
T H E N A T I O N A L U N I V E R S I T Y
o f S I N G A P O R E

S c h o o l of C o m p u t i n g
Computing 1, 13 Computing Drive, Singapore 117417

TRE3/12

Software Change Contracts

Dawei Qi, Jooyong Yi and Abhik Roychoudhury

March 2012

T e c h n i c a l R e p o r t

Foreword

This technical report contains a research paper, development or
tutorial article, which has been submitted for publication in a journal
or for consideration by the commissioning organization. The report
represents the ideas of its author, and should not be taken as the
official views of the School or the University. Any discussion of the
content of the report should be sent to the author, at the address
shown on the cover.

OOI Beng Chin
Dean of School

Software Change Contracts

Dawei Qi, Jooyong Yi, Abhik Roychoudhury
School of Computing, National University of Singapore

{dawei,jooyong,abhik}@comp.nus.edu.sg

ABSTRACT
Incorrect program changes including regression bugs, incorrect bug-
fixes, incorrect feature updates are pervasive in software. These
incorrect program changes affect software quality and are difficult
to detect/correct. In this paper, we propose the notion of “change
contracts" to avoid incorrect program changes. Change contracts
formally specify the intended effect of program changes. Incorrect
program changes are detected when they are checked with respect
to the change contracts. We design a change contract language for
Java programs and a dynamic checking system for our change con-
tract language. General guidelines as well as concrete examples are
given to illustrate the usage of our change contracts. We conduct
an user study to check the expressiveness of our change contract
language and find that the language is expressive enough to capture
a wide variety of real-life changes in three large software projects
(Ant, JMeter, log4j). Finally, our contract checking system detects
several real-life incorrect changes in these three software projects
via runtime checking of the change contracts.

1. INTRODUCTION
“There is nothing permanent except change" - this well-known

adage is true for software too. Programmers make changes to in-
troduce new features as required by the evolving software require-
ments. Programmers also make changes to fix bugs. However, the
changes to programs are usually imperfect. The new features might
not be completely realized by the changes. At the same time, exist-
ing features might get broken by careless changes, which are com-
monly known as “software regressions”. In fact, a recent study [25]
shows that 14.8%~24.4% of bug fixes in operating systems code are
incorrect.

Regression errors constitute an important class of incorrect pro-
gram changes. Regression bugs are generated when programmers
accidentally break existing program functionality (say in trying to
introduce new functionality for example). Past research has mainly
focused on regression testing [6, 11, 23] and regression debugging
[22,26] to eliminate regression errors. Although the goal of regres-
sion testing is to detect regression errors, it can hardly distinguish
a normal feature update from regression bugs without a proper ora-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

cle. Going through the reported “errors" one by one and differenti-
ating unintended differences in program behavior (across versions)
from intended program changes is annoying. If programmers can
specify the intended change via a formal specification, such issues
can be resolved. We present such a mechanism in this paper.

In this paper, we propose the notion of “change contracts” to deal
with incorrect program changes. Change contracts specify the in-
tended semantic change corresponding to changes in program code.
When the actual program changes break what is documented in the
change contract, an inconsistency can be detected. If the change
contract is properly written, such an inconsistency points out incor-
rect program changes. Therefore, with the help of change contracts,
an incorrect program change can be detected and corrected - prior
to checking in such incorrect changes into the code repository.

The concept of change contract is inspired by Design by Contract
programming [3, 16]. In Design by Contract programming, pro-
grams are checked against contracts to enable early error detection.
Contracts typically appear in the form of pre- and post-condition of
methods, as well as invariant properties whose correctness is pre-
served by the method execution. However, this early error detection
comes at the cost of manually written contracts. This is probably
the main reason for the lack of adoption of “design by contract" :
programmers are reluctant to write non-trivial specifications.

Compared to program contracts which are recommended in de-
sign by contract programming, our change contracts are easier to
write. In fact, to detect regression errors, no change contract is
required at all; we can simply have a default contract which says
that the program output after the change should be same as the out-
put before the change. As our experiments show, checking such
default change contracts (which do not involve any effort from the
programmer) can help reveal many subtle program errors.

The fact that change contracts are easier to write than program
contracts comes from the intrinsic nature of change contracts. Pro-
gram contracts are often specified as pre- and post-conditions of
methods. Thus, they specify what a program method does, about
which the programmer may not always have deep understanding
(unfortunately!) in real-life. In contrast, a change contract specifies
how the functionality of a program method is changed with respect
to the old program. The common behavior between two programs,
which is usually dominant, does not need to be specified in the
change contract. Besides, we allow users to write change contracts
at multiple levels of precision. The more precise a change con-
tract is, the more checking is done by our system. The users can
choose the level of precision at will. Finally, we note that there
exists a large body of code today which completely lacks any for-
mal specification. The concept of change contracts also provides a
pragmatic way of adding specifications of intended behavior on top
of this huge code base lacking formal specifications.

1

1 void checkIncludePatterns(){
2 . . .
3 File f=findFile(b,c,false);
4 if(f!=null && f.exists()){
5 . . .
6 }

(a) Current version, the bug is fixed

←

void checkIncludePatterns(){
. . .
File f=findFile(b,c,false);
if(f.exists()){
. . .
}

(b) Buggy version

←

void checkIncludePatterns(){
. . .
File f=findFileCaseInsensitive(b,c);
if(f.exists()){
. . .

}

(c) Original version

Figure 1: Reverse chronological change history; the leftmost one is the latest one

The contributions of this paper can be summarized as follows.
First, we propose the notion of change contracts to prevent incor-
rect program changes. Secondly, we design a change contract lan-
guage for Java programs. Our language extends the Java Model-
ing Language or JML with specific keywords to relate behaviors of
program versions. We present the formal semantics of our change
contract language. We also show via user studies how various kinds
of real life program changes can be specified using our change con-
tract language. Real-life changes from three large Java open source
programs (Ant, JMeter, log4j) were investigated in the user stud-
ies. In total, users wrote 52 change contracts in our user study. We
did not meet any change that cannot be expressed using our change
contract language. Last but not the least, we design and implement
a system for dynamically checking change contracts by building on
top of the Run-time Assertion Checker of JML. We found 10 real-
life incorrect changes from the same programs (Ant, JMeter, log4j)
and wrote change contracts for them. All 10 incorrect changes are
detected by the Run-time Assertion Checker via the change con-
tracts.

2. OVERVIEW
In this section, we show a series of code changes made on a file

of a well-known build automation software, Apache Ant [1], and
explain how our change contract language and its supporting tool
can help with the development and maintenance of programs that
change over time.

Figure 1 shows in reverse chronological order how a method
checkIncludePatterns in file DirectoryScanner.java of Ant was
changed over time. The program in Figure 1a is a bug-fixed version
of the middle program in Figure 1b. The problem was that null
could be assigned to variable f at line 3 when method findFile

failed to find file name c in the base directory b in a case-insensitive
way as indicated by the last boolean value. As a result, an NPE
(i.e., NullPointerException) was raised at line 4 before. While the
fix for NPE is usually as simple as adding a conditional guard as
shown in the figure, NPE is pervasive in most Java programs as one
of the most common causes of errors. Interestingly, this particular
bug was reported by developer Curt while the fix was made by an-
other developer Stefan. Indeed, it is common to see that problems
missed by the original developer or a maintainer are found by other
developers or even end-users.

In fact, the above NPE is a regression error resulted from a pre-
vious change; the same problem did not occur until that previous
change was made by yet another developer Matthew. The right-
most version in Figure 1c shows what the same method looked like
before an NPE-causing change had been made. Notice that differ-
ent method findFileCaseInsensitive was called then instead
of findFile. In Figure 1c, method findFile is used only in a
case-sensitive way, and a case-insensitive search is performed by
findFileCaseInsensitive. A regression-error-causing change

1 //@ changed_behavior
2 //@ when_signaled (NullPointerException)
3 //@ findFile(b,c,false)==null;
4 //@ signals (NullPointerException) false;
5 void checkIncludePatterns() {
6 . . .
7 File f=findFile(b,c,false);
8 if(f!=null && f.exists()){
9 . . .

10 }

Figure 2: An annotated change contract for the latest change

was made when these two methods were merged into a new method
findFile where its last boolean parameter is used to choose a
case-sensitivity mode.

Now notice that the conditional guard at line 4 in Figure 1c does
not yet check whether f is null. Nevertheless, an NPE did not oc-
cur in the original version in Figure 1c. The reason of this dif-
ference is that when there is no file name c in base directory b,
the merged method findFile in Figure 1b returns null whereas
findFileCaseInsensitive in the original version as shown in
Figure 1c creates a fresh dummy object of type File.1 Apparently,
it seems that the developer mistakenly assumed that the merged
method findFile, when its boolean parameter is set false to in-
dicate case-insensitivity, always behaves in the same way as the re-
moved findFileCaseInsensitive did in the previous version.
It is, however, difficult to put the entire blame on the developer
because without proper tool support most developers are likely to
make similar mistakes.

We now show how change contract can help deal with program
changes described above in various ways. A change contract is es-
sentially a formal specification about intended program changes.
Like other formal specifications, change contracts can be used as
unambiguous documentation. For example, Curt who found the
aforementioned unexpected NPE could have reported the NPE prob-
lem with the change contract shown in Figure 2. The given annota-
tion describes the following two things. (i) First, line 2~3 describes
that there exists a certain input that caused the previous version to
signal an NPE; when that NPE was signaled, the boolean expres-
sion at the end of the when_ensured clause indicates that the NPE
is caused by the null return value from the findFile method. (ii)
Second, line 4 describes that the current version cannot signal an
NPE as indicated by signals (NullPointerException) false
when given the same input as signaled the NPE before. Once such a
change contract is written, Stefan, who is in charge of maintaining
this part of code, should be able to understand the NPE problem.

Our change contract is not only unambiguously understandable
but also automatically checkable. With the help of a supporting tool

1It is created by new File(b,c).

2

provided by us, developers can check whether their code changes
indeed match intended changes expressed as change contracts. Thus,
change contracts function as test oracles for intended changes.

Our supporting tool automatically checks not only whether in-
tended changes are made to the updated version, but also whether
unintended changes are mistakenly made. Note that unintended
changes cause regression errors. When an input does not match
any given change contracts, previous method and current method
are assumed to behave exactly the same for that input by default.
Exploiting our by-default-equal assumption, the regression error
of our running example could have been detected earlier. When
merging two methods that find a file, the changes made to method
checkIncludePatterns are merely auxiliary, and its behavior
was supposed to remain the same. This is the case where our
by-default-equal assumption can be exploited to the extreme; no
change contract needs to be provided and any behavioral changes
are reported as unexpected changes. Our tool can detect such un-
expected changes caused by programmer’s mistakes.

3. CHANGE CONTRACT LANGUAGE
To express intended program changes, we extend a subset of

JML (Java Modeling Language) [5], a de facto lingua franca when
giving checkable formal specifications to Java programs. In fact,
one of our goals in designing a change contract language is to be
as close to an existing popular specification language (in this case,
JML) as possible to lower the learning barrier, and our syntactic ex-
tension to JML is very limited as will be shown shortly. However,
JML or any other specification languages, to the best of our knowl-
edge, is not expressive enough to express program changes over
two different versions, and this requires us to propose non-trivial
semantic extensions.

Using the suggested specification language, we want to be able
to specify behavioral changes that occur between two consecutive
versions of a method, i.e., the previous version and the current ver-
sion. In this paper, we are concerned only about behavioral changes
and do not consider most syntactic changes such as modifying the
name of a parameter.2 We, however, allow to add or remove formal
parameters of a method, fields, and methods. Lastly, as in JML,
we are concerned only with sequential Java programs, and do not
consider multi-threading.

Following the convention of JML, one can write a change con-
tract above a method as an annotation. A change contract should be
either between /*@ and @*/ or after a line comment marker //@.
The method following such a change-contract annotation should be
a currently-working version. Such a currently-working version at
hand is compared to the previous version in a change contract.

3.1 Syntax
We show in Figure 3 a simplified version of our change contract

language. The keywords in bold are extensions to standard JML.
The semantics of these keywords are explained in details later in
this section. We also explain the semantics of some basic JML
keywords that are essential to understanding change contract lan-
guage.

We add eight additional keywords to JML. With those new key-
words, our language can declare one kind of type specification (by
induces) and method specification (by changed_behavior), and
use three additional kinds of clauses (by changes, when_ensured,
and when_signaled) and three more kinds of specification-only
expressions (by \prev, \latest, and \deprecated).

2Renaming can be dealt with easily with additional renaming in-
formation.

type-spec ::= induces pred-or-everything; method-spec ::= spec-case-seq

spec-case-seq ::= spec-case [also spec-case]∗

spec-case ::= changed_behavior clause-seq

clause-seq ::= [clause]∗

clause ::= requires pred; | ensures pred; | signals pred;

| when_ensured pred; | when_signaled (reference-type [ident]) pred;

| changes method-name(param-type);

exp ::= ... | quantified-exp | \result | \old(exp) | \prev(exp)

| \fresh(exp) | \latest(exp) | \deprecated(exp) | \latest(method-name)

Figure 3: Change contract language as an extension to a JML sub-
set; standard regular expression notation ∗ is used.

Keyword changed_behavior declares a method specification
case for a change contract.3 In fact, it is the only kind of specifica-
tion cases we allow. Although JML allows more kinds of specifi-
cation cases such as normal-behavior and exceptional-behavior, we
do not consider them in this paper. While we believe it should be
possible to use our change contracts and ordinary JML contracts at
the same time for the same program, we assume in our examples
that only change contracts are available in a given program.

Two keywords when_ensured and when_signaled construct
clauses that express the post-conditions of the previous version.
The former expresses the post-condition at normal method termina-
tion (i.e., termination without throwing an exception), and the latter
the post-condition at abnormal method termination (i.e., termina-
tion with an exception thrown). Meanwhile, post-conditions of the
current version are expressed with JML’s ensures and signals

clauses. In the case of when_signaled and signals clauses, the
type of an expected exception is additionally specified.

The grammar in Figure 3 also shows other kinds of clauses we
use for change contract. Those clauses except for changes are
borrowed from JML, and we use them with their original meaning.

The one remaining changes clause is to clarify which method of
the previous version is supposed to be changed following a change
contract. Such a method subject to specified changes is usually
the same as the method annotated with a change contract in the
current version. In such cases, a changes clause can be omit-
ted. Due to Java’s method overloading, however, it can be unclear
which one among several methods sharing the same name is sub-
ject to specified changes. Recall that we assume the existence of
missing parameters across the previous and current versions. A
changes clause comes to the rescue when such ambiguities arise.
This clause is also useful when the method name changes across
versions.

Keyword \prev constructs a \prev expression that accesses the
previous-version value from a current-version state; \prev(E) used
at a post-condition of the current version (i.e., used in a ensures

or signals clause) returns the value of E evaluated at the post-
state of the previous version reached when the same input is used.
Meanwhile, we disallow the use of \prev(E) in a pre-condition
(i.e., inside a requires clause) because we assume that input is the
same between the two consecutive versions, and thus \prev(E) is
always equal to E at a pre-state.4 Readers familiar with JML could
find the similarity between \prev and \old of JML. While \old

3Although JML distinguishes heavyweight and lightweight styles
of a method specification, we deal with only the heavyweight style
in this paper for the sake of brevity of presentation.
4Recall that even if there are differences between formal parame-
ters, those differences are offset by inserting missing parameters.

3

makes a value of a pre-state available at a post-state, \prev makes
a value of the previous version available at the current version.

Keywords \latest and \deprecated construct boolean-type
expressions that are evaluated to true when a given field or formal
parameter or a method is newly added or removed, respectively, at
the current version. We restrict their uses to ensures and signals
clauses only because of a risk of making the verification condition
vacuously true if they appear in other clauses.5

Notice that \latest expressions are polymorphically used. Both
\latest(f) for field f and \latest(m) for method m are le-
gal expressions. The latter should be annotated only over method
whose name is m and not over other methods. The method name
of m is supposed to be fresh in a sense that the addition of m does
not lead to method overloading. Therefore, false is returned out of
\latest(m) if there already exists another method with the same
name. Meanwhile, we do not use \deprecated for method names.

There are various specification-only expressions in JML includ-
ing quantified expressions, and we inherit them in our language.

Lastly, keyword induces constructs the only kind of type (i.e.,
class) specification we allow. This is simply a syntactic sugar and
can be subsumed by method specifications; annotating a class with
induces ψ′ is equivalent to annotating every method in that class
with ensures ψ′; and signals (Exception) ψ′;. When fields
are added to or removed from a class, this type specification relieves
a user from the burden of specifying each method with \latest or
\deprecated expressions. In particular, when a new class is in-
troduced, it is handy to write induces \everything to implicitly
specify the post-conditions of each method with \latest expres-
sions for that method and all fields of the class.

3.2 Non-interference semantics
Different from normal program contract, an expression in change

contract may involve program states in two different executions.
When we compare the behavior difference between two versions of
a method, we assume that the two methods are executed from the
same program state with the same inputs. At the same time, the ex-
ecution of the two methods are not supposed to be affected by each
other. To address this issue, we provide non-interference semantics.
The key difference of our non-interference semantics from the stan-
dard one is that our semantics maintains the separate state for each
version of a method. Although references can be shared between
these two states, changes on the state of one version does not affect
the state of the other version. Such a non-interference property is
captured in the non-interference semantic rule shown in Figure 4 in
a big-step style; ⇓e and ⇓c represent reduction relations of big-step
operational semantics for expressions and commands, respectively.
In the figure, c1 and c2 are supposed to be commands of each ver-
sion, respectively, and c1 || c2 denotes the parallel execution of c1
and c2. We assume the parallel execution model for the sake of
mere convenience, and the same idea could have been applied to
the sequential model. Also recall that we are concerned in this pa-
per with only sequential Java programs, and the introduced parallel
execution is not intended to interfere with Java’s multi-threading.

Now that we have the non-interference rule, we can safely use
the following starting configuration: 〈c1 || c2, (σ, h, σ, h)〉, where c1
and c2 denotes the method bodies of the previous and the current
versions, respectively. Notice that we give the same store σ and
heap h to both versions to enforce the same-input assumption.

With this non-interference rule and other standard semantic rules
defined for expressions and commands, one should be able to re-
duce the starting configuration 〈c1 || c2, (σ, h, σ, h)〉 to the final state
5Consider requires \latest(x); where \latest(x) becomes
false.

c ∈ Cmd v ∈ Value
def
= Location ∪ . . .

σ ∈ Store
def
= Variable

fin→ Value

h ∈ Heap
def
= Location

fin→ (Field
fin→ Value)

〈c1, (σ1, h1)〉 ⇓c (σ′
1, h

′
1) 〈c2, (σ2, h2)〉 ⇓c (σ′

2, h
′
2)

〈c1 || c2, (σ1, h1, σ2, h2)〉 ⇓c (σ′
1, h

′
1, σ

′
2, h

′
2)

Figure 4: Non-interference rule; ⇓e and ⇓c represent reduction re-
lations of big-step operational semantics for expressions and com-
mands, respectively.

〈c1 || c2, (σ, h, σ, h)〉 ⇓c (σ′
1, h

′
1, σ

′
2, h

′
2) 〈E, (σ′

1, h
′
1)〉 ⇓e v

ensures ` 〈\prev(E), σ′
1, h

′
1, σ

′
2, h

′
2〉 ⇓e v

〈c1 || c2, (σ, h, σ, h)〉 ⇓c (σ′
1, h

′
1, σ

′
2, h

′
2) 〈E, (σ, h)〉 ⇓e v

ensures ` 〈\old(E), (σ′
1, h

′
1, σ

′
2, h

′
2)〉 ⇓e v

〈c1 || c2, (σ, h, σ, h)〉 ⇓c (σ′
1, h

′
1, σ

′
2, h

′
2)

〈E, (σ′
1, h

′
1)〉 ⇓e ⊥ 〈E, (σ′

2, h
′
2)〉 ⇓e v

ensures ` 〈\latest(E), (σ′
1, h

′
1, σ

′
2, h

′
2)〉 ⇓e true

〈c1 || c2, (σ, h, σ, h)〉 ⇓c (σ′
1, h

′
1, σ

′
2, h

′
2)

〈E, (σ′
1, h

′
1)〉 ⇓e v 〈E, (σ′

2, h
′
2)〉 ⇓e ⊥

ensures ` 〈\deprecated(E), (σ′
1, h

′
1, σ

′
2, h

′
2)〉 ⇓e true

Figure 5: Semantics of \prev(E) in the context of a ensures

clause as compared to the one for \old(E), and semantics of
\latest(E) and \deprecated(E); c1 and c2 represent the
method bodies of the previous and the current versions, respec-
tively.

(σ′
1, h

′
1, σ

′
2, h

′
2); i.e., 〈c1 || c2, (σ, h, σ, h)〉 ⇓c (σ′

1, h
′
1, σ

′
2, h

′
2). Such

a final state provides us with separate post-states for each of two
versions; (σ′

1, h
′
1) and (σ′

2, h
′
2) amount to the post-state of the pre-

vious and the current version, respectively.

3.3 Semantics of \prev
As mentioned earlier, \prev expressions can be used in a change

contract to access the post-state value of the previous version. They
can appear in ensures or signals clauses. In Figure 5, we pro-
vide the semantics of \prev expressions. Semantics of \old ex-
pressions is also provided in the figure for the sake of comparison.

Suppose that expression \prev(E) appears in an ensures clause.
Then, evaluating \prev(E) should be the same as evaluating its
sub-expression E in the post-state (σ′

1, h
′
1) of the previous version.

We use the notation “ensures `” in the above semantics to des-
ignate the clause context in which the expression at the right-hand
side of ` is evaluated. In the case of the signals-clause context,
the semantics of \prev expressions remains the same except for
the context change from ensures to signals. In other contexts
of clauses, the use of a \prev expression is disallowed.

Notice the semantic difference between \prev and \old expres-
sions. Evaluating \old(E) is the same as evaluating E in the com-
mon pre-state (σ, h).

As a concrete example, consider the following code changes;
the previous version increases field f by one whereas the current
version by two.

void m() { f++; } → void m() { f+=2; }

Suppose that before method m is called, field f has value 0. Then,

4

Clause Type Default Clause
requires requires true;

when_ensured when_ensured true;

when_signaled when_signaled (Exception) true;

ensures ensures true;

signals signals (Exception) true;

Table 1: Default clauses of a change contract

the previous and the current version respectively change the value
of f to 1 and 2. According to our semantics, the value of \prev(f)
is 1 whereas the value of \old(f) is 0.

3.4 Semantics of \latest and \deprecated
We mentioned that \latest expressions can be used to indicate

that fields, formal parameters of a method, or methods are added to
the current version. To enforce the same-input assumption, missing
parameters and fields of one version are copied from the other ver-
sion. After such copying is done, we initialize the copies of param-
eters and fields with a special value ⊥ right before a given method
starts. For example, if a field f is added to the current version, then
we assume that an assignment command f=⊥; is executed right be-
fore a member method of the previous version is called. Similarly,
an artificial formal parameter is assumed to be assigned ⊥ before
its corresponding method body is executed. Then, we can define
the semantics of \latest(E) as in Figure 5. It is considered true
only if its sub-expression E is evaluated into a non-⊥ value only at
the post-state of the current version, (σ′

2, h
′
2).

The semantics of \deprecated(E) is symmetrical as shown in
Figure 5. It is considered true only if E is evaluated into a non-⊥
value only at the post-state of the previous version, (σ′

1, h
′
1). As

said earlier, \latest and \deprecated expressions can appear in
ensures and signals clauses.

A \latest expression can also take as its input a method name.
In such a case, true is returned only if only the current version has
a method of a specified name. The previous version is assumed
to have the corresponding side-effect-free method with the same
signature whose parameters are assigned⊥ and whose return value,
if any, is ⊥.

3.5 Semantics of a change-specification case
We now present the semantics of a change-specification case

consisting of method-specification clauses. Note that not all clauses
need to be present in a change-specification case. When a certain
type of clause is omitted, a default clause is used. For example,
if there is no requires clause in a given specification case, we
insert the default clause requires true;. The default clause of
each clause type is shown in Table 1. We treat the empty contract
separately as will be explained in Section 3.7.

For the sake of explanation, consider the following complete
change-specification case for method m. In the below, greek let-
ters mean predicates, and two subscripted T s represent exception
types (i.e., subtypes of java.lang.Exception). Lastly, variables
x1 and x2 are scoped to θ and θ′, respectively.

/*@ changed_behavior
@ requires ϕ;
@ when_ensured ψ;
@ when_signaled (T1 x1) θ;
@ ensures ψ′;
@ signals (T2 x2) θ′;
@*/

{¬(ϕ ∧ (wp(m1, ψ) ∨ ŵp(m1, T, θ)))}m1{ρ}
{¬(ϕ ∧ (wp(m1, ψ) ∨ ŵp(m1, T, θ)))}m2{ρ}

Figure 6: By-default-equal rule; wp and ŵp represent the weakest
precondition transformers for normal and abnormal terminations,
respectively, and m1 and m2 represent the previous and the current
version of method m.

The above specification should be read as follows: when started
with a pre-state satisfying ϕ, if the previous version ofm satisfies ψ
at its normal termination and θ at its abnormal termination raising
an exception of type T1, respectively, then the current version of m
should satisfy ψ′ at its normal termination and θ′ at its abnormal
termination raising an exception of type T2, respectively.

The following verification condition provides the meaning of the
given change specification more formally:

ϕ ∧ (wp(m1, ψ) ∨ ŵp(m1, T1, θ))⇒ wp(m2, ψ
′) ∨ ŵp(m2, T2, θ

′)

In the above, the previous and the current versions of method m

are distinguished as m1 and m2. We use two weakest-precondition
notations wp(m,ψ) for method m and its normal post-condition ψ,
and ŵp(m,T, θ) for m’s abnormal post-condition θ and exception
type T . The latter makes it sure that a raised exception is of type
T before asserting θ; i.e., ŵp(m,T, θ) ⇔ ((x instanceof T) ⇒
wp(m, θ)), where x refers to a raised exception. For the sake of
simplicity, we assume methods m1 and m2 have only two exit
points, one for normal termination and the other one for abnor-
mal termination. As usual, all free variables appearing in the ver-
ification condition are assumed to be universally quantified. We
disallow the verification condition to be vacuously true by report-
ing an alarm when the left-hand side of the verification condition,
ϕ ∧ (wp(m1, ψ) ∨ ŵp(m1, T1, θ)), becomes false.

For the convenience of users, multiple instances of the same type
clause are allowed to be included in a change specification case.
When multiple instances of the same type clause exist, we reduce
them to its semantically equivalent form with a single clause in a
standard way by basically conjoining predicates of the same type.
For example, writing requires ϕ1;requires ϕ2;when_ensured

ψ1;when_ensured ψ2;ensures ψ′
1;ensures ψ

′
2; is equivalent

to writing requires ϕ1 ∧ ϕ2;when_ensured ψ1 ∧ ψ2;ensures

ψ′
1 ∧ ψ′

2;. Similarly, signals (T1 x1) θ′
1;signals (T2 x2) θ′

2;

is equivalent to a single clause signals (Exception x) ((x

instanceof T1) ⇒ θ′
1)∧((x instanceof T2)⇒ θ′

2);. Mul-
tiple instances of when_signaled are reduced in the same way.

3.6 By-default-equal rule
Typically, users make only small changes across versions (appli-

cable for a subset of inputs, i.e., the change domain), and change
contracts explicitly express when those changes occur. For the rest
of the inputs, it is reasonable to expect that the program behavior
(and outputs) remain unchanged across versions. More specifically,
if a method is given an input that is not included in the input do-
main for changes specified as a contract, then the post-condition of
the previous and the current versions should be equal. Such “by-
default equality" of behavior is captured in the inference rule of
Figure 6. This Hoare-style rule forces the post-condition ρ satisfied
at the end of m1 (i.e., the previous version) to be satisfied at the
end of m2 (i.e., the current version) as well unless input given to
the method is included in the change domain specified by a change
contract. The degree of equality is decided by what kinds of ρ are
used by a supporting tool. Currently, our tool checks the equality
between the return values of two versions of a given method, and
also between the values of fields of the enclosing class.

5

Set m(String s){
if(/*complex predicate on s*/)
return new HashSet();
else
return new TreeSet();

}

(a) Previous program

Set m(String s){
if(/*complex predicate on s*/)
return new HashSet();
else
return new TreeSet().add(s);

}

(b) Current program

/*@changed_behavior
@ when_ensured \result

instanceof TreeSet;
@ ensures \result.size() ==

\prev(\result).size() + 1;
@*/

(c) Change contract

Figure 7: Using previous result in pre-condition

3.7 Empty contract
We earlier mentioned that regression errors can be checked by

giving an empty contract. This is because when an empty contract
is given, it is reasonable to assume that no behavioral change should
be observed after code changes. This is the case where our by-
default-equal assumption is exploited to the extreme.6

3.8 Well-formed change contracts
Contracts should be well-formed to have a valid meaning. In

addition to being grammatically correct, they also have to follow
well-formedness rules provided in the below.

(i) As explained earlier, we disallow verification conditions to
be vacuously true; change contracts reduced to verification condi-
tions that are vacuously true are not considered well-formed. Thus,
specifying requires b;when_ensured !b; ensures b; for a
final boolean field b is ill-formed.

(ii) Expressions used in a change contract, including method
calls, must be side-effect and exception free. Also, their execution
must terminate.

(iii) It is illegal to use \prev(exp).f or \old(exp).f for field
f ; a field access cannot be made to a \prev or \old expression.
This is to avoid confusion about the value of f when the value of
exp.f changes across versions or during method execution. More
concretely, consider the following method that switches a boolean
value of f.

//@ ensures x.f != \old(x).f;
void m(final T x) {x.f = !x.f;}

JML reduces a given expression \old(x).f to v.f where v rep-
resents a value of \old(x). This v is the same as the value of final
variable x, and thus at the given post-state (i.e., ensures) context,
v.f is reduced to the same value as x.f, resulting in making the
predicate of the given ensures clause false. Note that the value
of \old(x.f) is, in contrast, the same as !x.f at the post-state.
Meanwhile, other specification languages such as Jass [4] interpret
\old(x).f as \old(x.f). In fact, JML manual [15] recommends
to use \old(x.f) in the situation like the above. Similar confu-
sion could arise from \prev expressions if field accesses to them
were allowed.

(iv) By the same token, we do not allow method-call expressions
such as \prev(exp).m(args) or \old(exp).m(args) for method m
and arguments args.

(v) In addition, \prev and \old expressions can be used as
method arguments only if their types are primitive such as int or
immutable such as String. Therefore, in the above example code,
it is illegal to use an expression such as m(\old(x)). If the above
expression was allowed, confusion would arise as to which value
of field f should be used inside the method body of m.

6Technically, ψ and θ of Figure 6 are assumed to be false.

4. WRITING CHANGE CONTRACTS
In this section, we focus on common styles of change contracts,

as well as some example contracts for given example programs.
Change contracts mainly concern two aspects of program behav-

ior – (i) under what conditions the program behavior changes (the
pre-condition for the change), (ii) exactly how the program behav-
ior changes (the post-condition after the change). We now discuss
how these aspects of program changes are covered by writing of
change contracts.

Specifying pre-conditions.
Usually when a method is changed, the behavior change is lim-

ited to only a sub-domain of its input space. We provide two ways
to specify the input domains that contains behavior changes.

We can of course directly restrain the input domain of a method
using its inputs (including parameters and fields). The keyword
requires in JML serves this purpose. A change contract spec-
ification with requires E where E is an boolean expression on
the method inputs means that we only focus on inputs that satisfy
E. As mentioned in Section 3.5, a change contract comes equipped
with pre-condition captured by a requires clause.

Apart from directly using requires, we can also specify the
change contract pre-condition indirectly via when_ensured and
when_signaled (the post-condition of the previous method).
Suppose we have when_ensured E1 in a change contract. It
is equivalent to specifying requires E2 where E2 is the weak-
est pre-condition computed on the previous method with respect
to E1. Thus, when_ensured and when_signaled can indi-
rectly specify method pre-conditions. Figure 7 shows an example
in which using when_ensured is more convenient (than using
a requires clause) for specifying the pre-condition. In this ex-
ample, if requires clause is used to specify the pre-condition,
a complicated condition under which the else branch is executed
has to be used. Instead, the complicated pre-condition can be sim-
ply specified using when_ensured clause on the post-state of
previous method as shown in Figure 7.

Specifying behavior changes.
In general, there are two different styles to specify the behavior

changes of a method. We can either specify the behavior of previ-
ous and current methods separately or the relation of their behaviors
can be specified.

We first discuss the approach that the behavior of previous and
current methods are separately specified. The behavior of the cur-
rent method can be specified using ensures or signals JML
clauses. Similarly, the behavior of previous method can be speci-
fied using when_ensured clause and when_signaled clauses.
Apart from specifying the behavior separately, a relation of the
current program behavior and previous program behavior can be
used to specify how the current program behavior is different with

6

// previous class // current class // agent class
class C { class C { class A {
int f; int f; int old_f, prev_f, mod_f;

int old_x, prev_x, mod_x;
int prev__res, mod__res;
C old_this, prev_this, mod_this;
Exception prev__expt, mode__expt;

//@changed_behavior //@normal_behavior
//@ requires \prev(f) > 0; //@ requires prev_f > 0;
//@ ensures \result == \prev(\result)+x; //@ ensures mod__res == prev__res+mod_x;
//@ ensures \latest(x); //@ ensures true;

public int m(){ public int m(int x){ public static void test(){}
return f; return f+x; public static void main(String[] a)

} } { /* First, init fields */ test(); }
} } }

Figure 8: A generated agent class shown in the rightmost end; its fields and JML specification are translated from the user programs shown
in its left-hand side.

respect to previous program behavior. This can be achieved in
change contract language through a combination of ensures (or
signals) and \prev.

Take the example in Figure 7. The change contract in Figure 7
is specified as a relation between the method return value of previ-
ous version and that of current version. Alternatively, the current
method return value and previous method return value can be sep-
arately specified as follow

/*@ changed_behavior
@ when_ensured \result instanceof TreeSet;
@ when_ensured \result.size() == 0;
@ ensures \result.size() == 1;
@*/

Behavior-preserving changes.
Some program changes actually preserve program behavior. One

common type of behavior-preserving change is code refactoring,
which can used to increase program’s manageability and extensibil-
ity. Programmers also make changes with functionality preserving
goals such as increasing program performance, reducing memory
consumption and so on. As far as the program’s functional behav-
ior is not changed, we consider it as behavior-preserving change in
this paper. If a program’s behavior is incidentally changed when
behavior-preserving change is intended, a regression bug is intro-
duced. Regression testing has been widely adopted to prevent re-
gression errors. However, without knowing programmers’ inten-
tion, it is difficult to classify a behavior change as a regression bug
or an intended feature. Our notion of change contracts seeks to fill
this gap. When behavior-preserving changes are made, no change
contract needs to be written. By not providing any change contract,
the default-equal assumption is activated. Any behavior change is
clearly a regression bug, and it can be detected automatically by
our checker - as evidenced by our experiments.

Another frequent situation is that new fields are added in a class
and only operations on the new fields are added. In this case, re-
gression errors can also be prevented using the default-equal as-
sumption. When new fields are added/removed, the default-equal
assumption guarantees that the common fields and method result
have the same value in the previous version and current version.

5. CHANGE CONTRACT CHECKING
Change contracts are checkable. As practiced in program con-

tracts, various levels of checking are possible from lightweight run-

time assertion checking (RAC) to heavyweight full static program
verification (FSPV) and extended static checking (ESC) in between.
Each level of checking has its own strength and weakness. In gen-
eral, the degree of completeness of checking increases toward the
FSPV side while the degree of easiness in usage and automation
increases toward the RAC side. Currently, our tool supports RAC
because RAC has been recognized as the most essential support
for many well-known Design-by-Contract languages such as Eif-
fel [16] and JML [5]. As will be shown in Section 6, our change
contract checker was used to detect incorrect changes that caused
regression errors in various Apache software.

Recall that by default we assume an empty change contract. Even
when no explicit change contract is given, we can check behavioral
equivalence between the previous and the current versions. Thus,
non-trivial behaviorial equivalence checking between program ver-
sions can be achieved with an empty change contract (whereas no
checking can be achieved with empty program contracts!) In the
remaining of this section, we explain how we support run-time as-
sertion checking (RAC) of change contracts.

To automatically check a given change contract, we reduce the
problem of change contract checking to the well-established prob-
lem of program contract checking. More specifically, our change
contract checking is performed in three steps. (i) We first run the
previous and the current versions of a program, and log program
states at a few checkpoints. Those checkpoints consist of the entry
of the method under investigation, and exits of the previous and the
current versions of that method. (ii) We then generate an agent pro-
gram annotated with program contracts (i.e., ordinary JML specifi-
cations) translated from a given change contract. Figure 8 shows in
its rightmost end an agent class A we generate to check behavioral
changes occurring when previous-version class C shown in the left-
most end is changed to the current one shown in the middle of the
figure. Notice that method test of the generated agent class A is
annotated with an ordinary JML specification resembling the given
change contract shown in its left-hand side. A prominent difference
between the original change contract and the generated JML speci-
fication is that the latter uses generated fields instead of the original
expressions (e.g., mod__res instead of \result). Those gener-
ated fields represent the program states logged in the previous step.
Detailed explanation about generated fields and rules for agent gen-
eration will be provided shortly. Such agent program generation is
performed in a way that the agent program passes the checking
for the translated program contract iff. code changes occurred in
the target program passes the checking of a given change contract.

7

(iii) Finally, in the last step, we perform run-time assertion check-
ing (RAC) on the generated agent program using a RAC facility of
OpenJML [18], a JML tool-suite built on Oracle’s OpenJDK.

Our tool automatically performs the above three steps. First, to
log program states, we use AspectJ [14], a popular tool support-
ing aspect-oriented programming for Java. Using call pointcuts of
AspectJ, our tool logs program states at the aforementioned desig-
nated checkpoints before and after method calls. Those program
states include the states of receiver object, method arguments, and
method results. Next, our extension of OpenJML parses a given
change contract and generates an agent class following our genera-
tion rules described below. In the following description, we assume
that method m of class C is annotated with a change contract, and
an agent class A is generated.

• If C has a field f with type T, agent class A has three fields
old_f, prev_f and mod_f of type T to respectively repre-
sent the value of f before m enters, after the previous version
m exits, and after the current version m exists.

• Similarly, if method m of C has a parameter p with type T, A
has three fields old_p, prev_p and mod_p of type T.

• To represent receiver states, A also has three fields old_this,
prev_this, and mod_this of type C.

• If method m has a non-void return type T, A has two fields
prev__res and mod__res of type T. Note that we need only
two fields in this case because there is no return value at the
entry of a method.

• Similarly, A has two fields prev__expt and mod__expt of
type Exception to represent the exceptions thrown.

• Lastly, A has only two methods main and test.

Method main of the last item of the above list performs two
tasks. It (1) first initializes all the fields described above using
the program states logged at the previous step, and then (2) calls
method test. Meanwhile, method test is annotated with a trans-
lated program contract made up of the fields described in the pre-
ceding. The only purpose of adding test is to execute its anno-
tated program contract through a RAC facility, and hence its body is
empty. To obtain such translated program contract of test, we use
the translation rules of Table 2. In the table, the notation ϕ[x 7→ x′]

is used to denote that free variables x appearing in ϕ are replaced
with x′. While most of translation rules are obvious, \latest
and \deprecated expressions are transformed to either true or
false depending on the comparison result of abstract syntax trees
for the previous and the current versions of the method.

Finally, our tool compiles a generated agent class with the RAC
option of OpenJML turned on. Running the compiled code effec-
tively checks the translated JML specification in the agent program,
and its failure amounts to detecting a mismatch between actual code
changes and the intended change expressed via the change contract.
When the test input does not match any of the specification case
in change contracts, the default-equal assumption is checked by
checking whether all post-states of fields and method return values
are the same in the previous version and current version.

6. EVALUATION
In this section, we evaluate change contract and our change con-

tract language in two different aspects. We first focus on the expres-
siveness and usability of change contract language. Following this,

change contract program contract

changed_behavior normal_behavior

\old(x) old_x

\prev(x) prev_x

x mod_x

\prev(\result) prev__res

\result mod__res

\latest(x) true or false

\deprecated(x) true or false

when_ensured ϕ requires ϕ

when_signaled requires

(T x) ϕ (prev__expt instanceof T)

&& ϕ[x 7→ prev__expt]

signals (T x) ϕ ensures

(mod__expt instanceof T)

&& ϕ[x 7→ mod__expt]

Table 2: Translation rules

we evaluate the efficacy of change contract in detecting incorrect
program changes.

Three open source Java programs — Ant, JMeter and log4j are
used in our evaluation. All of these are widely used large-scale
java programs (Ant and JMeter have more than 100,000 lines of
code each, and log4j has around 13,000 lines of code). Ant is the
de facto standard Java build automation tool that helps manage the
build process. JMeter is used to test the behavior and performance
of various servers, such as HTTP and POP3. Log4j is a Java library
that eases the logging process in Java.

We evaluate the following two research questions (RQ).

RQ1: Can change contracts describe real-life changes.

We have conducted user studies to answer the above research
questions. Two users participated in this user study. Both users are
second-year Master’s students majoring in computer science. Be-
fore the user study, they both have no knowledge on program con-
tract and JML. The users are asked to first understand the programs
as well as the changes across different versions. Based on their full
understanding of the changes, they write change contracts. Note
that the change contracts are written based on real changes rather
than the intention of these changes. Another experiment in which
change contracts are written based on the programmer’s intention
to prevent incorrect changes is presented later in this section.

We select changes from the Bugzilla database of each Java project.
Only entries with patch files are selected. Each selected entry con-
tains a set of discussions and some patch files containing the pro-
gram changes. Note that other types of changes also exist in the
Bugzilla database apart from bug-fixes. For example, new fea-
ture requests constantly appear in the Bugzilla database. We select
changes in this way because the developers’ comments and discus-
sions in Bugzilla provide great help for understanding the changes.
As these programs and changes are not written by the users, these
detailed discussion logs are indeed very important for the users to
understand the changes correctly.

The user study results are summarized in Table 3. The "Ad-
d/Delete" column denotes changes that involve adding or deleting

8

Subject prog. Changes Applicable Changes Not Applicable
Refactoring Behavior diff Add/Delete Not understood Not concerned Non-code

Ant 43 4 13 15 3 3 5
JMeter 17 1 5 6 1 4 0
log4j 20 2 6 7 1 0 4

Table 3: User study results on expressiveness and useability of change contract language

fields, methods or parameters. There are some changes involving
library calls that are not open-source. Without the source code of
the libraries, the users are not able to fully understand the effect
of the changes. The amount of these changes is given in the "Not
understood" column. The last two columns show the changes that
are not applicable for this user study. The "Not concerned" column
contains changes that are not concerned by change contract, such as
changes in synchronization in multi-threaded programs. The "Non-
code" column shows changes that are not inside Java source code
files. For example, a change in XML file is considered as non-code
change. In total, 52 change contracts were written for the changes
in column "Behavior diff" and "Add/Delete". No change contract
needs to be written for re-factoring changes as it is covered by the
default equivalence assumption. In the process of writing change
contracts, the users did not observe any case where changes cannot
be expressed using change contracts.

Feedback from users.
We got the following feedback from users in this study.

• It is difficult to write change contract when the change hap-
pens on local variables that have long dependence chain from
inputs and outputs. The users have to manually follow the
program dependence chain to figure out under which con-
dition the change is executed and how the change affects
output. The users also suggested that program dependence
tracking (such as the dependency analysis performed by a
slicing tool) could reduce this manual effort.

• More time is spent on understanding the programs and changes
than writing change contracts. This is however partly be-
cause the users did not write these programs themselves.

• Common changes seen in the user study are bug-fixes (typi-
cally fixing unexpected exceptions) and adding new features
by adding new fields and methods. Changes in method sig-
nature and deletion of fields/methods are infrequent.

RQ 2: How effective are change contracts in terms of
detecting incorrect changes.

In the previous study, users write change contracts based on their
understanding of the real program changes. Thus, if users do not
make any mistake either in understanding the program changes or
in witting change contracts, the programs should always be consis-
tent with the written change contracts. However, change contracts,
as designed, should reflect the intention of program changes. Only
when change contracts contain the intention of program changes,
incorrect changes are possible to be detected by change contracts.

We use the following approach to find incorrect program changes
and the intended changes from real-life software repositories. Sim-
ilar approach has been used in existing research to find incorrect
bug-fixes in operating systems [25]. We start with a bug-fix in the
repository. Let v3 be the version where a bug is fixed. We search
backward in the repository to find where the bug fixed in v3 is in-
troduced. If the bug resides in method m, we only need to focus on

Subject prog. Changes Detected Undetected
Ant 5 5 0

JMeter 3 3 0
log4j 2 2 0

Table 4: Checking of change contracts on incorrect changes

the changes that touched method m. Suppose we find that a change
from version v1 to version v2 introduced the bug. The change
from v1 to v2 is clearly an incorrect change. When the program-
mer made changes in v1, the intended resultant program should be
the bug-free program v3. The programmer’s intention when chang-
ing version v1 to v2 is then captured by the differences between
version v1 and v3.

Incorrect changes and their corresponding intended changes are
found in the three open source Java programs using the aforemen-
tioned method. Change contracts are then written based on the in-
tention of changes instead of the real program changes. Original
incorrect program changes are checked against the written change
contracts. A test case stressing the incorrect change is required in
the Runtime checking method mentioned in Section 5. We write
unit tests with the goal of stressing these incorrect changes. We
have also tried Randoop [19], which is a random unit test genera-
tion tool. However, Randoop was not able to generate test cases that
meet our criteria for most of the changes. This is because we need
test cases that satisfy certain pre-condition of the changed method.

Results from using change contracts to detect incorrect changes
are shown in Table 4. We studied 10 incorrect changes in the repos-
itories of Ant, JMeter and log4j. All incorrect changes are detected
by the written change contracts.

7. RELATED WORK

Program contracts.
Design by contract [17] was proposed by Bertrand Meyer and

first realized in Eiffel programming language [16]. Apart from Eif-
fel, Spec# [3] also incorporates design-by-contract into its core lan-
guage. Different from Eiffel and Spec#, JML provides program
contracts for the existing Java language. In the simplest form of
design by contract, each method has its contract in the form of
pre-condition and post-condition. A method has to guarantee its
own post-condition whenever its pre-condition is satisfied. When
a method invocation happens, it is then the caller’s responsibility
to guarantee the callee’s pre-condition. As mentioned, change con-
tracts differ fundamentally from program contracts. Program con-
tracts capture the intended behavior of a single program whereas
change contracts capture the intended behavior change between
two program versions.

Inspired by the concept of Design by Contract, several research
projects have focused on checking program code w.r.t. program
contracts. Extended Static Checking [2, 8–10] aims at automated
program contract checking at compile time. In extended static
checking, verification conditions are generated from program code
and the program contracts; these verification conditions are dis-

9

pensed via automated theorem provers. Runtime assertion check-
ing of contracts has also been studied [7]. In a typical runtime
assertion checking system, program contracts are translated into
checkable assertions and compiled into the associated program.
By executing these assertions, the original program contracts are
checked. The recently proposed hybrid checking approach [24]
combines the power of static and dynamic checking of contracts.
In this approach, a runtime assertion corresponding to a program
contract is inserted into the compiled program and checked at run-
time, only when it cannot be statically proved to be true.

Regression testing and debugging.
Regression errors constitute an important class of errors which

can be automatically detected via default change contracts (which
merely specify that the program output remains unchanged across
program versions by default). In prior research, regression testing
(finding test cases which expose regression errors), and regression
debugging (methods to explain the failed behavior of tests expos-
ing regression errors) have been studied. The work of [6, 11, 23]
focus on the test selection and prioritization problem - choosing
tests from a large test suite for exposing regressions. Thus, when
a program is slightly modified, only a small number of regression
test cases need be executed.

Recent research [13] by Jin et al. advances regression testing
by automatically generating test cases to stress program changes.
When a program is changed, a set of unit test cases concentrating
on the changed portion of the program is automatically generated.
These test cases are executed on both the unchanged and changed
programs. Any observed behavior difference between the two ver-
sions is analyzed and presented to the user. Without a specification
of whether a behavior difference is intended, programmers have to
manually go through all the reported differences across program
versions. When change contract is used together with regression
testing, we can not only automatically differentiate regression er-
rors from intended program behavior changes, but also detect in-
correct new features and imperfect bug-fixes.

Past research on debugging of evolving programs [22, 26] have
mainly focused on regression errors. Due to the lack of formal soft-
ware requirements, other types of incorrect changes (such as incor-
rect implementation of a new feature and incorrect bug-fixes) have
not been studied by these works. The proposed notion of change
contracts can fill this gap.

Program difference summarization.
Semantic program difference summarization presents users with

a clear view of semantic behavior changes introduced by syntac-
tic program changes. Jackson and Ladd [12] propose to identify
changes in input-output dependence chains in programs. However,
differences at the input-output dependence level are too coarse-
grained in certain cases. A change may alter the program’s input-
output dependence relation without changing the program’s actual
behavior. Differential symbolic execution (DSE) [20], on the other
hand, computes the symbolic summary of program differences us-
ing symbolic execution. Unchanged program portions are abstracted
using uninterpreted functions to achieve efficiency. The results
from program difference summarization approaches (such as DSE)
capture real program changes whereas our change contracts are de-
signed to specify intended program changes.

8. DISCUSSION
In this paper, we propose the notion of "change contracts" as

the specification of intended program changes. Incorrect changes

can be easily detected when checked with respect to their change
contracts. Since change contracts only focus on behavior differ-
ences across program versions, they can be easier to write than
program contracts. In particular, owing to the default-equal as-
sumption, regression errors can be detected without the need for
writing any change contracts. Based on JML, we have designed
a full annotation language for specifying intended changes in Java
programs. We present the precise formal semantics of our anno-
tation language for specifying change contracts. Several concrete
examples are given to illustrate the usage of change contracts. We
have also proposed a runtime checking method for change contract
and implemented it based on the runtime assertion checker of JML.
Through a user study on three Java open source projects (Ant, JMe-
ter, log4j), we find that our change contract language is expressive
and usable. In addition, all 10 incorrect changes found in our ex-
periments are detected by their change contracts.

Over and above our technical contributions, we believe that the
concept of change contract takes us one-step closer to the overar-
ching goal of writing quality software. We conjecture that change
contracts can be used in (at least) the following scenarios.

• Early detection of incorrect program changes. We have dis-
cussed this scenario in this paper. Either the programmer or
the tester writes change contracts to make sure that program
changes are correct.

• Serving as program change requirement. Change contracts
can be written (potentially by programmers) prior to making
changes in code. In this case, the change contracts serve as
formal requirements for program changes.

• Providing formal change logs. Programmers often maintain
change logs in natural language, to document the changes
being made to programs. Sometimes, the change logs are in-
consistent with real program changes. The inconsistency is
hard to discover and causes serious confusion for other col-
league programmers. This problem can be solved if check-
able change contracts are used in change logs.

• Change contract and previous program version jointly form
the oracle for testing the current program. In case the in-
tended program behavior is not changed, we can use the out-
put from previous program version for the purpose of testing
the current program version. However, if the intended pro-
gram behavior changes, the expected output of the current
program can be found from the change contract as well as
the previous program version’s output.

• Change contracts can help in test suite augmentation. Cur-
rent test suite augmentation approaches often focus on syn-
tactic changes (e.g. [21]) to generate a test case which ex-
ecutes a syntactic change and propagates it to the output.
However, there may exist many possible dependency chains
across which a change’s effect can be propagated only some
of which violate the intended change. Capturing the intended
change as change contracts can thus help in more accurate
test suite augmentation.

In terms of future work, note that we have focused on runtime
checking of change contracts in this paper. We plan to study static
checking and hybrid checking of change contracts in the future.

9. REFERENCES
[1] Apache Ant. http://ant.apache.org/.

10

http://ant.apache.org/

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In FMCO, pages 364–387, 2005.

[3] M. Barnett, K. Leino, and W. Schulte. The Spec#
programming system: An overview. Construction and
analysis of safe, secure, and interoperable smart devices,
pages 49–69, 2005.

[4] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass -
Java with assertions. Electronic Notes in Theoretical
Computer Science, 55(2):103–117, October 2001.

[5] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT),
7(3):212–232, 2005.

[6] Y. Chen, D. Rosenblum, and K. Vo. Testtube: A system for
selective regression testing. In ICSE, pages 211–220, 1994.

[7] Y. Cheon and G. T. Leavens. A runtime assertion checker for
the Java Modeling Language (JML). In Proceedings of the
International Conference on Software Engineering Research
and Practice (SERP), pages 322–328. CSREA Press, 2002.

[8] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and
JML. In Proceedings of Internationl Workshop on
Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, pages 108–128, 2005.

[9] D. Detlefs, K. Leino, G. Nelson, and J. Saxe. Extended static
checking. Technical report, Compaq Systems Research
Center, 1998.

[10] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata. Extended static checking for Java. In PLDI,
pages 234–245, 2002.

[11] R. Gupta, M. Harrold, and M. Soffa. An approach to
regression testing using slicing. In ICSM, pages 299–308,
1992.

[12] D. Jackson and D. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In ICSM, pages
243–252, 1994.

[13] W. Jin, A. Orso, and T. Xie. Automated behavioral

regression testing. In ICST, pages 137–146, 2010.
[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. Griswold. An overview of AspectJ. In J. Knudsen,
editor, ECOOP, volume 2072 of LNCS, pages 327–354,
2001.

[15] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R.
Cok, P. Müller, J. R. Kiniry, and P. Chalin. JML Reference
Manual. Available at
http://www.eecs.ucf.edu/~leavens/JML/
jmlrefman/jmlrefman_toc.html.

[16] B. Meyer. Eiffel: The language and environment. Prentice
hall press, 300, 1991.

[17] B. Meyer. Applying “Design by Contract". IEEE Computer,
25:40–51, 1992.

[18] OpenJML. OpenJML. http://sourceforge.net/
apps/trac/jmlspecs/wiki/OpenJml, 2012.

[19] C. Pacheco and M. D. Ernst. Randoop: feedback-directed
random testing for Java. In OOPSLA, pages 815–816, 2007.

[20] S. Person, M. Dwyer, S. Elbaum, and C. Pasareanu.
Differential symbolic execution. In FSE, pages 226–237,
2008.

[21] D. Qi, A. Roychoudhury, and Z. Liang. Test generation to
expose changes in evolving programs. In ASE, pages
397–406, 2010.

[22] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani.
DARWIN:an approach for debugging evolving programs. In
ESEC-FSE, pages 33–42, 2009.

[23] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing
test cases for regression testing. IEEE Transactions on
Software Engineering, 27(10):929–948, 2001.

[24] J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable
verification of object-oriented programs by combining static
and dynamic techniques. In SEFM, pages 382–398, 2011.

[25] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N.
Bairavasundaram. How do fixes become bugs? In
ESEC-FSE, pages 26–36, 2011.

[26] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In ESEC/FSE, pages 253–267, 1999.

11

http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml

	1-2
	main
	Introduction
	Overview
	Change contract language
	Syntax
	Non-interference semantics
	Semantics of \prev
	Semantics of \latest and \deprecated
	Semantics of a change-specification case
	By-default-equal rule
	Empty contract
	Well-formed change contracts

	Writing change contracts
	Change contract checking
	Evaluation
	Related Work
	Discussion
	References

