re-
sult, we obtain the reduction relation appearing in the conclusion part of the rule:
〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h

′
1, σ
′
2, h
′
2). Recall that c1 and c2 amount to the method body

of the previous and the updated versions, respectively. Accordingly, input states (σ1, h1)
and (σ2, h2) amount to pre-states of the previous version and the updated version, re-
spectively, and output states (σ′1, h

′
1) and (σ′2, h

′
2), the post-states of the previous and the

updated versions, respectively.

3.2.2. \prev Expression. Our prev expressions can be used in a change contract to refer
to the value of the previous version from the context of the updated version. The value
of \prev(E) is decided depending on where this prev expression appears. If \prev(E) ap-
pears in an ensures clause or a signals clause (i.e., the post-condition of the updated
version), E should be evaluated in the post-state of the previous version (i.e., (σ′1, h

′
1)).

Meanwhile, if it appears in a requires clause (i.e., the pre-condition of the updated
version), E should be evaluated in the pre-state of the previous version (i.e., (σ1, h1)).
Such a difference is captured in the two topmost rules in Figure 5(c) where notations
“ensures `” and “requires `” designate the clause in which a prev expression appears.
The cases for the signals clause are omitted because they can be treated identically to
the cases for the ensures clause.

Notice that a prev expression, regardless of where it appears, makes a context switch
from the updated version to the previous version. Such a context switch over a program

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:11

c ∈ Cmd v ∈ Value
def
= Location ∪ . . .

σ ∈ Store
def
= Variable

fin→ Value h ∈ Heap
def
= Location

fin→ (Field
fin→ Value)

(a) Semantic domains

(σ1, h1) ≈ (σ2, h2) h1⊥h2 〈c1, (σ1, h1)〉 ⇓c (σ′1, h
′
1) 〈c2, (σ2, h2)〉 ⇓c (σ′2, h

′
2)

〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h
′
1, σ
′
2, h
′
2)

(b) An overall semantic rule that describes our parallel execution model; for explanation, refer
to Section3.2.1.

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h
′
1, σ
′
2, h
′
2) 〈E, (σ′1, h′1)〉⇓e v

ensures ` 〈\prev(E), σ′1, h
′
1, σ
′
2, h
′
2〉 ⇓e v

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h
′
1, σ
′
2, h
′
2) 〈E, (σ1, h1)〉⇓e v

requires ` 〈\prev(E), σ′1, h
′
1, σ
′
2, h
′
2〉 ⇓e v

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h
′
1, σ
′
2, h
′
2) 〈E, (σ2, h2)〉⇓e v

ensures ` 〈\old(E), (σ′1, h
′
1, σ
′
2, h
′
2)〉 ⇓e v

〈c1 ||c2, (σ1, h1, σ2, h2)〉⇓c (σ′1, h
′
1, σ
′
2, h
′
2) 〈E, (σ1, h1)〉⇓e v

ensures ` 〈\old(\prev(E)), (σ′1, h
′
1, σ
′
2, h
′
2)〉 ⇓e v

(c) Semantic rules for \prev(E) expressions; for explanation, refer to Section3.2.2.

〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h
′
1, σ
′
2, h
′
2)

(σ1, h1) ` ϕ (σ′1, h
′
1) ` ψ ∨ (σ′1, h

′
1) ` θ

(σ2, h2) ` ϕ′ (σ′2, h
′
2) ` ψ′ ∧ (σ′2, h

′
2) ` θ′

〈c1 || c2, (σ1, h1, σ2, h2)〉 ` (ϕ,ψ, θ;ϕ′, ψ′, θ′)

(d) An inference rule for a change contract (ϕ,ψ, θ;ϕ′, ψ′, θ′); the second and the third lines
correspond to the update condition and the change condition, respectively; for explanation, refer
to Section3.2.3.

Fig. 5: Semantic rules for given two method bodies, c1 and c2, of the previous and the updated
version, respectively; ⇓e and ⇓c represent reduction relations of big-step operational semantics
for expressions and commands, respectively.

version made by a prev expression is orthogonal to the old expression’s context switch
from a post-state to a pre-state.

3.2.3. Update/Change Condition and Inference Rule. Given a change contract
(ϕ,ψ, θ;ϕ′, ψ′, θ′) and two versions of a program that satisfy 〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c
(σ′1, h

′
1, σ
′
2, h
′
2), we check if the given change contract is satisfied using the inference

rule shown in Figure 5(d). We write 〈c1 || c2, (σ1, h1, σ2, h2)〉 ` (ϕ,ψ, θ;ϕ′, ψ′, θ′) in the
conclusion part of the inference rule to mean that change contract (ϕ,ψ, θ;ϕ′, ψ′, θ′) is
satisfied in the context of configuration 〈c1 || c2, (σ1, h1, σ2, h2)〉.

In order for a change contract to be satisfied, the pre-condition of the previous ver-
sion must be satisfied beforehand at the pre-state of the previous version. Such a con-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 J. Yi et al.

Table I: Rules to fill in omitted clauses with default predicates; for explanation, refer to Sec-
tion3.2.4.

Omitted clause Context Default predicate

when ensured ∃when signaled false
6 ∃when signaled true

when signaled ∃when ensured false
6 ∃when ensured true

when required ∃requires ϕ′ ϕ′

6 ∃requires true

requires always true

ensures always true

signals always true

dition is expressed in the premise part of the rule as (σ1, h1) ` ϕ; we write (σ1, h1) ` ϕ if
predicate ϕ is satisfied at state (σ1, h1).

In addition, one of post-conditions of the previous version (recall that there are two
kinds of post-conditions depending on whether the target method terminates normally
or not) must also be satisfied at the post-state of the previous version. Such a condition
is denoted in the inference rule as (σ′1, h

′
1) ` ψ ∨ (σ′1, h

′
1) ` θ. We say that the update

condition is satisfied if the above two conditions hold true as described in the second
line of the inference rule. If the update condition holds, it means that a given input
state (σ1, h1) triggers in the previous version an execution whose behavior is intended
to be changed in the updated version.

Once the update condition holds, we next check another condition we call the change
condition to see if the behavior of the execution of interest changes as intended. The
change condition is described in the third line of the inference rule. To see if the change
condition is satisfied, we check the following two conditions. First, we check if the pre-
condition of the updated version is satisfied at the pre-state of the updated version
(i.e., (σ2, h2) ` ϕ′ of the rule). Note that we can assume that (σ2, h2) is isomorphic to
(σ1, h1) because that is implied by 〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′1, h

′
1, σ
′
2, h
′
2) in the premise

of the inference rule. Next, we check all the post-conditions of the updated version
are satisfied at the post-state of the updated version (i.e., (σ′2, h

′
2) ` ψ′ ∧ (σ′2, h

′
2) ` θ′).

We assume that prev expressions appearing in ψ′ or θ′ are replaced with their values
obtained using their semantic rules explained earlier.

If both the update and the change conditions hold, we conclude that a given change
contract is satisfied under the given input states of the two versions of a program.
Meanwhile, we report a change-contract violation only if the last condition of the infer-
ence rule does not hold (i.e., ¬((σ′2, h

′
2) ` ψ′∧ (σ′2, h

′
2) ` θ′)) while the preceding conditions

hold.

3.2.4. Default Predicates for Omitted Clauses. All clauses of a change contract do not have
to be specified, as mentioned in Section 3.1. Default predicates are used for omitted
clauses, following the rule described in Table I.

If an ensures (or a signals) clause is omitted, ensures true (or signals true) is used by
default. To understand why true is used as a default clause for an ensures clause, recall
that given a full change contract (true, ψ, θ; true, ψ′, θ′),4 our change contract inference
rule in Figure 5(d) checks whether change condition ψ′ ∧ θ′ holds at the end of the
updated version, whenever update condition ψ ∨ θ holds at the end of the previous

4For simplicity of the description, we give true to the when required and requires clauses.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:13

version. When omitting the predicate ψ′ of the ensures clause, and only the predicate
θ′ of the signals clause is used, the change condition we want to check is true ∧ θ′. Thus,
the omitted predicate ψ′ should be true. Similarly, the default predicate of an omitted
signals clause should be true.

Meanwhile, when omitting the predicate ψ of the when ensured clause, the default
value of ψ seems to be false at first, considering the update condition ψ∨θ. However, the
problem is one can omit both when ensured and when signaled clauses simultaneously, as
in the following change contract: ensures \result==\prev(\result)+1, which describes the
expectation that the return value of the updated version should be one larger than the
return value of the previous version. If this is the case, the use of false as a default
predicate makes the update condition false, and as a result, the change condition is not
checked. To avoid such situations, we assign a default predicate differently depending
on the context. If it is the case that only either of the when ensured or when signaled
clause is omitted, we use false as a default predicate for the omitted clause. However,
if both when ensured and when signaled clauses are omitted, we use true as a default
predicate instead.

Lastly, let us explain the case for when required. If there is no structural changes,
it is most likely that writers of a change contract would want to assume the same
pre-condition for the previous and the updated versions. We accordingly assign the
predicate of a given requires clause to the omitted when required clause.

3.3. Discussion
While intended changes can be expressed and checked through a change contract, it is
also of interest to developers to check if there is a regression bug. To find a regression
bug, one can compare the output states obtained when isomorphic inputs are given to
the two versions. If the update condition of a given change contract does not hold, in-
equality between two output states indicates a regression bug. As an example, consider
the following change contract that specifies NullPointerException signaled in the previous
version should disappear in the updated version:

/∗@ changed behavior
@ when signaled (NullPointerException e) true ;
@ signals (NullPointerException e) false ;
@∗/
in t m(in t p) ;

If the previous version method m does not signal a NullPointerException under the input
state Sin, and instead terminates normally with an integer return value r, then the
above change contract implicitly specifies that the updated version should return the
same return value r when the same input state Sin is given. Two different return
values returned from two versions under the same input state indicate that there is
a regression bug. Without a change contract, it is difficult to distinguish a regression
bug from software progression even if inequality between two output states is found.

Structural changes often involve conditional refactoring – the behavior of a method
should be preserved under a certain condition. For example, Figure 3 describes that
the behavior of method findFile should be preserved if the newly added parameter cs
has value true when the method is called, as described with preserves when cs.

4. USER STUDY
To evaluate possible field usage of change contracts, we conducted a survey of sixteen
(16) final year undergraduate students in a senior year course (formal verification of
embedded software) at the National University of Singapore in 2012.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 J. Yi et al.

Consider the following LazyMethodGen constructor.
1 p u b l i c LazyMethodGen (Method m, LazyClassGen enclos ingClass) {
2 . . .
3 }

This constructor raises a RuntimeException if method m (i.e., the first formal parameter of the
constructor) does not have its associated code for its body when this method is expected to have
a body. Otherwise, an object should be created successfully. Remember that a Java method does
not have its body only when it is declared as either an abstract method or a native method.
The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even

when the given first parameter m represents a native method. Such behavior of the constructor
is buggy because a native method does not have to have body code. Thus, instead of raising a
RuntimeException, the constructor should create an object successfully.
Q. Based on the above description, write a change contract for the above constructor.

(a) A question categorized as type W, AspectJ, and B

Consider the following program changes where the previous version at the top is changed to the
new version at the bottom according to the change contract in the middle.
1 p u b l i c c lass InterTypeMethodBinding extends MethodBinding {
2 p r i v a t e MethodBinding synthet icMethod ;
3 p u b l i c MethodBinding getAccessMethod () {
4 r e t u r n synthet icMethod ;
5 }
6 /∗ the r e s t o f the code i s omi t ted ∗ /
7 }

1 p r i v a t e MethodBinding /∗@ new f i e l d @∗ / postDispatchMethod ;
2 /∗@ changed behavior
3 @ preserves when ! s t a t i c R e f ;
4 @∗ /
5 p u b l i c MethodBinding getAccessMethod (/∗@ new param @∗ / boolean s t a t i c R e f) ;

1 p u b l i c c lass InterTypeMethodBinding extends MethodBinding {
2 p u b l i c MethodBinding getAccessMethod (boolean s t a t i c R e f) {
3 i f (s t a t i c R e f) r e t u r n postDispatchMethod ;
4 else r e t u r n ;
5 }
6 }

Q1. Explain in English what the above change contract means.
Q2. Also, fill in the blank of the new version.

(b) A question categorized as type RD (Q1), RM (Q2), AspectJ, and S

Fig. 6: Survey question samples. W, RD and RM stand for Write, Read-Describe and Read-
Modify, respectively. Also, B and S stand for behavioral changes and structural changes, re-
spectively.

4.1. Demographics
We asked seven (7) demographic questions. Almost all respondents responded that
they have experience in programming in Java for certain projects. Only two respon-
dents responded that they had equivalent experience with another programming lan-
guage, one with C++ and the other with Python. Meanwhile, all respondents responded
that they had used neither JML nor any other program contract languages before.
Overall, our participants can be considered equivalent to entry-level developers who
have no background of program specification.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:15

4.2. Survey Questionnaire
Figure 6 shows two sample questions from our survey questionnaire that encompass
diverse question types we describe in this section. Each of our questions falls under
primarily one of the following three types of questions:
(i). Read-Modify (RM) type questions. In this type of questions, we show a program
and its change contract and then ask respondents to modify the program in a way
to reflect the given change contract. This type of question measures how easy it is to
comprehend change contracts.
(ii). Read-Describe (RD) type questions. Here, we first show a program and its change
contract. We then ask respondents to describe the change contract in plain English.
This type of question double-checks the comprehensibility of change contracts.
(iii). Write (W) type questions. In this type of questions, we ask respondents to write a
proper change contract that they think can reflect a given verbal description of desired
changes. This type of question measures how easy it is to write change contracts.

We asked thirteen (13) questions in total (excluding seven demographic questions).
We asked multiple questions for each type of questions, i.e., 3 for the RM type, 5 for
the RD type, and 5 for the W type. All of these questions were constructed as open
questions, not as multiple-choice questions; respondents were asked, depending on the
type of a question, to write down a change contract (e.g., Figure 6(a)), fill in a blank
with a program statement or a program expression (e.g., Q2 of Figure 6(b)), and write
down a verbal description of a change contract (e.g., Q1 of Figure 6(b)).

Each of these thirteen questions shows a fragment of a subject Java program. We
used in total eight distinct Java program fragments; some fragments were re-used for
multiple questions.

About the two third of these program fragments (i.e., 5 fragments) were carefully
designed by us for this survey. Those fragments include a buggy version of a singly
linked list and its extension to a doubly linked list. To measure the effectiveness to
real-life programs, we also used three fragments of AspectJ that changed over consec-
utive versions. We asked four questions using these AspectJ fragments.

Recall that our change contract language can deal with not only behavioral changes
(B-type changes) but also structural changes (S-type changes). We distributed both
kinds of changes evenly throughout the questions (i.e., 6 for B-type and 7 for S-type).

Our survey questionnaire can be downloaded at the following website: http://www.
comp.nus.edu.sg/∼abhik/CC-survey/SCC.htm. In addition, the responses of the participants
and a sample answer can be downloaded from the same website.

4.3. Survey Administration
We offered a single tutorial session about change contract to the survey participants
before they took an open-book mini-test two weeks later (the education materials we
used for this tutorial can also be downloaded from the aforementioned website). During
the test, we measured the time each student spent filling in the questionnaire. To
encourage the students, we allocated 10% of credit points of the course for this survey.

While grading the answers to the RD type questions, we occasionally gave a half
point when the answered verbal description about a change contract is neither en-
tirely correct nor entirely incorrect. No partial points were given for the other types of
questions.

4.4. Survey Results
Table II shows the results of our survey with the correct answer rate for each type of
questions. For the correct answer rate of question type T , we use the following formula:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.comp.nus.edu.sg/~abhik/CC-survey/SCC.htm
http://www.comp.nus.edu.sg/~abhik/CC-survey/SCC.htm

A:16 J. Yi et al.

Table II: Distribution of correct answer rates depending on the criterion used to categorize ques-
tions.

Three Categorization Criteria

Question Type Program Source Change Kind

RM RD W Artificial AspectJ B S

100% 86% 93% 92% 92% 85% 97%

(the total sum of scores of the T type questions)
(the total number of the T type questions)× (the total number of students)

The correct answer rate is high throughout all categories, forming the overall correct
answer rate at 92% – calculated using the formula, (the total sum of scores of all
questions) / (13 × 16). Meanwhile, the participants spent on average 53 minutes to
answer a total of 20 questions with the standard deviation being about 3 minutes. To
answer each question, it took on average 2 minutes and 40 seconds. Note that we did
not inform the participants that we were measuring the time.

Overall, our survey results indicate that the participants easily learned and used
change contracts. In our study, the correct answer rate was not affected by whether
a subject program is artificially made or extracted from a real-life program (i.e., As-
pectJ). Also, structural changes were more easily handled than behavioral changes
were (97% vs 85%).

4.5. Threats to Validity
As mentioned earlier, our survey was conducted with only one group of students tak-
ing a particular course of a particular university. We, however, also mentioned that
our survey participants were final-year undergraduate students majoring computer
science who can be considered entry-level developers.

Our survey fulfilled its purpose of gauging initial response to our change contract
language; our students easily learned and used our change contract language. How-
ever, given the number of participants, a larger-scale study is necessary to confirm
our results. In particular, more sophisticated study is required to see the validity of
several interesting initial observations such as higher correctness rates in structural
changes than in behavioral changes and little difference between the correctness rates
for artificial programs and real-life programs.

5. FORMULATION OF CHANGE CONTRACT CHECKING (CCC)
Our change contract, as a formal description of software changes, is checkable – in
an automatic way. If there is any discrepancy between a given change contract and
actual code changes, we report a violation of the given change contract. Furthermore,
we provide an explanation about why such a violation happens. Such an explanation
can be a test case that enables a user to observe a change contract violation. We can
also more directly show a counterexample path (sequence of statements) that leads to
a change contract violation.

Change contract checking can be performed either dynamically – by running exe-
cutables – or statically – by analyzing source code. We in this article describe the both.
As well-known, dynamic and static checking have their own advantages and disad-
vantages. In general, static checking can guarantee the absence of contract violations
with higher confidence than dynamic checking, when no contract violation is found.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:17

Meanwhile, dynamic checking seldom sets off a false alarm, whereas a false alarm is
one of the key problems of static checking. Those advantages and disadvantages of
dynamic/static checking are also inherited when checking a change contract.

However, we can mitigate the disadvantage of each analysis by exploiting the fact
that we deal with two versions of software, as will be described in detail in the following
subsections. Beforehand, we first formally describe the problem of change contract
checking.
Problem Definition. Before we develop dynamic/static checking for change contracts,
we first formally define the problem of change contract checking (CCC) for the follow-
ing full-blown (i.e. without omitted clauses) change contract, (ϕ,ψ, θ;ϕ′, ψ′, θ′):

1 when required ϕ ; when ensured ψ ; when signaled (T x) θ ;
2 requ i res ϕ′ ; ensures ψ′ ; s i gna l s (T ′ x) θ′ ;

The meaning of each clause will be described shortly through the definition of CCC.
Since we are primarily interested in behavioral changes, we first define the behavior
of a deterministic method:

DEFINITION 2 (BEHAVIOR). Given a deterministic method m whose method body is
a command c, we define the behavior of m (notated with B[m]) as the following possibly
infinite set of relations between an input state Sin and an output state Sout :

B[m] = {(Sin, Sout) | 〈c, Sin〉 ⇓c Sout}

In the above, 〈c, Sin〉 ⇓c Sout refers to a semantic reduction that indicates that the
method body c reduces to the output state Sout when it starts with the input state
Sin.

We will also use the following notations. S |= ϕ means that predicate ϕ is satisfied at
state S. Using dedicated predicate ex to denote an exception, Sout |= ex and Sout |= ¬ex
mean that an exception is thrown and not thrown in state Sout, respectively. Also,
Sout |= ((¬ex ⇒ ψ) ∨ (ex ⇒ θ)) means (Sout |= ¬ex ⇒ ψ) ∨ (Sout |= ex ⇒ θ). Finally, we
use m v1 and m v2, respectively, to refer to the method m at the previous (v1) and the
updated version (v2). We define CCC as follows:

DEFINITION 3 (CCC). Given a full-blown change contract (ϕ,ψ, θ;ϕ′, ψ′, θ′) of a
method m, we say that CCC succeeds in m iff the following two properties hold. For
all (Sin, Sout) ∈ B[m v1] and (S′in, S

′
out) ∈ B[m v2],

(P1) Sin ≈ S′in ∧ (Sin |= ϕ ∧ Sout |= ((¬ex⇒ ψ) ∨ (ex⇒ θ)))

⇒ (S′in |= ϕ′ ⇒ S′out |= ((¬ex⇒ ψ′) ∧ (ex⇒ θ′)))

(P2) Sin ≈ S′in ∧ ¬(Sin |= ϕ ∧ Sout |= ((¬ex⇒ ψ) ∨ (ex⇒ θ)))

⇒ Sout ≈ S′out

CCC essentially compares the output states, Sout and S′out, whenever their corre-
sponding input states, Sin and S′in, are isomorphic to each other (i.e., Sin ≈ S′in).5 There
can be two possibilities; the behavior of a method either changes (P1), or remains the
same (P2). The premise of P1 describes the condition in which the method should
change its behavior. In particular, its second conjunct describes which pattern of the be-
havior ofm v1 triggers behavioral changes inm v2. That is,m v2 should have a different
behavior only if (1) m v1 satisfies the when required clause at its entry (i.e., Sin |= ϕ),

5The definition of isomorphic program states is provide in Definition 1.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 J. Yi et al.

previous system

��

change contracts

uu **

previous/updated systems

��
test

generator

relevant
tests // test

repair tool

repaired
tests // change contract

checker

��
pass/violation

Fig. 7: The workflow of our dynamic CCC

and (2) m v1 also satisfies either the when ensured clause or the when signaled clause
at its exit (i.e., Sout |= ((¬ex⇒ ψ) ∨ (ex⇒ θ))). When these two conditions are evaluated
true, we say that the update condition of a change contract holds.

In case the same input is used at both versions and the update condition holds, m v2
should satisfy the condition described in the conclusion of P1; that is, if the requires
clause is satisfied at its entry (i.e., S′in |= ϕ′), then the ensures (signals) clause should
also be satisfied at its normal (abnormal) exit (i.e., S′out |= ((¬ex ⇒ ψ′) ∧ (ex ⇒ θ′))).
When this is true, we say that the change condition of a change contract holds.

When P1 cannot be applied, P2 should hold instead. Notice in the premise of P2 that
the update condition is negated. As mentioned, P2 describes the behavioral preserva-
tion of a method. Thus, the conclusion of P2 is Sout ≈ S′out.

We note that when required and requires clauses usually have the same predicate
(i.e., ϕ = ϕ′), considering that Sin ≈ S′in. It is only in some special cases (e.g., some
parameters exist only in one version) that one needs to constrain the input differently
depending on the version. In the remaining sections, we use only requires clause –
the omitted when required clause is assumed to have the same predicate as the requires
clause.

6. DYNAMIC CHANGE CONTRACT CHECKING (DYNAMIC CCC)
Figure 7 shows the workflow of our dynamic CCC. Our dynamic checker runs a set of
tests generated for the purpose of checking change contracts, and monitors the execu-
tions of the two versions of a program to see if there is any change contract violation.
The two versions of a program are instrumented appropriately to support such moni-
toring.

Instead of running the two versions of a program in parallel as described in Sec-
tion3.2, we run them in a sequential order, i.e., first the previous version, and the next
the updated version while collecting information necessary to simulate the parallel-
execution model of our change-contract semantics. Note that the tests we use to run
the program are generated at the unit (method) level. These tests run the methods,
the behavioral changes of which are described in given change contracts.

Our dynamic CCC starts with generating tests satisfying the following two condi-
tions: (i) a test executes the target method and (ii) when the target method exits, the
update condition of a given change contract holds true (recall that if the update con-
dition holds, the target method is expected to change its behavior). We call such a test
that satisfies the above two conditions a relevant test. We provide a test generator in
our dynamic CCC toolset that can collect only relevant tests efficiently. Recall that
the update condition of a change contract involves only the states of the previous ver-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:19

sion. Accordingly, our relevant-test generator considers only the previous system while
ignoring the updated system.

Some of such tests generated based on the previous system may fail to be compiled in
the context of the updated system if structural changes such as adding a new method
parameter are made to the updated system. If this happens, those broken tests must
be repaired. We, thus, provide a test repair tool in our toolset that can repair those
tests using the information in a change contract.

We now elaborate each of the three components of our dynamic checker (i.e., dynamic
change-contract checking, relevant-test generation, and test repair), and then report
the experimental results.

6.1. Change Contract Checking
To support dynamic checking of change contracts, we use our custom compiler, an ex-
tension of OpenJML [Cok 2014]. When we compile a Java source file, say C.java, its
corresponding change contract file, C.scc, is also looked up. If that change contract ex-
ists, the resulting class file C.class is instrumented with that change contract. Recall
that a change contract is satisfied if the previous and the updated versions satisfy,
respectively, the update condition and the change condition of that change contract.
Accordingly, we instrument the previous and the updated versions differently. For ex-
ample, only at the previous version we need to store in the disk the boolean value of
the update condition of a given change contract.

To align isomorphic inputs between the two versions, the two instrumented systems,
when encountered with the target method during the run, convert input states (i.e., the
states of parameters and the receiver) into XML graphs using XStream 6. Such XML
graphs can be viewed as object graphs, the data format we assumed for input isomor-
phism in Section3.2. Those two XML graphs of the previous and the updated versions
are compared to check input isomorphism. We used XMLUnit 7 for this comparison.

In addition to input states, the values of \prev expressions are also stored in the
disk while running the instrumented system of the previous version. Afterwards, the
instrumented system of the updated version uses these pre-stored values to replace
\prev expressions.

6.2. Test Generation
We extended a popular random test generator, Randoop [Pacheco and Ernst 2007], to
collect only relevant tests. Note that whether a test is relevant is decided at runtime
while Randoop is generating tests. In our initial experiment, it took too long (almost
five minutes in some instance) for Randoop to start generating relevant tests. We made
a couple of simple changes to Randoop to alleviate the problem.

First, our test generator selects the seed method with a 50% chance from specified
target methods unlike the original Randoop that selects the seed method from all legal
methods that are in the scope of the tool. As target methods, we used either (i) the
target method m of a change contract if m is public or (ii) public callers of m if m is
not public. Such target-method specification can be automated with the help of static
analysis. The reason for assigning a 50% chance to the target methods (as opposed
to assigning 100% chance) is that otherwise Randoop does not consider other method
calls that may be necessary for constituting a relevant test.

The second change we made to Randoop is to address the following problem we
found in our initial experiments. It took particularly long for Randoop to generate rel-
evant tests in a case where the update condition of a change contract is satisfied only

6http://xstream.codehaus.org/
7http://xmlunit.sourceforge.net/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://xstream.codehaus.org/
http://xmlunit.sourceforge.net/

A:20 J. Yi et al.

Table III: The subject changes of software Ant for our experiment; we extract change contracts
from these changes.

Change Bug # Contract size

Old New Core Extra

0632cd b6c725 51668 4 0
c39b90 2f95b7 50515 2 10
32e664 f0e466 49271 4 4
a84f2e 1de96b 46172 3 0
cbda11 9a0689 N/A 2 0
dfa59d de3f32 N/A 5 4
5bee9d 1532f4 N/A 3 0
1de7b3 626f28c N/A 2 0
3a1518 aef2f7 N/A 3 0
f87075 d17d1f N/A 3 0

if void-type methods are called to change the program state properly before the tar-
get method is called. For example, if a target method is m2(int i), then the unmodified
Randoop opts for generating a sequence that ends with “m2(var2);” preceded by a se-
quence of statements that ends with a statement to assign a value to variable var2,
e.g., “var2=m1(var1);”. This statement is again preceded by another statement to assign
a value to var1. Such a style of Randoop’s sequence generation tends to exclude void-
type-method calls in the middle of a sequence.

To address the above issue, we intersperse a statement sequence with random
void-type-method calls. We also transform statements like “var1.m1(); var2.m2();” into
“var2.m1(); var2.m2();” to merge the receivers. We let such a transformation take place
with an 80% chance in our experiments.

Note that generally there is no guarantee that executing a relevant test in the up-
dated system will execute the target method with isomorphic input because only the
previous version was considered when constructing relevant tests. Obviously, by con-
sidering the updated system as well, this problem can be avoided in exchange for
spending more time generating each test. We make a trade-off between the time cost
and the effectiveness of generated tests.

6.3. Test Repair
Consider a change contract whose target method m has different parameters in the
updated version as shown in the following change contract fragment: public void m(/*@
old param @*/ int i, /*@ new param @*/ boolean b). Since only the previous system is looked
up when generating relevant tests, those tests fail to be compiled in the updated sys-
tem complaining about method signature mismatches. Our test repair tool repairs such
broken tests using a change contract.

First, it is easy to deal with old parameters; they can simply be removed. Meanwhile,
new parameters should be assigned proper values in repaired tests. Such values can
be obtained from the requires clauses of change contracts. In the above example, pro-
vided that the change contract contains “requires !b;”, one can infer that the value of
the new parameter b should be false. In general, by using automated theorem provers,
automatic inference of a new parameter value should be possible, if the type of that
new parameter is primitive. For a non-primitive type parameter, it should be possi-
ble to use Randoop again and select a value that satisfies the requires clause of a given
change contract. Currently, in our tool, only the test transformation is automated while
the values for new parameters and new fields are given by a user.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:21

Table IV: The experiment results for our dynamic CCC

Change Randoop Test generation Test repair Contract checking

Old New Tfirst (s) Tfirst (s) # of tests/m # of errors # of fixes # of passes # of violations

0632cd b6c725 290 5 17 0 0 17 0
c39b90 2f95b7 0.4 0.4 1 0 0 0 0
32e66f f0e466 62 9 4 0 0 4 0
a84f2e 1de96b 32 0.9 58 0 0 6 0
cbda11 9a0689 > 300 0.2 252 0 0 0 250
dfa59d de3f32 > 300 1 79 0 0 0 79
5bee9d 1532f4 1 0.3 762 1239 1239 172 506
1de7b3 626f28c 5 1 183 263 263 0 183
3a1518 aef2f7 0.3 0.2 1209 1832 1832 1209 0
f87075 d17d1f 0.2 0.2 955 2 2 955 0

6.4. Experiments and Evaluation of Dynamic CCC
We perform our experiments for our dynamic CCC on an Intel Core i5 CPU 650
(3.2GHz × 4) processor, 4GB RAM, running Ubuntu 12.04 (32-bit) Linux. Our sub-
ject program was Ant 8, a popular tool for building Java-based systems. We chose Ant
mainly because it is one of popular real-life open-source programs, and also we had ba-
sic understanding of it. The second reason is important because if one wants to write
a change contract, the intended change must be understood beforehand.

6.4.1. Three Sources of Change Contracts. Table III shows ten version changes from
which we extract change contracts. We prepared change contracts from three different
sources. (I). First, to reflect user intentions as faithfully as possible, we transformed
bug reports to change contracts as we did in the overview section (Section 2). In fact,
the first row of Table III corresponds to the example we used in Section 2. Notice the
same bug number (i.e., 51668) shown in the third column. Meanwhile, the first and
the second columns show the first six Git snapshot IDs of the previous and the up-
dated systems, respectively. While the the first four rows of the table are collected by
transforming bug reports, they are only partially effective in testing our dynamic CCC
toolset. Although relevant tests are successfully generated in all four cases, those tests
are either passed or abandoned (isomorphic input is not found sometimes due to the
limit of our tool; see Section 6.4.4) without reporting a change contract violation. (II).
To see the efficacy of our toolset in detecting change-contract violations, we used in-
correct program changes of Ant found in our previous study [Qi et al. 2012]. These
four defective cases are shown between 5th and 8th rows of the table. (III). Lastly, to
see the efficacy of our test repair tool, we additionally collected two structural changes
(method parameter additions) from Ant. The two last rows of the table correspond to
these cases. Note that structural changes were also found in two defective cases.

6.4.2. Contract Size. In each of the ten cases, only one change contract file is used and
its size is shown under the “Contract size” column of Table III. The “Core” sub-column
shows the number of total clauses used in change contracts (e.g., the use of one requires
clause and one when ensured clause are counted as two), and the “Extra” sub-column
the number of primitive statements used in optional auxiliary model methods (see
Figure 2(c) for the example of a model method).

6.4.3. Results. To see the efficiency of our modified Randoop in generating relevant
tests, we compare the time elapsed until the first relevant test is found during test
generation (we use the notation Tfirst for this in the table) in the original and the

8http://ant.apache.org/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://ant.apache.org/

A:22 J. Yi et al.

v1

%%

change
contract

//
parsing,

type
checking

ASTs//
composing
a composed

program

CP //
generating

a verification
condition

VC // theorem
prover

sat/unsat
��

v2

::

postprocessing

��
verified/violation

Fig. 8: The workflow of our static CCC

modified Randoop’s. Table IV shows the Tfirst information in the unit of seconds (the
tenths place value is also shown when the time is less than 1 second) — the first
Tfirst column for the original Randoop and the next one for our modified Randoop. In
all cases, our modified Randoop generated the first relevant test 1–1500 times faster
than the original Randoop. In fact, in two cases, the original Randoop failed to find a
relevant test within 5 minutes.

When using Randoop, its Java method pool was mainly provided through Randoop’s
“--classlist” option; the class for which a change contract was given was used as the
main source Randoop can use to compose tests. In eight cases, we also provided one or
two idiomatic statements (e.g., creating Java’s SecurityManager or a sequence of state-
ments to execute an Ant script provided in a Bugzilla report) as additional sources
Randoop can use for test generation. We occasionally (in three cases) informed Ran-
doop about a constant to use in generating tests (e.g., a string appearing in a change
contract). We always used the same method/constant pools for the original and our
modified Randoop.

We let our test generator collect relevant tests for one minute (the number of col-
lected tests are shown under the “# of tests/m” column), and used those tests in check-
ing change contracts. In all four defective cases (i.e., the 5th to 8th rows), change con-
tract violations were successfully detected as indicated with the last column. Also, all
the syntactically broken tests (i.e., the last four rows) were successfully fixed.

6.4.4. Threats to Validity. Due to the randomness of Randoop, the numbers in 3rd-to-last
columns of Table IV can be varied each time an experiment is performed although in
our experience the gap was not significant. In addition, those numbers are also affected
by the limitations of our tool. For example, we found that XMLUnit, a tool we used to
check the isomorphism between inputs, occasionally categorized isomorphic inputs as
non-isomorphic due to the order-sensitiveness of the tool in comparing object graphs.
Lastly, our experimental results are confined to a single subject Ant, and we need to
conduct experiments with more subjects to generalize the results we obtained to other
cases.

7. STATIC CHANGE CONTRACT CHECKING (STATIC CCC)
To perform static CCC, we customize the standard approach of automated program
verification. Figure 8 shows the overall flow of our approach. Given two versions of
source code we want to compare – we denote them with v1 and v2 – and their change
contract, we compose a composed program (CP) by manipulating the ASTs (Abstract

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:23

Syntax Trees) of the given source code and change contract. A CP implements the core
logic of CCC. More specifically, it interprets both v1 and v2 and compares their output
to check whether observed behavioral changes coincide with the changes specified in a
given change contract.

Conceptually, this composed program CP is interpreted “symbolically” with symbolic
input to v1 and v2. We perform such symbolic interpretation of a CP via a theorem
prover. To achieve that, we transform a CP into a verification condition (VC), which
is a logical formula a theorem prover can understand. If a theorem prover finds that
this VC is invalid, then this means that there exists an input to the program under
consideration that leads to a change contract violation. On the contrary, if the VC is
valid, we conclude that program changes are verified against a given change contract.

In the rest of this section, we describe each step of the workflow in more detail. We
focus on the unique features of static CCC, leaving out the standard procedures such as
parsing and type checking. Throughout this section, we assume there is no structural
changes such as method name changes – we touch on structural changes at the last
part of this section.

7.1. Programming Language
For efficiency of description, we describe our static CCC on the following minimal pro-
gramming language. Note that our static CCC supports Java programs, and we later
describe Java-specific issues.

z ∈ Z x ∈ Variable E ∈ Expression Stmt ∈ Statement p ∈ Procedure-Name

E ::= z | x | Eb

Eb ::= true | false | E==E | E > E | !Eb | Eb && Eb | Eb || Eb | call p(E)

Stmt ::= x=E | return x | Stmt;Stmt | if Eb then Stmt else Stmt | while Eb do Stmt

Our minimal language is a typical imperative procedural language that can ma-
nipulate integers and booleans. Pointers are not part of our minimal language. How-
ever, our language supports a procedure call with a call expression, call p(E). Expression
call p(E) invokes procedure p with call-by-value semantics, and returns a value of the
ending return statement of p.

To further simplify discourse, we assume that (1) a procedure takes only one argu-
ment, (2) a procedure always returns a return value, (3) there are no global variables,
and (4) a procedure call is deterministic and side-effect-free. These artificial assump-
tions are only for simplicity, and they are unnecessary for supporting static CCC. In
Section 7.7, we describe how we handle the extended features of the Java programming
language such as throwing exceptions and modifying fields.

7.2. Composing a CP (Composed Program)
To relate the two versions of a program (v1 and v2) to their change contract, we com-
pose a composed program (CP) that incorporates v1 and v2 and their change contract.
We express a CP using an extended programming language that additionally has, for
example, assume/assert statements.

Figure 9(b) shows the high-level structure of a composed program (CP), given two
versions v1, v2, and their change contract (see Figure 9(a)). We assume that the body
of procedure p changes from body1 to body2. The given change contract says whenever
the input of procedure p satisfies ϕ and the output of p satisfies ψ at v1, v2’s output is
expected to satisfy ψ′.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 J. Yi et al.

1 / / the prev ious vers ion (v1)
2 i n t p (i n t x) {
3 body1
4 }

1 /∗@ changed behavior
2 @ requ i res ϕ ;
3 @ when ensured ψ ;
4 @ ensures ψ′ ;
5 @∗ /
6 i n t p (i n t x) ;

1 / / the updated vers ion (v2)
2 i n t p (i n t x) {
3 body2
4 }

(a) The two versions of procedure p and their change contract in the middle

1 /∗∗∗∗∗ Part I : assume (1) isomorphic input and (2) the requires clause ∗∗∗∗∗ /
2 assume x v1 == x v2 ; / / parameters should be isomorphic
3 boolean requires clause = JϕK ; / / s tore the value of the requires clause
4
5 /∗∗∗∗∗ Part I I : i n t e r p r e t v1 to see i f the update condi t ion i s t rue ∗∗∗∗∗ /
6 boolean update condi t ion = fa lse ; / / the update condi t ion i s i n i t i a l l y fa lse .
7 i n t resu l t v1 ; / / the var iab le to hold the return value of m at v1
8 resu l t v1 = Jbody1K ; / / i n t e r p r e t body1 and store the return value at resu l t v1
9

10 / / set the update condi t ion t rue i f the when ensured clause i s t rue .
11 boolean when ensured clause = JψK ;
12 i f (requires clause && when ensured clause) {
13 update condi t ion = t rue ;
14 }
15
16 /∗∗∗∗∗ Part I I I : i n t e r p r e t v2 to see i f there i s any change cont ract v i o l a t i o n ∗∗∗∗∗ /
17 i n t resu l t v2 ; / / the var iab le to hold the return value of m at v2
18 resu l t v2 = Jbody2K ; / / i n t e r p r e t body2 and store the return value at resu l t v2
19
20 i f (update condi t ion) {
21 / / we expect the ensures clause to be t rue
22 boolean ensures clause = Jψ′K ;
23 assert ensures clause ;
24 } else {
25 / / we expect no change
26 assert resu l t v1==resu l t v2 ;
27 }

(b) The composed program (CP) for the two versions of a procedure and their change contract
shown in (a).

Fig. 9: The high-level structure of a composed program (CP)

A CP consists of three parts. Part I establishes the basic assumption of CCC: the
inputs to v1 and v2 are isomorphic to each other. To force the procedure parameter x
to have the same value at v1 and v2, a CP has a statement “assume x v1==x v2”. We use
suffixes v1 and v2 to distinguish between the variables of different versions. At part
I, we also evaluate the requires clause ϕ of the given change contract – the common
input condition for v1 and v2 –, and store the evaluated value before the program state
changes at subsequent parts.

Afterwards, part II and part III interpret v1 and v2, respectively. In the figure, high-
level notations Jbody1K and Jbody2K denote the interpretation of body1 and body2, respec-
tively. The main task of part II is to check whether the update condition of a given
change contract holds. Recall that we expect behavioral changes between the two ver-
sions, only when the update condition holds. In our running example, the update con-
dition holds when the requires clause ϕ and the when ensured clause ψ are satisfied.

Meanwhile, part III compares the outputs of v1 and v2. If the update condition holds,
we check whether the expected new output condition – the ensures clause ψ′ in our
example – holds true, using an assert statement. Conversely, if the update condition
does not hold – that is, this is the case no behavioral change is expected –, we check
the equivalence of the return values of v1 and v2.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:25

To interpret body1 and body2 in a CP, we transform each statement in those bodies fol-
lowing the standard procedure used in automated program verification. One exception
is procedure calls, because they require significantly different handling than in con-
ventional program verification, due to the differences between change contracts and
program contracts. In the subsequent subsection, we explain those differences and de-
scribe how we handle procedure calls.

Assuming that body1 and body2 are interpreted correctly, our CP is sound in the fol-
lowing sense:

THEOREM 7.1 (SOUNDNESS OF CP). If our composed program CP is correct (i.e., no
assertion error is possible), then CCC (see Definition 3) succeeds.

PROOF. Part I of CP establishes Sin ≈ S′in. Continuously, part II establishes either
(1) Sin |= ϕ ∧ Sout |= ψ – in which case, update condition is true– or (2) its negation.
Therefore, the premises of (P1) and (P2) of CCC are established by interpreting part
I and part II. (Full-fledged premises as in Definition 3 can be obtained by using the
refined CP of Figure 14(a).) Subsequently, part III asserts two different conditions,
depending on the value of update condition. If update condition is true, which corresponds
to (P1) of CCC, then our CP asserts ψ′, which matches S′out |= ψ′ in the conclusion of
(P1). Note that S′in |= ϕ′ of (P1) also holds because in our CP, we assume ϕ and ϕ′ are
identical with each other. Meanwhile, If update condition is false, which corresponds to
(P2) of CCC, then our CP checks whether the outputs of both versions are identical
with each other, which matches the conclusion of (P2), Sout ≈ S′out.

7.3. Modular Handling of Procedure Calls via Change Contracts
When encountered with a procedure call, modern contract checkers espouse modular
checking since looking into the body of a callee can be costly. Modular checking in-
terprets the contract attached to a callee without looking into the body of a callee.
For example, if a callee p has a program contract consisting of a precondition ϕ and a
postcondition ψ, one can treat the call of p with the following simple Hoare triple:

{ϕ} call p(x) {ψ}

If precondition ϕ is satisfied before calling p, one can assume that postcondition ψ is
satisfied after calling p, assuming that the program contract of p is correct (this can
be verified separately, hence modular checking). Such modular treatment of proce-
dure calls is proven to be critical in the literature for scalable and systematic analy-
sis [Flanagan et al. 2002; Müller 2002; Leavens 1991; Berdine et al. 2006]. Following
this trend, we also support modular checking.

However, handling a procedure call with its change contract is significantly different
than in program contract. The same simple rule shown above cannot be applied when
a change contract is attached to a procedure, because a change contract does not de-
scribe an absolute input-output relationship unlike in a program contract. Instead, a
change contract describes a relative relationship between the two versions of a proce-
dure. Figure 10 describes such relationship as two axiomatic rules where p v1 and p v2
refer to the procedure p of version v1 and v2, respectively. We assume that procedure p
has a change contract shown in the middle of Figure 9(a).

Notice in the first rule (i.e., [CHANGE-RULE]) that the premise contains a Hoare
triple {ϕ} call p v1(x) {ψ}, which denotes the fact that the update condition of a given
change contract is satisfied (i.e., the requires and when ensured clauses are satis-
fied). Recall that if the update condition is satisfied, we expect the procedure to
change its behavior at the next version. Therefore, the conclusion of this first rule
is {ϕ} call p v2(y) {ψ′}. That is, ψ′ instead of ψ is assumed to be satisfied, provided that

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 J. Yi et al.

[CHANGE-RULE]
x == y {ϕ} call p v1(x) {ψ}

{ϕ} call p v2(y) {ψ′}

[PRESERVE-RULE]
x == y ¬({ϕ} call p v1(x) {ψ})

call p v1(x) == call p v2(y)

Fig. 10: The axiomatic rules to interpret modularly a procedure call expression call p(x); p v1 and
p v2 refer to the procedure p of version v1 and v2, respectively. The conclusion of [PRESERVE-
RULE] means the return values of p v1(x) and p v2(y) are the same to each other.

procedures p v1 and p v2 are called with the identical input (i.e., x==y in our simple
language). Meanwhile, the second rule ((i.e., [PRESERVE-RULE])) is for the remaining
case where the update condition of a given change contract is not assumed. In this
case, the output of the two versions of a procedure are assumed to be identical – i.e.,
in our simple language, the two return values are identical to each other, as we denote
with call p v1(x) == call p v2(y) in the conclusion of [PRESERVE-RULE]. We describe how
to handle procedure calls that have side effects in Section 7.7.2.

Overall, our two modularity rules are sound in the following sense:

THEOREM 7.2 (SOUNDNESS OF MODULARITY RULES). Our two modularity rules
are sound with respect to the CCC defined in Definition 3. That is, if the premise of
the rule is valid, then its conclusion is also valid.

PROOF. Our modularity rules are used under the assumption that the callee p sat-
isfies its change contract. If the premise of [CHANGE-RULE] is valid, then the premise
of (P1) of CCC is satisfied. Following the conclusion of (P1), the conclusion of [CHANGE-
RULE] is also valid. Recall our current assumption that ϕ′ is identical with ϕ, and ex is
false. The soundness of [PRESERVE-RULE] is proved in a similar way.

Our two modularity rules essentially describe how to interpret a call of procedure
p v2 – procedure p used in v2 –, based on how a call of procedure p v1 – p used in
v1 – is assumed to be interpreted. In [CHANGE-RULE], p v1 is assumed to satisfy the
update condition of the change contract of p, while in [PRESERVATION-RULE], p v1 is
assumed not to satisfy the update condition. While performing static CCC, we con-
servatively consider the both situations separately because, in our modular reasoning
framework where the body of p is not looked into, we cannot know whether the update
condition is satisfied or not. If p has no change contract, however, we only consider
[PRESERVATION-RULE], because no behavioral change is expected at all. Technically,
one can consider ψ of the rules as false, and as a result, only [PRESERVATION-RULE]
can be activated.

When p v1 and/or p v2 are called multiple times, it is necessary to properly align each
p v2 with its matching p v1. Consider the following two versions of a program in which
procedure p is called twice at each version.
1 / / p rev ious vers ion (v1)
2 i n t x = i n ;
3 i n t r1 = c a l l p v1 (x) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v1 (y) ;

1 / / updated vers ion (v2)
2 i n t x = −i n ;
3 i n t r1 = c a l l p v2 (x) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v2 (y) ;

In the above, variable in refers to the input of the program. Recall that CCC is per-
formed with the same input to both versions. In this example, p v1(x) in line 3 (left)
should be aligned with p v2(y) in line 5 (right), because at both sites, the procedures
are called with a parameter whose value is the same as in. For a similar reason, p v1(y)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:27

1 / / Par t I : i n t e r p r e t p (x) o f v1 (i . e . , p v1 (x)) modular ly (used at v1 and v2)
2 boolean upda te cond i t i on = f a l s e ;
3 i n t r e s u l t v 1 ;
4 assume r e s u l t v 1 == ’ (c a l l p v1 (x)) ; / / t r e a t p v1 (x) as an un in te rp re ted f u n c t i o n
5 boolean requ i res c lause = JϕK ; / / s to re the value o f the requ i res clause
6 i f (r equ i res c lause) {
7 i f (∗) { / / nonde te rm in i s t i c choice
8 / / assume the when ensured clause ; JψK uses r e s u l t v 1
9 assume JψK ;

10 / / {ϕ} c a l l p v1 (x){ψ} i s es tab l i shed
11 upda te cond i t i on = t rue ;
12 } else {
13 / / assume the negat ion o f the when ensured clause ; J¬ψK uses r e s u l t v 1
14 assume J¬ψK ;
15 }
16 }
17
18 / / Par t I I : i n t e r p r e t p (x) o f v2 (i . e . , p v2 (x)) modular ly (used at v2)
19 i f (ve rs ion == 2) { / / reached only a t v2
20 i n t r e s u l t v 2 ;
21 assume r e s u l t v 2 == ’ (c a l l p v2 (x)) ; / / t r e a t p v2 (x) as an un in te rp re ted f u n c t i o n
22 i f (upda te cond i t i on) {
23 / / assume the ensures clause ; Jψ′K uses r e s u l t v 2
24 assume Jψ′K ;
25 / / {ϕ} c a l l p v2 (x){ψ′} i s concluded
26 } else {
27 / / assume the output equivalence
28 assume r e s u l t v 1 == r e s u l t v 2 ;
29 }
30 }

Fig. 11: The CP fragment for a procedure call expression call p(x)

in line 5 (left) should be aligned with p v2(x) in line 3 (right). The general rule about
procedure call alignment is to align two procedure calls residing in two different ver-
sions, when they take the same input (in the case of our current simple language, their
parameters). This is why the above two rules – [CHANGE-RULE] and [PRESERVATION-
RULE] – have an equation x == y in their premises. The description about how we
enforce the above input-based procedure call alignment is provided in Section 7.4.

When there are aligned callees between the two versions, our modularity rules can
be applied to constrain the behavior of the two versions. If there is no p v1 call aligned
with a p v2 call, however, that p v2 call is left unconstrained, which can lead to a spu-
rious change contract violation. In practice, modularity rules are particularly handy
when reasoning about how the behavioral changes of one procedure is propagated to
the callers of the changed procedure. Even if a caller does not change its procedure
body, its behavior would change according to the changes made to its callee.

7.4. Enforcing Modular Handling of Procedure Calls
We enforce our modularity rules of Figure 10 in our CP (composed program). More
specifically, we transform each procedure call into the CP fragment shown in Figure 11.

We earlier noted that both [CHANGE-RULE] and [PRESERVATION-RULE] should be
considered for each procedure call. To check both rules, our CP fragment uses a non-
deterministic branch (see if(*) in line 7). If the then branch is chosen nondeterministi-
cally, the update condition {ϕ} call p v1(x) {ψ} is established by assume JψK9 (ϕ is already
established beforehand in line 6). Thus, at the aligned procedure call at version v2,

9JψK represents the interpretation of ψ.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 J. Yi et al.

[CHANGE-RULE] is enforced. Conversely, if the else branch is taken, [PRESERVATION-
RULE] is enforced instead.

We earlier also noted that procedure calls should be aligned semantically based on
the parameter values of procedure calls. To consider that, let us revisit the following
versions of a procedure.
1 / / p rev ious vers ion (v1)
2 i n t x = i n ;
3 i n t r1 = c a l l p v1 (x) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v1 (y) ;

1 / / updated vers ion (v2)
2 i n t x = −i n ;
3 i n t r1 = c a l l p v2 (x) ;
4 i n t y = −x ;
5 i n t r2 = c a l l p v2 (y) ;

Suppose that the change contract of procedure p has the following when ensured
clause:

when ensured \ r e s u l t > 0;

In the above, \result refers to the return value of the procedure. We explicitly repre-
sent the return value of callee p v1 with an uniterpreted function p v1(x). The quote
expression ’(call p v1(x)) in Figure 11 denotes that uniterpreted function. Suppose that
the when ensured clause of p is nondeterministically assumed to be satisfied in line 3
of v1, and dissatisfied in line 5 of v1. Then, we have the following constraint:

p v1(in) > 0 ∧ ¬(p v1(-in) > 0)

Let us move on to the updated version. At line 3, the procedure is called with param-
eter -in. Since the current constraint entails ¬(p v1(-in) > 0), [PRESERVATION-RULE]
should be applied. How do we enforce this? Our solution is that whenever interpreting
p v2, we also (modularly) interpret p v1. Note that in Figure 11, p v1 is interpreted at
part I before interpreting p v2 at part II. While interpreting p v1, only the else branch
of if(*) can be considered. If the then branch is taken, then the assumption established
there (i.e, p v1(-in) > 0) conflicts with the already-established constraint, ¬(p v1(-in) > 0).
As a result, the update condition flag is not turned on, and [PRESERVATION-RULE] is en-
forced at part II. Conversely, [CHANGE-RULE] is applied at line 5 of version v2.

THEOREM 7.3 (SOUNDNESS OF THE CP FRAGMENT FOR A PROCEDURE CALL).
The interpretation of our CP fragment for a procedure call (see Figure 11) correctly
enforces our two modularity rules (see Figure 10).

PROOF. Consider two (semantically) aligned procedure calls p v1(x) and p v2(y)
where x == y. Then, at part I of Figure 11, the following three execution paths are
possible when interpreting p v1(x).

Case1. requires clause at line 6 is true, and the then branch is taken at line 7. As a
result, variable update condition becomes true, and {ϕ} call p v1(x) {ψ} holds true.
Case2. requires clause at line 6 is true, and the else branch is taken at line 7. As a
result, variable update condition remains false, and ¬({ϕ} call p v1(x) {ψ}) holds true.
Case3. requires clause at line 6 is false. As a result, variable update condition remains
false, and ¬({ϕ} call p v1(x) {ψ}) holds true.

When p v1(y) is interpreted later on, the same execution path is taken at part I be-
cause of the reason we explained earlier. Subsequently at part II, {ϕ} call p v2(y) {ψ′}
is established only when update condition is true (also, {ϕ} call p v1(x) {ψ} holds true). In
the other cases (when ¬({ϕ} call p v1(x) {ψ})), call p v1(x) == call p v2(y) holds true.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:29

1 / / v1
2 i n t sum(i n t k) {
3 i n t s = 0 ;
4
5 / /@ set s = c a l l sum loop (k) ;
6 f o r (i n t i =1; i < k ; i ++) {
7 s = s+ i ;
8 }
9

10 r e t u r n s ;
11 }

/ / v2
i n t sum(i n t k) {

i n t s = 0 ;

/ /@ set s = c a l l sum loop (k) ;
f o r (i n t i =1; i <= k ; i ++) { / / opera tor changes

s = s+ i ;
}

r e t u r n s ;
}

(a) v1 and v2 of procedure sum.

1 /∗@ changed behavior
2 @ requ i res k >= 1;
3 @ ensures \ r e s u l t ==\prev (\ r e s u l t)+ k ;
4 @∗ /
5 i n t sum loop (i n t k) ;

/∗@ changed behavior
@ requ i res k >= 1;
@ ensures \ r e s u l t ==\prev (\ r e s u l t)+ k ;
@∗ /

i n t sum(i n t k) ;

(b) The change contracts of p and loop.

Fig. 12: An example to describe how loops can be handled modularly.

7.5. Modular Handling of Loops by Means of Procedure Calls
In the literature of program contracts (e.g., [Flanagan et al. 2002; Barnett et al. 2006b;
Ahrendt et al. 2004]), either of the following two approaches are taken to handle loops:
(1) Loop unrolling – the behavior of each loop is under-approximated by unrolling that
loop a finite number of times, or (2) a modular approach using loop invariants – each
loop is associated with its loop invariant that takes a role of the contract for that loop.

When using change contracts instead, both approaches can be taken again with ad-
justments. First, loop unrolling is straightforward. One simply needs to unroll each
loop of both versions the same number of times.

Meanwhile, substantial adjustment is necessary for the second modular approach.
Note that a loop invariant is the program contract for the corresponding loop, in a
sense that it describes the behavior of an individual loop. However, what we need is
the change contract of a loop that describes how the behavior of that loop changes
across versions. We use a different specification than a loop invariant to describe the
changes of a loop, for the same reason we use a change contract instead of a program
contract to describe the changes of a procedure.

Figure 12 shows how we specify the behavioral changes of a loop. First, Figure 12(a)
shows the two versions of procedure sum. The only difference between them is the
operators used for the loop exit conditions (i.e., i < k → i <= k). As a result, the sum of
v1 adds the numbers from 1 to k−1, while its counterpart of v2 adds the numbers from
1 to k. The value of k is given as a parameter of sum.

Notice that we annotate those loops with “//@ set s=sum loop(k);”. Apparently, this an-
notation does not express a loop invariant. It is instead an assignment statement. 10

This assignment is used by our static checker, and is not executed at runtime. The
left-hand side of this assignment is variable s whose value changes over the loop. The
right-hand side expression “call sum loop(k)” calls an auxiliary specification-purpose pro-
cedure sum loop. This procedure sum loop does not exist in the original source code.

We use these new-style specifications of loops in interpreting loops in a modular way.
Our static checker skips over loops. Instead, it uses the specifications of loops. Since

10“//@ set” is a JML notation to designate a specification-only assignment.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 J. Yi et al.

each of those specifications calls a procedure, we can reuse our modular handling of
procedure calls.

More specifically in our example, we assign a new procedure sum loop a change con-
tract that describes the behavioral differences between the loops of two versions. The
left-hand side of Figure 12(b) shows the change contract of procedure sum loop. As long
as variable k is greater than equal to one, the return value at v2 (i.e., \result) is k more
than the the return value at v1 (i.e., \prev(\result)). This matches the fact that the loop
in v2 iterates one more time than the one in v1 as long as k >= 1 holds, and as a result,
the final value of variable s – the value s has when the loop exits – is greater in v2
than in v1 by the last added value, i.e., k.

Given the above loop annotations and the change contracts of sum loop, our checker
recognizes that the final value of variable s is k more in v2 than in v1. As a result,
our checker concludes that the change contract of procedure sum – the procedure that
contains the loop – is satisfied (the change contract of sum is shown in the right-hand
side of Figure 12(b)).

In summary, we annotate a loop with a procedure call, and express behavioral
changes of a loop as a change contract of the procedure used in that loop annota-
tion. This way, we reduce the problem of modular handing of loops into the problem of
modular handling of procedures, which we already addressed.
Comparison with Loop Invariants. In our example, the loop invariant of the first
loop (the loop of v1) is s==k(k-1)/2, whereas the one of the second loop is s==k(k+1)/2.
Subtraction of k(k-1)/2 from k(k+1)/2 is indeed k, as we describe with a change contract
in Figure 12(b) (i.e., \result == \prev(\result) + k).

In this comparison, we observe again the following difference between program con-
tracts and change contracts. If one is only interested in the difference across versions,
one can directly specify that difference while omitting unnecessary details. It is usu-
ally easier to know the difference between two similar loops than the loop invariants
of those loops.

7.6. Generating a VC (Verification Condition)
A composed program CP described earlier leads to a change contract violation when
one of the assertions in CP is violated. In the CP shown in Figure 9, we use two as-
sertions, both of which appear in part III where outputs of versions v1 and v2 are
compared to each other. One assertion checks whether the output of v2 changes as ex-
pected following a given change contract. The other assertion checks whether output is
preserved across versions when no behavioral change is expected, according to a given
change contract.

If one can find an input to a CP that leads to the violation of one of the assertions in
that CP, then that input witnesses the violation of a given change contract. Otherwise,
it can be concluded that the actual program changes respect a given change contract.
It is well-known that the problem of finding such a violation-inducing input can be
reduced to the problem of satisfiability.

We use the standard approach based on a verification condition (VC) that is automat-
ically generated from a given program. A VC is a first-order logic predicate that can be
valid only when the program cannot reach an error state. In our context, the validity
of the VC implies that there is no input that leads to the violation of the assertions in
the source CP. The validity of a VC can be checked by querying the satisfiability of the
negation of that VC.

We customize OpenJML [Cok 2014] to generate a VC. Given a composed program
CP, our customized OpenJML generates a VC in the format of SMT2 [Barrett et al.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:31

∗∗∗ The prev ious vers ion
· · · / pre−bug / · · · / ZonedChronology . java : 8 :

i n t o = ge tO f f se t (i) ;
VALUE: i === 1139
VALUE: o === 1143

· · · / pre−bug / · · · / ZonedChronology . java : 9 :
r = i F i e l d . roundFloor (i +o) ;

VALUE: i +o === 2282
VALUE: r === 1143

· · · / pre−bug / · · · / ZonedChronology . java : 1 0 :
r e t u r n iTime ?(r−o) : toUTC (r) ;

VALUE: iTime === t rue
VALUE: r === 1143
VALUE: o === 1143
VALUE: \ r e s u l t === 0

· · · / pre−bug / · · · / ZonedChronology . scc : 5 :
when ensured ge tO f f se t (r)== ge tO f f se t (r−ge tO f f se t (r)) ;

VALUE: r === 1143
VALUE: ge tO f f se t (r) === 1142
VALUE: ge tO f f se t (r−ge tO f f se t (r)) === 1142
VALUE: ge tO f f se t (r)== ge tO f f se t (r−ge tO f f se t (r)) === t rue

∗∗∗ The updated vers ion
· · · / post−bug / · · · / ZonedChronology . java : 8 :

long t = toLoca l (i) ;
· · · / post−bug / · · · / ZonedChronology . java : 8 :

ensures \ r e s u l t == i + ge tO f f se t (i) ;
VALUE: i === 1139
VALUE: ge tO f f se t (i) === 1143
VALUE: \ r e s u l t === 2282

· · · / post−bug / · · · / ZonedChronology . java : 9 :
r = i F i e l d . roundFloor (t) ;

VALUE: t === 2282
VALUE: r === 1143

· · · / post−bug / · · · / ZonedChronology . java : 1 0 :
r e t u r n toUTC (r) ;

VALUE: r === 1143
VALUE: \ r e s u l t === 1

· · · / ZonedChronology . scc : 6 :
ensures \ r e s u l t ==\prev (\ r e s u l t) ;

VALUE: \ r e s u l t === 1
VALUE: \prev (\ r e s u l t) === 0
VALUE: \ r e s u l t ==\prev (\ r e s u l t) === f a l s e

Fig. 13: A counter-example path witnessing a change contract violation

2012]. Then, an automated theorem prover such as Z3 [Moura and Bjørner 2008] is
used to check the validity of a VC.

If a VC is proven to be invalid, Z3 can generate a witness for a change contract vi-
olation. Using this information, our static checker generates counter-example report.
Figure 13 shows such a counter-example report. As shown in the figure, a counter-
example report describes an execution path that leads to a change contract violation,
and the values of variables and expressions that appear in that execution path. In Fig-
ure 13, the upper part describes the previous version, and the bottom part the updated
version. This counter-example corresponds to a regression error between Joda-Time
version 1.4 and 1.5. Indeed, the last line of the figure – “\result == \prev(\result) === false”
– shows that the return values of the two versions are different from each other (Recall
that \result and \prev(\result) represent the return value of the previous and the updated
version, respectively).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 J. Yi et al.

1 /∗∗∗∗∗ Par t I I : i n t e r p r e t v1 to see i f the update c o n d i t i o n i s t r ue ∗∗∗∗∗ /
2 boolean upda te cond i t i on = f a l s e ; / / the update c o n d i t i o n i s i n i t i a l l y f a l s e .
3 i n t r e s u l t v 1 ; / / the v a r i a b l e to hold the r e t u r n value o f m at v1
4 Except ion exception v1 ; / / an except ion , i f any , thrown at v1
5 t ry {
6 r e s u l t v 1 = Jbody1K ; / / i n t e r p r e t body1 and s to re the r e t u r n value a t r e s u l t v 1
7 } f i n a l l y {
8 i f (exception v1 == n u l l) { / / i f no except ion i s thrown at v1
9 / / se t the update c o n d i t i o n t rue i f the when ensured clause i s t rue .

10 boolean when ensured clause = JψK ;
11 i f (r equ i res c lause && when ensured clause) {
12 upda te cond i t i on = t rue ;
13 }
14 } else { / / i f an except ion i s thrown at v1
15 / / se t the update c o n d i t i o n t rue i f the when signaled clause i s t rue .
16 boolean when signaled clause = JθK ; / / θ r e f e r s to the given when signaled clause .
17 i f (r equ i res c lause && when signaled clause) {
18 upda te cond i t i on = t rue ;
19 }
20 }
21 }

(a) A (simplified) refined CP of Figure 9(b); it can deal with abnormal termination of a (Java)
method; part I and III are omitted.

1 / / Par t I : i n t e r p r e t p (x) o f v1 (i . e . , p v1 (x)) modular ly (used at v1 and v2)
2 assume r e s u l t v 1 == ’ (c a l l p v1 (x)) ;
3 assume exception v1 == ’ (c a l l p v1 abnormal (x)) ;
4
5 boolean requ i res c lause = JϕK ; / / s to re the value o f the requ i res clause
6 i f (r equ i res c lause) {
7 i f (exception v1 == n u l l) { / / i f assumed t h a t an except ion i s not thrown
8 / / n o n d e t e r m i n i s t i c a l l y assume e i t h e r the when ensured clause or i t s negat ion
9 } else {

10 / / n o n d e t e r m i n i s t i c a l l y assume e i t h e r the when signaled clause or i t s negat ion
11 i f (cal ler vers ion == 1) {
12 throw exception v1 ;
13 }
14 }
15 }

(b) A (simplified) refined CP fragment of Figure 11; it can modularly reason about abnormal
termination of a callee (as well as normal termination); part II is omitted.

Fig. 14: Refinements of the basic CP shown earlier to deal with abnormal termination.

7.7. Java-specific and Miscellaneous Issues
In this section, we address Java-specific issues such as handling exceptions and fields.
We use the terms procedure and method interchangeably in this section. We also men-
tion a few miscellaneous issues worth mentioning in this section.

7.7.1. Handling Exceptions. A Java method can terminate not only normally but also
abnormally by throwing an exception. In fact, many fixes of Java programs are related
to handling such abnormal termination. For example, an exception thrown unexpect-
edly in the previous version should disappear in the updated version. As described
earlier, our change contract language can handle abnormal termination as well as nor-
mal termination.

To handle abnormal termination, we refine the basic CP shown earlier. Figure 14
shows our refinements. Our refined CP distinguishes an abnormal termination of a
procedure from a normal termination. In Figure 14(a), the exception thrown at body1 –
the body of the previous version procedure – is stored in variable exception v1, and thus,
by checking whether exception v1 is null, we can distinguish whether body1 terminates

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:33

normally or abnormally. In case body1 terminates abnormally, we check whether the
given when signaled clause is satisfied, in the same way as we check the when ensured
clause for the normal termination case. Likewise, body2 – the body of the updated ver-
sion procedure – can be handled in a similar way (we omit to describe this refined
handling of body2 in Figure 14(a)).

We also refine our modular handling of callees. As a simple example, consider a case
where a NullPointerException is unexpectedly thrown from a callee method m. In that
case, a user can assign callee m the following change contract:

/∗@ changed behavior
@ when signaled (Nu l lPo in te rExcep t ion) t r ue ; / / whenever NPE i s thrown at v1
@ s igna l s (Nu l lPo in te rExcep t ion) f a l s e ; / / v2 should not throw NPE
@∗ /
i n t m(i n t x) ;

As before, our modular checker interprets the above change contract instead of look-
ing into the body of callee m. The behavior of m at v2 changes when a NullPointerExcep-
tion is thrown from v1. However, when an exception which is not a NullPointerException
is thrown from v1 given a certain input – this makes the above when signaled clause
unsatisfiable –, the behavior of m is preserved across versions. Similarly, when m termi-
nates normally at v1 without throwing an exception, the behavior is preserved again.

Similar to how we represent a return value of a method with an uninterpreted
function, we also represent a (potential) exception of a method with another un-
interpreted function. Notice in Figure 14(b) that we use an uninterpreted function
p v1 abnormal(val) to represent an exception thrown from procedure p of version v1 when
value val is passed to p as its parameter. Similar to normal termination, this uninter-
preted function is further constrained by a given when signaled clause. For example,
in case the when signaled clause of our running example is assumed to be true, the
type of p v1 abnormal(val) is constrained to be NullPointerException.

7.7.2. Callees that Read/Write Fields. Java methods are not necessarily side-effect free.
They can update the values of fields. Consider the following change contract involving
a field value change:

/∗@ changed behavior
@ when ensured t h i s . name == n u l l ; / / whenever name has n u l l a t the method e x i t i n v1 ,
@ ensures t h i s . name . equals (” ”) ; / / name should have an empty s t r i n g ” ” ins tead i n v2 .
@∗ /
i n t p (i n t x) ;

The above change contract describes the change of field name. As we represent
the return values of the two versions of a procedure p with uninterpreted functions
p v1(x) and p v2(x), we represent the field values via another uninterpreted functions,
p v1 field value(x) and p v2 field value(x). These two new uninterpreted functions can be
constrained by the given when ensured clause and ensures clause, respectively. In the
above example, our static checker can maintain a constraint, p v1 field value(x)==null, to
consider the case field name has null at the method exit in v1.

Recall that to align callees called in different versions, we compare the input of
callees. We earlier showed how we align two versions of callees called with the same
parameter values. In the presence of fields, we extend our alignment mechanism to
accommodate the fields read by a callee. More specifically, we extend uninterpreted
functions such as p v1(x) into p v1(this v1, x, f) where f refers to a field read by method p
and this v1 the implicit receiver of a method call.

The fields that are read/written by a callee can be specified with a JML’s accessi-
ble/assignable clause, and our prototype tool consults accessible/assignable clauses when
constructing uninterpreted functions. Automatic inference of those clauses is also pos-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 J. Yi et al.

sible through side-effect analysis [Sălcianu and Rinard 2005], while our prototype tool
currently does not contain it.

7.7.3. Field Updates. Consider the following two simple versions of a Java program.
/ / p rev ious vers ion (v1)
x . f = x . f + 1 ;

/ / updated vers ion (v2)
x . f = x . f + 2 ;

The change between the above two versions can be described with:
ensures x . f == \prev (x . f) + 1 ;

However, special care is necessary to ensure the above simple change contract. The
essence of the problem is that we compose two versions of a program into a single
program CP (Composed Program), and interprets v1 and v2 sequentially. As a result,
the field updates that occurs at v1 can affect the field values at v2, unless special care
is taken.

We address this problem by customizing the conventional VC (Verification Condi-
tion) generation method. In a VC, a field is represented with an array. For example,
a field access expression, x.f, is encoded as f [x] where f is an array corresponding to
field f, and x is an variable corresponding to x. What about x.f = x.f+1 of the above exam-
ple? The standard way to encode a field update is to update the array representing the
field. When encountered with a field update x.f = x.f+1, the original array f is updated
into f ′ as follows:

f ′[r] =

{
f [r] + 1 if r equals x,
f [r] otherwise

We customize the above standard encoding in two ways. First, to enforce input equiv-
alence at the entries of versions v1 and v2, we use the same array f at both versions
to access the initial value of field f. Second, we confine the scope of an array update
only to the version where an update takes place. In other words, even after array f is
updated into f ′ at version v1, this array update is not propagated into version v2. By
updating field arrays separately in each version this way, we prevent the update of a
field at one version interfering with the interpretation of the other version.

7.7.4. Handling \prev Expressions. To check the change contract of the above example,
we also need to be able to handle a \prev expression. For this, we make use of our
customized VC described above. We obtain the value of \prev(x.f) through the last field
array for f defined at version v1.

7.7.5. Structural Changes. Even in the presence of signature changes across versions –
e.g., class/method names may change and method parameters may be added/deleted
–, CCC can still be performed. One additional task in this case is to match a method
at v1 with a method at v2 (this is trivial when there is no structural changes). We
perform this match based on the information available in change contracts. Recall that
one can describe in a change contract how a class/method name changes, and which
parameters/fields are added or removed across versions.

7.7.6. Multiple Change Cases. A change contract can express multiple behavioral
changes of a method. For example, the change contract in Figure 15(a) describes that
the behavior of the updated version changes differently depending on how the previ-
ous version method terminates. The first case corresponds to the situation where the
previous version method (v1) terminates abnormally, throwing an NullPointerException,
as described in line 3. If this is the case, line 4 dictates that a NullPointerException should
not be thrown in the updated version (v2) when the same input is given. What if v1 ter-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:35

1 /∗@ changed behavior
2 @ / / case 1. abnormal t e rm ina t i on case
3 @ when signaled (Nu l lPo in te rExcep t ion) t r ue ; / / whenever NPE i s thrown at v1
4 @ signa l s (Nu l lPo in te rExcep t ion) f a l s e ; / / v2 should not throw NPE
5 @ also
6 @ / / case 2. normal t e rm ina t i on case
7 @ when ensured t h i s . name == n u l l ; / / whenever name has n u l l a t v1 ,
8 @ ensures t h i s . name . equals (” ”) ; / / i t should be an empty s t r i n g ” ” ins tead at v2 .
9 @∗ /

10 i n t m(i n t x) ;

(a) Multiple cases of changes are separated by keyword “also”

1 boolean /∗@ model @∗ / ex ; / / an unconstra ined s p e c i f i c a t i o n−only f i e l d
2
3 /∗@ changed behavior
4 @ when ensured ! ex && t h i s . name == n u l l ;
5 @ when signaled (Nu l lPo in te rExcep t ion) ex ;
6 @ ensures ! ex ==> t h i s . name . equals (” ”) ;
7 @ signa l s (Nu l lPo in te rExcep t ion) ex ==> f a l s e ;
8 @∗ /
9 i n t m(i n t x) ;

(b) An alternative change contract expressing the same multiple behavioral changes

Fig. 15: Change contracts expressing multiple behavioral changes

minates normally, without throwing an exception? Depending on which input is given
to v1, v1 may terminate either normally or abnormally. The second case of the change
contract corresponds to the normal termination case where field name has null as its
value, as described in line 7. If this is the case, line 8 dictates that name should be an
empty string instead at the end of v2.

Our checker supports such multiple change cases. To handle multiple change cases,
we refine the CP shown in this section in a way that the information about which case
is under consideration is maintained in a CP. Such extension is straightforward, and
we omit to describe details.

As a side note, the same multiple behavioral changes described in the above can also
be expressed with a single case, as shown in Figure 15(b). In the figure, ex is an uncon-
strained specification-only variable (field) that is supposed to indicate whether an ex-
ception is thrown. Only when ex is randomly chosen to be true, the given when signaled
and signals clauses are activated. Similarly, the when ensured and ensures clauses are
activated only when ex is chosen to be false.

7.8. Experience with Our Static Checker
In this section, we report our experience of using our checker we implemented on top
of OpenJML [Cok 2014]. We applied our checker to 18 change instances extracted
from various versions of Joda-Time 11, an open-source date / time library for Java.
Table V shows the overall results we obtained after running our checker on our system
– Ubuntu 12.04 (32-bit) Linux; Intel Core i5 CPU 650 (3.2GHz × 4) processor; 4GB
RAM.

In Table V, we group the 18 change instances into 4 different groups depending
on what our checker is used for. We used our checker not only for verifying pro-
gram changes (usage V), but also for localizing the buggy method (usage L), detect-

11http://www.joda.org/joda-time/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

http://www.joda.org/joda-time/

A:36 J. Yi et al.

Table V: Experimental results; pre-fix/post-fix indicates the previous/updated revision provided
through the iBUGS dataset; in the first column, V stands for Verification, L Localization, R
Regression, and C Classification; each usage is detailed in each subsection.

Usage Bug # Revision Diff Contract Size (lines) Kind Time (s) Verified
Previous Updated - + CC (lines/mthds) JML B S Total Z3

V

1788282

pre-fix post-fix

98 82 3/1 2 4 8 7.7 1.4 (18%) 4

1877843 62 81 3/1 23 4 8 8.1 1.9 (23%) 4

2111763 9 14 2/1 3 4 8 6.7 7.5 (4%) 4

2487417 25 28 2/1 5 4 8 6.2 4.7 (7%) 4

2783325 (iBUGS) 2 14 (1+1)/1 0 4 4 6.2 2.6 (4%) 4

2903029 78 45 2/2 4 4 8
6.5 1.0 (16%) 4
6.5 0.6 (10%) 8

L 2025928
pre-fix post-fix

8 6 22/7 6 4 8

7.6 1.0 (14%) 4
8.5 1.5 (18%) 4
7.0 1.4 (21%) 4

(iBUGS) 8.5 1.7 (20%) 4
9.5 3.2 (35%) 4
8.0 0.9 (11%) 4

R 1887104 7755b c41ef 95 222 2/1 10 4 8
8.4 1.0 (12%) 8

7755b a478f 1417 3524 6.7 0.9 (15%) 4

C – 7b179
7b179′

2038 962 (8+3)/3 4 4 4
7.9 2.3 (30%) 8

7b179′′ 7.1 1.9 (28%) 8
1c524 6.7 1.8 (27%) 4

ing /debugging regression errors (usage R), and classifying the causes for test failures
(usage C). The Usage column of Table V shows these four different usages.

We collected the majority of change instances from the Joda-Time dataset of
iBUGS [Dallmeier and Zimmermann 2007]. This dataset is organized by bug num-
bers (shown in the second column of the table); each bug number is linked to its bug
report and the source code of the pre-fix and post-fix revisions. We wrote change con-
tracts based on the provided bug reports. We also described in change contracts struc-
tural changes if they occur. We provided our static checker with these change contracts
along with a pair of the source code for pre-fix and post-fix revisions available through
the iBUGS dataset.

We also collected some change instances directly from the Joda-Time repository 12

to experiment with change instances that are not available in the iBUGS dataset. For
these non-iBUGS cases, we mark, in the Previous and Updated columns, the first five
digits of Git snapshot IDs of the previous and updated revision, respectively.

The size of lexical changes made across revisions is shown in the Diff column, where
the number of deleted (-) and inserted (+) lines are marked. Meanwhile, the size (i.e.,
the number of lines) of contracts is shown in the Contracts column, where the size
of change contracts (CC) is distinguished from the size of program contracts (JML)
used to remove false alarms; we did not count the header line “changed behavior”,
and the library of JML contracts, e.g., the program contract for Object.equals. In the
majority of cases, it was enough to write a change contract for one method. However, we
occasionally wrote change contracts for more than one method. To inform the average
size of a change contract per method, we mark in the CC column (the total number

12https://github.com/JodaOrg/joda-time.git

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

https://github.com/JodaOrg/joda-time.git

Software Change Contracts A:37

of lines of change contracts) / (the number of methods assigned a change contract). For
example, 22/7 means that 22 lines were used for the change contracts of 7 methods. On
average, we wrote 2.7 lines of change contracts for each method. Sometimes, we also
described structural changes in change contracts (e.g., when refactoring was involved).
To distinguish the portion of a change contract used to describe structural changes
from the rest, we mark e.g., (8+3)/3, which means that in 3 methods, 8 and 3 lines were
used to describe behavioral and structural changes, respectively. The Kind column
more explicitly shows the kind of changes – among behavioral (B) and structural (S)
changes – that were described in change contracts.

To finish each CCC session, it took on average 7.4 seconds (s), as shown in the Total
column. A theorem prover (i.e., Z3 [Moura and Bjørner 2008]) consumed on average
27% (i.e. 2s) at the last phase of checking (the Z3 column shows its breakdown) –
more time was consumed to parse and type-check source code. Lastly, the Verified
column shows the result of checking: either verified (4) or failed (8). In the following
subsections, we explain how to interpret those results in relation to four usages of our
checker.

7.8.1. Verifying Intended Program Changes. The most basic usage of our checker is to ver-
ify that a program is changed as intended (i.e., as specified in change contracts). Our
checker successfully verified program changes except in one case, where Z3 failed to
handle a ∀-quantified expression used in a contract. As a result, our checker issued a
false alarm. In other words, our checker is incomplete. In fact, it also inherits the un-
soundness of its underlying platform, OpenJML; some errors – e.g., overflow of arith-
metic expressions – can be missing. The sources of unsoundness and incompleteness
of OpenJML can be found in [Cok 2014]. However, this soundness/completeness issue
is orthogonal to the problem of CCC. In general, the techniques to improve sound-
ness/completeness in checking program contracts can also benefit CCC.

7.8.2. Localizing the Buggy Method. The method that manifests an error is not necessar-
ily buggy. Rather, it is often one of its callees (or a callee of a callee) that is buggy. For
example, one bug report of Joda-Time (bug 2025928) reports that method print does not
behave as expected (i.e., nothing is output when “0” should be output). However, in
fact, it turns out that print itself is not buggy. Instead, another method getFieldValue is
found to be buggy – print eventually calls getFieldValue before it returns, and the wrong
return value of getFieldValue propagates to print, where an error is manifested. In such a
case where the method that manifests an error (e.g., print) is not buggy itself, one first
needs to localize the buggy method (e.g., getFieldValue).

We found that our checker can help localize the buggy method. We first started with
writing a change contract of print, reflecting our intention to fix the manifested error.
Our initial trial of verification failed. By looking at the generated counterexample, we
were able to find that one of the callees (i.e., printTo), should change its behavior to
satisfy the given change contract. Once we assigned a proper change contract to this
callee, CCC succeeded. That is, the change contract of print was successfully verified,
assuming that the change contract of printTo is correct. To see if the assumption we
made is true, we tried to verify printTo. Again, our initial verification trial failed, and
we repeated to look for suspicious method calls in a counterexample to assign proper
change contracts to them. We repeated this procedure until we reached the buggy
getFieldValue method whose change contract was successfully verified, without having
to assign change contracts to callees. The L section of the table shows the experimental
data obtained through this repeated procedure, with the top row corresponding to print
(where an error is manifested), the next row to a callee of print, and so on, and finally
the bottom row to getFieldValue, the buggy method.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 J. Yi et al.

/∗@ changed behavior
@ when ensured true ; / / passes in the previous version
@ signals (Assert ionFai ledError e) fa lse ; / / no f a i l u r e
@∗ /
publ ic void testXXX () ; / / tes t method

Fig. 16: The predefined change contract for a test method

7.8.3. Detecting/Debugging Regression Errors. We earlier showed in Figure 13 a counter-
example that witnesses a regression error. That regression error takes place between
revision 7755b and c41ef of Joda-Time where code changes are made to fix a problem
about DST (Daylight Saving Time) cutover. We write a change contract corresponding
to that intention - fixing a bug about DST cutover – and feed that change contract to
our static checker along with the two revisions 7755b and c41ef.

Our checker was able to report a regression error along with a counter-example of
Figure 13. Notice the verification failure mark (8) at the end of the first row of the R
section of Table V. Meanwhile, the next row shows the result when we replace a buggy-
fix version c41ef with a correct-fix version a478f. In this case, our checker successfully
verifies program changes against a given change contract.

7.8.4. Classifying the Cause for a Test Failure. As mentioned in Section 1, a test failure
can be caused by the error in product code or test code. Classifying this cause for a test
failure is on its own a research problem [Hao et al. 2013]. We found that our checker
can help distinguish the cause for a test failure. The idea is to assign a change contract
to a test. The change contract of Figure 16 expresses the intention that the test should
pass in the updated version whenever it passes in the previous version. This change
contract can be predefined and applied to any test method.

We applied this change contract to a test in Joda-Time revision 7b179 (i.e., testCon-
structor long DurationType1). This test in its body calls several methods. Among them, two
methods change both their names and behaviors at the next revision (1c524). We as-
signed these two methods change contracts describing behavior / structural changes.
Given these change contracts along with a pair of source code of the previous (7b179)
and updated revision (1c524), our checker successfully completed verification (see the
last row of the table) – indicating that a test was correctly modified.

Meanwhile, to check the efficacy of our checker in detecting the obsoleteness of a
test, we prepared two variations of the previous-version (7b179) test; they served as
obsolete tests in our experiment. In the first variation (7b179′), we changed the names
of the callees correctly – assuming that renaming is trivial –, but did not update the
oracles affected by the behavioral changes of the product code. In the second variation
(7b179′′), we additionally updated the oracle affected by the first callee, but did not do
the same for the second callee. Our checker successfully detected the obsoleteness of
these two tests. As expected, it failed at verification (see the first two rows of the C
section of the table) – indicating that a test began to fail in the updated version, given
changes of the methods under testing. Also, a generated counterexample shows which
oracle fails.

What if a checker issues no warning while a test fails when actually run? This can
happen because modular checking interprets method calls based on their contracts, not
on their actual bodies. For example, the actual behavior of a callee under testing may
be different from the intended behavior specified in its change contract. The conformity
of a callee to its change contract should be checked separately. If this is the case, it is
evident that a callee does not conform to its intended changes. Thus, one can conclude
that a test fails because of an error in the production code.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:39

7.8.5. Discussion. As mentioned, we often used not only change contracts but also pro-
gram contracts to remove false alarms. We found that the size of these program con-
tracts varies depending on a change instance, whereas the size of change contracts
is more or less the same (i.e., 2.7 lines/method). However, in many cases, those pro-
gram contracts tended to be simple and similar to each other. For example, we used
the common program contract, “signals (UnsupportedOperationException) false”, for 14 out
of 23 program contracts used at bug 1877843 (for the purpose of removing false alarms,
specifying partial behaviors is sufficient).

Our experience is restricted to a single subject (Joda-Time), and more experiments
are desirable to validate some of our observations such as an average size of change
contracts.

8. RELATED WORK
8.1. Design by Contract
Design by contract (DbC) [Meyer 1992] influenced the design of many program-level
specification languages such as Eiffel [Meyer 1997], JML [Burdy et al. 2005] and
Spec# [Barnett et al. 2004]. In DbC, each method has its contract typically in the
form of pre and post conditions. And the contract in DbC (i.e., program contract)
roughly means the following two things. First, a method has to guarantee its own post-
condition whenever its pre-condition is satisfied. Second, when a method is called, it is
the caller’s responsibility to guarantee the callee’s pre-condition.

Such a concept of a contract is significantly different from the concept of a change
contract. A change contract captures the intended behavioral/structural changes be-
tween two program versions rather than the behavioral contracts within a single pro-
gram. Unlike a program contract that makes an input-output relation, a change con-
tract makes an output-output relation. In other words, an updated-version method has
to guarantee its post-condition ψ′, whenever its previous-version counterpart satisfies
its own post-condition ψ. Meanwhile, when a method m is called in the updated ver-
sion, the caller does not have to guarantee ψ, i.e., the post-condition of m’s previous
version (Contrast this with a program contract where the caller should guarantee the
callee’s pre-condition). Instead, if ψ does not hold, then m should produce the same
output across versions.

Program contracts are typically checked either by extended static checking
(ESC) [Flanagan et al. 2002; Cok and Kiniry 2004; Barnett et al. 2006a] or runtime
assertion checking (RAC) [Cheon and Leavens 2002]. ESC checks program contracts at
compile time. It first generates verification conditions from program code and accom-
panying program contracts. Afterwards, these verification conditions are discharged
via automated theorem provers. Meanwhile, RAC checks program contracts at run
time. It translates program contracts into executable assertions and weave those as-
sertions into the program to obtain an instrumented program. Then, by running that
instrumented program, violation of program contracts can be reported if one of those
assertions fails during the run.

Both RAC and ESC have been explored in this article. Our dynamic checker corre-
sponds to RAC, and static checker to ESC. Our both checkers are significantly different
from those for program contracts, due to the facts that (1) the semantics of a change
contract is different from the semantics of a program contract, and (2) two versions of
a program are analyzed at the same time.

8.2. Regression Testing and Debugging
Regression errors constitute an important class of errors. Traditionally, it has been
interesting to select and prioritize tests from a large test suite to expose regression

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40 J. Yi et al.

1 / / v1 (previous buggy version)
2 in t m(in t a[] , in t i , in t s){
3 i f (i <= MAX) { / / buggy
4 assert Valid (i) ;
5 return a[i]+s;
6 } else return s;
7 }

/ / v2 (updated fixed version)
in t m(in t a[] , in t i , in t s){

i f (i <MAX) { / / fixed : use< instead of <=
assert Valid (i) ;
return a[i]+s;
} else return s;
}

(a) An example for DAC (differential assertion checking)

/ / i f there is no assertion violation in v1,
when ensured true ;
/ / there should be no assertion violation in v2 as well .
signals (AssertionError) false ;

/ / i f there is an assertion violation in v1,
when signaled (AssertionError) true ;
/ / that assertion violation should be fixed in v2.
signals (AssertionError) false ;

(b) The change contract equivalent to DAC (left), and another (predefined) change contract more
faithful to the intention of the change (right)

Fig. 17: Comparing DAC to CCC

errors efficiently without having to test the entire test suite [Rothermel et al. 2001;
Chen et al. 1994; Gupta et al. 1992]. More recently, Jin et al. proposed a method
that, given program changes, automatically generates tests that stress those program
changes [Jin et al. 2010]. These tests are executed on both the previous and the up-
dated systems, and afterwards all the observed behavioral differences between the
two versions are analyzed and presented to the user. Without a specification about
intended changes, however, users have to manually go through all the reported dif-
ferences across program versions to validate those differences. We envision that, by
combining change contracts and regression testing, those manual efforts can be signif-
icantly reduced.

Even if a regression error is found, one has to understand why that regression error
took place before fixing it. In this regard, there have been efforts to debug regression
errors [Qi et al. 2009; Zeller 1999]. The lack of formal specifications, however, has
hampered extending those research results beyond debugging regression errors. We
believe that change contracts can enable debugging other types of errors related to
software evolution, such as incorrect implementation of a new feature and incorrect
bug fixes.

8.3. Regression Verification and Relative Verification
Regression verification (RV) [Godlin and Strichman 2009; Godlin and Strichman 2013]
and other similar approaches [Böhme et al. 2013; Korel and Al-Yami 1998] compare
two versions of a program in search of regression errors. In essence, it is equivalence
between two programs that is checked there (regression is a counterexample for equiv-
alence). Meanwhile, our checker assures not only intended equivalence (against the
implicit assumption of behavioral preservation), but also intended differences (against
the explicit specification of change contracts). In this sense, CCC (Change Contract
Checking) subsumes RV.

Differential assertion checking (DAC) [Lahiri et al. 2013] is a technique that checks
whether v2 (the updated version) is as safe as v1 (the previous version). In other words,
it checks whether v2 is safe relative to its previous version v1. Unlike in RV, behavioral
preservation does not have to be guaranteed across versions. Even if v2 behaves differ-
ently from v1, relative safeness can be proved if no assertion violation is found in v2.
DAC proves that by checking whether all the assertions appearing in v2 are satisfied,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:41

provided that all the assertions appearing in v1 are assumed to be satisfied. Consider
Figure 17(a) as an example paraphrased from [Lahiri et al. 2013]. While version v1 is
buggy because an illegal array access a[MAX] is possible there, this problem is fixed at
version v2. DAC succeeds in this example because: (1) DAC assumes that v1 passes all
the instances of “assert Valid(i)” where i = 1, 2, ...,MAX. (2) the same assertion appearing
v2 must also be true in all instances considering that i can be 1, 2, ...,MAX-1.

DAC can be viewed as one instance of CCC. The change contract shown in the left-
hand side of Figure 17(b) amounts to the intention of DAC; if no assertion is violated at
v1 (i.e., v1 terminates normally as specified as “when ensured true”), then AssertionError,
which is thrown when the assertion of an assert statement is violated, should not be
thrown at v2 as described in the signals clause. However, CCC can perform more than
DAC by using a different change contract. For example, one can use the change con-
tract in the right-hand side of Figure 17(b) to be more faithful to the intention of the
change; i.e., fixing a bug manifested by AssertionError. When this alternative contract is
applied, our checker reports a warning, reflecting the fact that v2 is not a complete fix;
when using a[i], the length of array a should be guaranteed to be greater than i.

In summary, CCC subsumes RV and DAC. For methods that do not have change
contracts, CCC performs RV. We can also easily change this default action to DAC by
enforcing the predefined change contract for DAC when no change contract is given.
Furthermore, the use of a few lines of change contract pushes the checking scope of
CCC beyond its default action – to the extent that arbitrary program changes can be
verified. This makes an interesting parallel to model checking [Clarke et al. 1999];
while model checking can by default check the absence of deadlock, other properties
can also be checked when a few lines of specifications – e.g., temporal logic formulas –
are provided.

8.4. Specifying/Checking Changes
Hawblitzel et al. [2013] also independently introduced specifications for program
changes named mutual summaries – which can be viewed as change contracts for
Boogie [Barnett et al. 2006b] programs. Boogie, as a low-level programming language,
is significantly simpler than Java. Accordingly, mutual summaries are simpler than
change contracts – e.g., no explicit consideration of abnormal termination and no im-
plicit assumption of behavioral preservation. This simplicity of programming/contract
languages makes the problem of contract checking simpler. Instead, potential impact
on mainstream programmers is less immediate. On the contrary, our change contract
language is designed to be used by Java programmers with little additional effort.
For better user-friendliness, our change contract language has constructs such as
when ensured and when signaled that are absent in mutual summaries. As a result, a
programmer can write “when ensured ψ; ensures ψ′;” instead of having to write “ensures
\prev(ψ) ==> ψ′” – the latter is akin to a mutual summary. While both change contracts
express the same behavioral changes, the former more clearly shows the expected dif-
ferences between two versions – i.e., when ψ is ensured in the previous version, a
programmer needs to ensure a new behavior ψ′ in the updated version.

Hawblitzel et al. [2013] also presented modular static checking of mutual sum-
maries. To support modular checking, they directly manipulate the verification condi-
tion by adding to it an axiom whose essence can be paraphrased as: ∀x̄ : f v1(x̄)∧f v2(x̄)⇒
f v1 v2(x̄). That is, whenever f v1(x̄) called in v1 is aligned with f v2(x̄) called in v2, their
mutual summary (i.e., f v1 v2(x̄)) is enforced. Note that we do not use quantifiers to sup-
port modular checking. While it is too early to tell which approach is advantageous, it
is well known that the use of quantifiers often causes the incomplete verification result
– i.e., the verification condition can be neither confirmed nor refuted. In addition, the
use of quantifiers tends to increase the time cost. As de Moura (the key developer of

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:42 J. Yi et al.

Z3) said, “as a rule of thumb, we should avoid quantifiers whenever possible.” [Moura
2012]

Differential assertion checking (DAC) [Lahiri et al. 2013] described in Section 8.3
uses mutual summaries under the hood to specify relative safeness. DAC is performed
in the form of modular static checking. Unlike in [Hawblitzel et al. 2013], however, a
forall quantifier is not used to align callees of two different versions. Instead, static
checking is performed with each of all possible combinations of paris between a call
expression of procedure p v1 (a procedure p at version v1) and a call expression of p v2
(p at version v2). As a result, if p is called twice at both v1 and v2, as in the example
shown in Section 7.4, then 2 × 2 different combinations are included in the composed
program. On the contrary, we align callees using uninterpreted functions, without ex-
plicitly enumerating all possible combinations – those combinations are tried implic-
itly inside a theorem prover if necessary. Note that modern theorem provers such as
Z3 are generally quite efficient in dealing with combinations when quantifiers are not
involved.

8.5. Specifying/Checking Intended Changes vs. Summarizing Actual Code Changes
While change contracts capture intended behavioral/structural changes across pro-
gram versions, there has been work to capture actual changes of program behaviors
(i.e., semantic differences) given two program versions. Jackson and Ladd [1994] sug-
gested a tool that summarizes the comparison of the two sets of dependence relations
between the input and output of a C program procedure of the previous version and
the updated version, respectively. For example, if variable x depends on only itself in
the previous version whereas it depends on another variable y in the updated ver-
sion, one can guess that program behavior around x would be different between those
two versions. More recently, Person et al. [2008] exploited symbolic execution to com-
pare program behaviors of the two versions, and as a result could provide more accu-
rate functional input-output relations of each version than mere dependence relations.
SymDiff [Lahiri et al. 2012] can also do the same, but under the hood, it generates
verification conditions and passes them to an SMT solver.

We believe that comparing these two kinds of changes, i.e., (i) actual program
changes provided by the aforementioned tools and (ii) intended program changes pro-
vided through change contracts can help with debugging evolving programs.

9. CONCLUSIONS
In this article, we have followed the thesis that program changes can be easily ex-
pressed through change contracts. Writing such change contracts is often easier and
also more intuitive than writing program contracts. This is not only because one can
directly focus on changes, but also because one can conveniently express output-output
relationship between program versions with a change contract. Our user study also in-
dicates positively that change contracts can be easily learned and used by entry-level
developers.

We have also presented two kinds of checkers for change contracts – a dynamic
checker and a static checker. We have shown the efficacy of our dynamic checker in
generating tests that manifest the violation of change contracts. Also, the efficacy of
our static checker in verifying program changes against change contracts has been
shown. Apart from verification, we also successfully used our static checker for various
software engineering tasks such as localizing the buggy method, detecting/debugging
a regression error, and classifying the cause for a test failure to blame either product
code or test code.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Software Change Contracts A:43

ACKNOWLEDGMENTS

We thank David Cok (supported by NSF grants ACI-1314674, CNS1228930) for helping us use Open-
JML and jSMTLIB. This work is partially supported by Singapore Ministry of Education research grant
MOE2010-T2-2-073 and T1 251RES1314.

REFERENCES
Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner Hähnle, Wolfram

Menzel, Wojciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt. 2004. The KeY
tool. Software and Systems Modeling 4, 1 (April 2004), 32–54.

Mike Barnett, B. Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2006a. Boogie: A Modu-
lar Reusable Verifier for Object-Oriented Programs. In Proceedings of the 4th International Symposium
on Formal Methods for Components and Objects. 364–387.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2006b. Boogie:
A Modular Reusable Verifier for Object-Oriented Programs. In Proceedings of Symposium on Formal
Methods for Components and Objects. 364–387.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. 2004. The Spec# Programming System: An
Overview. In Proceedings of the 2004 Workshop on Construction and Analysis of Safe, Secure, and Inter-
operable Smart Devices. 49–69.

Clark Barrett, Aaron Stump, and Cesare Tinelli. 2012. The SMT-LIB Standard Version 2.0. Technical Re-
port. SMT-LIB.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2006. Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In FMCO. 115–137.

Marcel Böhme, Bruno C. d. S. Oliveira, and Abhik Roychoudhury. 2013. Partition-based regression verifica-
tion. In ICSE. 302–311.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rus-
tan M. Leino, and Erik Poll. 2005. An overview of JML tools and applications. STTT 7, 3 (2005), 212–
232.

Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A system for selective regression
testing. In ICSE. 211–220.

Yoonsik Cheon and Gary T. Leavens. 2002. A runtime assertion checker for the Java Modeling Language
(JML). In Proceedings of the 2002 International Conference on Software Engineering Research and Prac-
tice. 322–328.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking. The MIT Press.
David R. Cok. 2014. OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse. In Pro-

ceedings 1st Workshop on Formal Integrated Development Environment. 79–92.
David R. Cok and Joseph Kiniry. 2004. ESC/Java2: Uniting ESC/Java and JML. In Proceedings of the 2004

International Workshop on Construction and Analysis of Safe, Secure, and Interoperable Smart Devices.
108–128.

Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of Bug Localization Benchmarks from His-
tory. In ASE. 433–436.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
2002. Extended static checking for Java. In PLDI. 234–245.

Benny Godlin and Ofer Strichman. 2009. Regression verification. In DAC. 466–471.
Benny Godlin and Ofer Strichman. 2013. Regression verification: proving the equivalence of similar pro-

grams. Software Testing, Verification and Reliability 23, 3 (2013), 241–258.
Rajiv Gupta, Mary Jean, Mary Jean Harrold, and Mary Lou Soffa. 1992. An approach to regression testing

using slicing. In Proceedings of the 1992 Conference on Software Maintenance. 299–308.
Dan Hao, Tian Lan, Hongyu Zhang, Chao Guo, and Lu Zhang. 2013. Is This a Bug or an Obsolete Test?. In

ECOOP. 602–628.
Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebêlo. 2013. Towards Modularly

Comparing Programs Using Automated Theorem Provers. In CADE. 282–299.
D. Jackson and D.A. Ladd. 1994. Semantic diff: A tool for summarizing the effects of modifications. In Pro-

ceedings of the ’94 International Conference on Software Maintenance. 243–252.
Wei Jin, Alessandro Orso, and Tao Xie. 2010. Automated behavioral regression testing. In Proceedings of

2010 International Conference on Software Testing, Verification and Validation. 137–146.
Bogdan Korel and Ali M. Al-Yami. 1998. Automated regression test generation. In ISSTA. 143–152.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:44 J. Yi et al.

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. SymDiff: A Language-
Agnostic Semantic Diff Tool for Imperative Programs. In CAV. 712–717.

Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel. 2013. Differential asser-
tion checking. In ESEC/FSE. 345–355.

Gary T. Leavens. 1991. Modular Specification and Verification of Object-Oriented Programs. IEEE Software
8, 4 (1991), 72–80.

Bertrand Meyer. 1992. Applying “Design by Contract”. IEEE Computer 25 (1992), 40–51. Issue 10.
Bertrand Meyer. 1997. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall.
Leonardo de Moura. 2012. Answer for the question titled “Quantifier Vs Non-Quantifier”.

http://stackoverflow.com/questions/10011478/quantifier-vs-non-quantifier. (2012).
Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In TACAS. 337–340.
Peter Müller. 2002. Modular Specification and Verification of Object-Oriented Programs. Lecture Notes in

Computer Science, Vol. 2262. Springer.
Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random testing for Java. In OOP-

SLA. 815–816.
David Lorge Parnas. 2011. Precise documentation: The key to better software. In The Future of Software

Engineering. Springer, 125–148.
Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina Pǎsǎreanu. 2008. Differential symbolic

execution. In FSE. 226–237.
Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. 2009. DARWIN: An Approach for De-

bugging Evolving Programs. In ESEC-FSE. 33–42.
Dawei Qi, Jooyong Yi, and Abhik Roychoudhury. 2012. Software Change Contracts. In FSE. 22:1–22:4.
Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 2001. Prioritizing test cases

for regression testing. IEEE Transactions on Software Engineering 27, 10 (2001), 929–948.
Alexandru Sălcianu and Martin Rinard. 2005. Purity and Side Effect Analysis for Java Programs. In VMCAI.

199–215.
Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoudhury. 2013. Expressing and checking intended

changes via software change contracts. In ISSTA. 1–11.
Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?. In ESEC/FSE. 253–267.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

	Introduction
	Overview
	Change Contract Language
	Syntax
	Semantics
	Execution Model
	\prev Expression
	Update/Change Condition and Inference Rule
	Default Predicates for Omitted Clauses

	Discussion

	User Study
	Demographics
	Survey Questionnaire
	Survey Administration
	Survey Results
	Threats to Validity

	Formulation of Change contract checking (CCC)
	Dynamic Change Contract Checking (Dynamic CCC)
	Change Contract Checking
	Test Generation
	Test Repair
	Experiments and Evaluation of Dynamic CCC
	Three Sources of Change Contracts
	Contract Size
	Results
	Threats to Validity

	Static Change Contract Checking (Static CCC)
	Programming Language
	Composing a CP (Composed Program)
	Modular Handling of Procedure Calls via Change Contracts
	Enforcing Modular Handling of Procedure Calls
	Modular Handling of Loops by Means of Procedure Calls
	Generating a VC (Verification Condition)
	Java-specific and Miscellaneous Issues
	Handling Exceptions
	Callees that Read/Write Fields
	Field Updates
	Handling \prev Expressions
	Structural Changes
	Multiple Change Cases

	Experience with Our Static Checker
	Verifying Intended Program Changes
	Localizing the Buggy Method
	Detecting / Debugging Regression Errors
	Classifying the Cause for a Test Failure
	Discussion

	Related Work
	Design by Contract
	Regression Testing and Debugging
	Regression Verification and Relative Verification
	Specifying/Checking Changes
	Specifying/Checking Intended Changes vs. Summarizing Actual Code Changes

	Conclusions

