
Beyond Tamaki-Sato Style Unfold/Fold
Transformations for Normal Logic Programs ?

Abhik Roychoudhury1, K. Narayan Kumar1;2, C.R. Ramakrishnan1, and
I.V. Ramakrishnan1

1 Dept. of Computer Science, SUNY Stony Brook, Stony Brook, NY 11794, USA.
fabhik,kumar,cram,ramg@cs.sunysb.edu

2 Chennai Mathematical Institute, 92 G.N. Chetty Road, Chennai, India.
kumar@smi.ernet.in

Abstract. Unfold/fold transformation systems for logic programs have
been extensively investigated. Existing unfold/fold transformation sys-
tems for normal logic programs allow only Tamaki-Sato style folding us-
ing clauses from a previous program in the transformation sequence: i.e.,
they fold using a single, non-recursive clause. In this paper we present
a transformation system that permits folding in the presence of recur-
sion, disjunction, as well as negation. We show that the transformations
are correct with respect to various semantics of negation including the
well-founded model and stable model semantics.

1 Introduction

Unfold/fold transformation systems for logic programs have been used for auto-
mated deduction [8, 17], and program specialization and optimization [2, 4, 10,
15]. Normal logic programs consist of de�nitions of the form A:� � where A is an
atom and � is a boolean formula over atoms. Unfolding replaces an occurrence of
A in a program with � while folding replaces an occurrence of � with A. Folding
is called reversible if its e�ects can be undone by an unfolding, and irreversible
otherwise.

Given a logic program P , an unfold/fold transformation system generates a
sequence of programs P = P0; P1; : : : ; Pn, such that for all 0 � i < n; Pi+1
is obtained from Pi by applying one of the two transformations. Unfold/fold
transformation systems are proved correct by showing that all programs in any
transformation sequence P0; P1; : : : ; Pn are equivalent under a suitable seman-
tics, such as the well-founded model semantics for normal logic programs. A com-
prehensive survey of research on logic program transformations appears in [14].

As an illustration of unfolding/folding, consider the sequence of normal logic
programs in �gure 1. In the �gure, P1 is derived from P0 by unfolding the
occurrence of q(X) in the �rst clause of P0. Program P2 is derived from P1 by
folding the literal q(Y) in the body of the second clause of p/1 into p(Y) by

? This work was partially supported by NSF grants CCR-9711386, CCR-9876242,
CDA-9805735 and EIA-9705998.

using p(X) :- q(X) in P0. This clause from a previous program which is used
in a folding step (the clause p(X) :- q(X) of P0 in this case) is called the folder.

An unfold/fold transformation system for de�nite logic programs was �rst
described in a seminal paper by Tamaki and Sato [20]. It allows folding us-
ing a single clause only (conjunctive folding) from the initial program. This
folder clause is required to be non-recursive, but need not be present in the
current program Pi. Maher [12] proposed a transformation system using only
reversible folding in which the folder clause is always drawn from the current
program. However, reversibility is a restrictive condition that limits the power
of unfold/fold systems by disallowing many correct transformations, such as the
one used to derive P2 from P1 in Figure 1. Hence, there was considerable interest
in developing irreversible unfold/fold transformation systems, for both de�nite
and normal logic programs.

Existing unfold/fold transformation systems for normal logic programs [1,
13, 18, 19] are either extensions of Maher's reversible transformation system [12]
or the original Tamaki-Sato system [20]. Even for de�nite logic programs, ir-
reversible transformations of programs were, until recently, restricted to either
folding using non-recursive clauses (see [7]) or a single recursive clause (see [9,
21]). In [16] we proposed a transformation framework for de�nite logic programs
which generalized the above systems by permitting folding using multiple recur-
sive clauses. Construction of such a general transformation system for normal
logic programs has remained open. Below, we describe a solution to this problem.

Overview of the results: The main result of this paper is a unfold/fold
transformation system that performs folding in the presence of recursion, dis-
junction as well as negation (see Section 2). The transformations of [16] associates
counters with program clauses (a la Kanamori and Fujita [9]) to determine the
applicability of fold and unfold transformations. In this paper, we extend this
book-keeping to accommodate negative literals. We show that this extension is
su�cient to guarantee that the resulting transformation system preserves a va-
riety of semantics for normal logic programs, such as the well-founded model,
stable model, partial stable model, and stable theory semantics. Central to this
proof is the result due to Dung and Kanchanasut [6] that preserving the se-
mantic kernel of a program is su�cient to guarantee the preservation of the
di�erent semantics for negation listed above. However, in contrast to [1] where
this idea was used to prove the correctness of Tamaki-Sato style transformations,
we present a two-step proof which explicitly uses the operational counterpart of

p(X):- q(X).

q([]).

q([X|Y]):- :r(X),q(Y).

p([]).

p([X|Y]):- :r(X),q(Y).
q([]).

q([X|Y]):- :r(X),q(Y).

p([]).

p([X|Y]):- :r(X),p(Y).
q([]).

q([X|Y]):- :r(X),q(Y).

Program P0 Program P1 Program P2

Fig. 1. Example of an unfold/fold transformation sequence

semantic kernels (see Section 3). In the �rst step of our proof, we show that
the transformations preserve positive ground derivations, which are derivations
of the form A :B1;:B2; : : : ;:Bn such that there is a proof tree rooted at
A with leaves labeled :B1 through :Bn (apart from true). We then show that
preserving positive ground derivations is equivalent to preserving the seman-
tic kernel of the program. Thus positive ground derivations are the operational
analogues of semantic kernels.

This proof suggests that we can treat the negative literals in a program as
atoms of new predicates de�ned in a di�erent (external) module. The correctness
of the transformation system is assured as long as the transformations respect
module boundaries (see Section 4). This observation indicates how a transfor-
mation system originally designed for de�nite logic programs (such as the one
we proposed in [16]) can be readily adapted for normal logic programs.

2 The Transformation System

Below we present our unfold and fold transformations for normal logic programs.
In the following we assume familiarity with the standard notions of terms, substi-
tutions, uni�cation, atoms, literals. We will use the following symbols (possibly
with primes and subscripts): P to denote a normal logic program; C and D for
clauses; A;B to denote atoms ; L;K to denote literals ; N to denote sequence
of literals and �; � for substitutions.

In any transformation sequence P0; P1; : : : ; Pn we annotate each clause C in
program Pi with a pair (ilo(C);

i
hi(C)) where

i
lo(C);

i
hi(C) 2 Z and ilo(C) �

ihi(C). Thus,
i
lo and ihi are functions from the set of clauses in program Pi

to the set of integers Z. The transformation rules dictate the construction of
i+1lo and i+1hi from ilo and ihi. We assume that for any clause C in the initial
program P0,

0
lo(C) = 0hi(C) = 1. Intuitively, ilo(C) and ihi(C) for a clause

C are analogous to the Kanamori-Fujita-style counters [9]; the separation of hi
and lo permits us to store estimates of the counter values in the presence of
disjunctive folding.

Rule 1 (Unfolding) Let C be a clause in Pi and A a positive literal in the
body of C. Let C1; :::; Cm be the clauses in Pi whose heads are uni�able with A
with most general uni�ers �1; :::; �m. Let C

0
j be the clause that is obtained by

replacing A�j by the body of Cj�j in C�j (1 � j � m).
Then, assign Pi+1 := (Pi � fCg) [fC 0

1; :::; C
0
mg. Set

i+1
lo (C 0

j) = ilo(C) +

ilo(Cj) and i+1hi (C 0
j) = ihi(C) + ihi(Cj). The annotations of all other clauses

in Pi+1 are inherited from Pi. 2

Rule 2 (Folding) Let fC1; :::; Cmg be clauses in Pi and fD1; :::; Dmg be clauses
in Pj (j � i) where Cl denotes the clause A:� Ll;1; : : : ; Ll;nl

; L01; : : : ; L
0
n and Dl

denotes the clause Bl:� Kl;1; : : : ;Kl;nl
. Also, let

1. 81 � l � m 9�l 81 � k � nl Ll;k = Kl;k�l, where �l is a substitution.
2. B1�1 = B2�2 = ::: = Bm�m = B

3. D1; :::; Dm are the only clauses in Pj whose heads are uni�able with B.
4. 81 � l � m �l substitutes the internal variables of Dl to distinct variables
which do not appear in fA;B;L01; :::; L

0
ng.

5. 81 � l � m
j
hi(Dl) < ilo(Cl) + Number of positive literals in the sequence

L01; : : : ; L
0
n.

Then, assign Pi+1 := (Pi�fC1; :::; Cmg)[fC 0g where C 0 � A:� B;L01; :::; L
0
n. Set

i+1lo (C 0) = min1�l�m(
i
lo(Cl) �

j
hi(Dl)) and i+1hi (C 0) = max1�l�m(

i
hi(Cl) �

j
lo(Dl)). The annotations of all other clauses in Pi+1 are inherited from Pi. 2

An Example: The following example (derived from [7]) illustrates the use of
our basic unfold/fold transformation system.

C1 : in position(X,L) :- in odd(X,L), : even(X). (1,1)

C2 : in position(X,L) :- in even(X,L), : odd(X). (1,1)

C3 : in odd(X,[X|L]). (1,1)

C4 : in odd(X,[Y,Z|L]) :- in odd(X,L). (1,1)

C5 : in even(X,[Y,X|L]). (1,1)

C6 : in even(X,[Y,Z|L]) :- in even(X,L). (1,1)

In the above program, in odd(X,L) (in even(X,L)) is true if X appears in an
odd (even) position in list L. Thus, in position(X,L) is true if X is in an odd
(even) position in list L, and X is not an even (odd) number. The odd/1 and
even/1 predicates are encoded in the usual way and are not shown.
Unfolding in odd(X,L) in C1 we get the following clauses:

C7 : in position(X,[X|L]) :- : even(X). (2,2)

C8 : in position(X,[Y,Z|L]) :- in odd(X,L), : even(X). (2,2)

Unfolding in even(X,L) in C2 yields the following clauses:

C9 : in position(X,[Y,X|L]) :- : odd(X). (2,2)

C10 : in position(X,[Y,Z|L]) :- in even(X,L), : odd(X). (2,2)

Finally, we fold clauses fC8; C10g using the clauses fC1; C2g from the initial
program as the folder to obtain the following de�nition of in position/1.

C7 : in position(X,[X|L]) :- : even(X). (2,2)

C9 : in position(X,[Y,X|L]) :- : odd(X). (2,2)

C11 : in position(X,[Y,Z|L]) :- in position(X,L). (1,1)

Note that the �nal step is an irreversible folding in presence of negation that
uses multiple clauses as the folder. Such a folding step is neither allowed in
Tamaki-Sato style transformation systems for normal logic programs [1, 18, 19]
nor in reversible transformation systems [13].

Remark: We can maintain more elaborate book-keeping information than inte-
ger counters, thereby deriving more expressive unfold/fold systems. For instance,
as in the SCOUT system described in [16], we can make the counters range over
use a tuple of integers, and obtain a system that is strictly more powerful than
the existing Tamaki-Sato-style systems [20, 21, 9, 18, 19, 7, 1]. The construction
parallels that of the SCOUT system in [16]; details are omitted.

3 Proof of Correctness

In this section, we show that our unfold/fold transformation system is correct
with respect to various semantics of normal logic programs. This proof proceeds
in three steps. First, we introduce the notion of positive ground derivations and
show that it is preserved by the transformations. Secondly, we show that preserv-
ing positive ground derivations is equivalent to preserving semantic kernel [6].
Finally, following [1], preserving semantic kernel implies that the transformation
system is correct with respect to various semantics for normal logic programs
including well-founded model, stable model, partial stable model, and stable
theory semantics. We begin with a review of semantic kernels.

3.1 Semantic Kernel of a Program

De�nition 1 (Quasi-Interpretation) [6, 1] A quasi-interpretation of a nor-
mal logic program P is a set of ground clauses of the form A:� :B1; : : : ;:Bn

(n � 0) where A;B1; : : : ; Bn are ground atoms in the Herbrand Base of P .

Quasi-interpretations form the universe over which semantic kernels are de�ned.
For a given normal logic program P , the set of all quasi-interpretations of P
(denoted QI(P)) forms a complete partial order with a least element (the empty
set �) with respect to the set inclusion relation �.

De�nition 2 Given a normal logic program P , let Gnd(P) denote the set of
all possible ground instantiations of all clauses of P . The function SP on quasi-
interpretations of P is de�ned as

SP : QI(P)! QI(P)
SP (I) = fR(C;D1; : : : ; Dm) j C 2 Gnd(P) ^Di 2 I; 1 � i � mg

where, if Di(1 � i � m) are ground clauses

Ai:� :Bi;1; : : : ;:Bi;ni
(ni � 0)

and A1; : : : ; Am(m � 0) are the only positive literals appearing in the body of
ground clause C, then R(C;D1; : : : ; Dm) is the clause obtained by resolving the
positive body literals A1; : : : ; Am in C using clauses D1; : : : ; Dm respectively. 2

If P is a de�nite program, then the function SP is identical to the logical con-
sequence operator TP [11]. The semantic kernel of the program P is de�ned in
terms of SP as:

De�nition 3 (Semantic Kernel) [6, 1] The semantic kernel of a normal logic
program P , denoted by SK(P), is the least �xed point of the function SP , i.e.,

SK(P) =
S
n2! SK

n(P) where SK0(P) = � and SKn+1(P) = SP (SK
n(P))

Example : Consider the following normal logic program P :

p :- : q, r.

r :- : r.

The semantic kernel of P will be computed as follows.

SK0(P) = fg.
SK1(P) = SP (SK

0(P)) = f (r :- : r) g
SK2(P) = SP (SK

1(P)) = f (r :- : r), (p :- : q, : r) g
SK3(P) = SP (SK

2(P)) = SK2(P)
Therefore, SK(P) = f (r :- : r), (p :- : q, : r) g

The following theorem from [1] formally states the equivalence of P and SK(P)
with respect to various semantics of normal logic programs.

Theorem 1 [Aravindan and Dung] Let P be a normal logic program and SK(P)
be its semantic kernel. Then :
(1) If P is a de�nite logic program, then P and SK(P) have the same least
Herbrand Model.
(2) If P is a strati�ed program, then P and SK(P) have the same perfect model
semantics.
(3) P and SK(P) have the same well-founded model.
(4) P and SK(P) have the same stable model(s).
(5) P and SK(P) have the same set of partial stable models.
(6) P and SK(P) have the same stable theory semantics.

3.2 Preserving the Semantic Kernel

We now show that in any transformation sequence P0; P1; : : : ; Pn where 80 �
i < n Pi+1 is obtained from Pi by applying unfolding (rule 1) or folding (rule 2),
the semantic kernel is preserved, i.e., SK(P0) = SK(P1) = : : : = SK(Pn). To
do so, we introduce the following notion of a positive ground derivation:

De�nition 4 (Positive ground derivation) A positive ground derivation of
a literal in a normal logic program P is a tree T such that: (1) each internal
node of T is labeled with a ground atom (2) each leaf node of T is labeled with
a negative ground literal or the special symbol true, and (3) for any internal
node A of T , A:� L1; : : : ; Ln must be a ground instance of a clause in program
P where L1; : : : ; Ln are the children of A in T .

Thus, consider any positive ground derivation T in program P . Let the root of T
be labeled with the ground literal L and let N be the sequence of negative literals
derived in T , i.e., N is formed by appending the negative literals appearing in
the leaf nodes of T from left to right. Then we say that L derives N in P , and
denote such derivations by L P N (and L N if P is obvious from the
context). We overload this notation, often denoting existence of such derivations
also by L P N . Note that if L is a ground negative literal, there is only one
positive ground derivation for L in any program, namely the empty derivation
L L. We now de�ne:

De�nition 5 (Weight of a positive ground derivation) Let L P N be a
positive ground derivation. The number of internal nodes in this derivation (i.e.
the number of nodes labeled with a ground positive literal) is called the weight of
the derivation.

De�nition 6 (Weight of a pair) Let P0; P1; : : : ; Pn be a transformation se-
quence of normal logic programs. Let L be a ground literal, N be a (possibly
empty) sequence of ground negative literals s.t. L P0 N . Then, the weight of
(L;N), denoted by w(L;N), is the minimum of the weights of positive ground
derivations of the form L P0 N .

Note that for any program Pi in the transformation sequence, the weight of
any pair w(L;N) is de�ned as the weight of the smallest derivation L P0 N .

De�nition 7 Let P0; P1; :::; Pn be a transformation sequence of normal logic
programs. A positive ground derivation L Pi

N is said to be weakly weight-
consistent if for every ground instance A:� L1; :::; Lk of a clause C used in this
derivation, we have w(A;NA) � ihi(C)+

P
1�l�k w(Ll;Nl) where NA;N1; :::;Nk

are the sequence of negative literals derived from A;L1; :::; Lk in this derivation.

De�nition 8 Let P0; P1; :::; Pn be a transformation sequence of normal logic
programs. A positive ground derivation L Pi

N is said to be strongly weight-
consistent if for every ground instance A:� L1; :::; Lk of a clause C used in this
derivation, we have

{ w(A;NA) � ilo(C) +
P

1�l�k w(Ll;Nl)
{ 81 � l � k w(A;NA) > w(Ll;Nl)

where NA;N1; :::;Nk are the negative literal sequences derived from A;L1; :::; Lk
in this derivation.

De�nition 9 (Weight consistent program) Let P0; P1; : : : ; Pn be a trans-
formation sequence of normal logic programs. Then, program Pi is said to be
weight consistent if

{ for any pair (L;N), whenever L derives N in Pi, there is a strongly weight
consistent positive ground derivation L Pi

N .
{ every positive ground derivation in Pi is weakly weight consistent.

Using the above de�nitions, we now state certain invariants which always
hold after the application of any unfold/fold transformation.

{ I1(Pi) � 8L8N (L derives N in P0 , L derives N in Pi).
{ I2(Pi) � Pi is a weight consistent program

We now show that these invariants are maintained after every unfolding and
folding step. This allows us to claim that the set of positive ground derivations
of P0 is identical to the set of positive ground derivations of program Pi.

Lemma 1 If (8j � i I1(Pj)) holds, then 8L8N (L derives N in Pi+1) L

derives N in Pi)

Lemma 2 (Preserving Weak Weight Consistency) Let P0; :::; Pi; Pi+1 be
an unfold/fold transformation sequence s.t. 80 � j � i I1(Pj) ^ I2(Pj). Then,
all positive ground derivations of Pi+1 are weakly weight consistent.

The proofs for both Lemma 1 and 2 follow by induction on the weight of positive
ground derivations in Pi+1. We now establish the main theorem concerning the
preservation of positive ground derivations in a transformation sequence.

Theorem 2 Let P0; P1; : : : be a sequence of normal logic programs where Pi+1
is obtained from Pi by applying unfolding (rule 1) or folding (rule 2). Then
8i � 0 I1(Pi) ^ I2(Pi).

Proof : The proof proceeds by induction on i. For the base case, I1(P0) holds
trivially, and I2(P0) holds because every positive ground derivation of P0 is
weakly weight consistent, and for any pair (L;N) the smallest positive ground
derivation L P0 N is strongly weight consistent.

For the induction step, we need to show I1(Pi+1) ^ I2(Pi+1). By Lemma 1
we have L Pi+1

N) L Pi
N , and by Lemma 2 we know that all positive

ground derivations of Pi+1 are weakly weight consistent. We need to show that
(i) L Pi

N) L Pi+1
N , and (ii) for any pair (L;N) s.t. L Pi+1

N , there
exists a strongly weight consistent derivation L N in Pi+1. Thus, it su�ces
to prove that for any pair (L;N) s.t L Pi

N , there exists a strongly weight
consistent derivation L Pi+1

N .

Consider a pair (L;N) such that L Pi
N . Since Pi is weight consistent,

therefore there exists a strongly weight consistent derivation L N in Pi. Let
this be called Dr. We now construct a strongly weight consistent derivation
Dr0 � L Pi+1

N . Construction of Dr0 proceeds by induction on the weight
of (L;N) pairs. The base case occurs when L is a negative literal, N = L and
w(L;N) = 0. We then trivially have the same derivation L N in Pi+1 as well.
Otherwise if L is a positive literal, let C be the clause used at the root of Dr. Let
L:� L1; : : : ; Ln be the ground instantiation of C used at the root of Dr. Since
Dr is strongly weight consistent w(L;N) > w(Ll;Nl) where Nl is the sequence
of negative literals derived by Ll for all 1 � l � n. Hence, we have strongly
weight consistent derivations Ll Pi+1

Nl. We construct Dr0 by considering the
following cases :

Case 1: C is inherited from Pi to Pi+1

Dr0 is constructed with the clause L:� L1; : : : ; Ln at the root and then append-
ing the derivations Ll Pi+1

Nl for all 1 � l � n. This derivation Dr0 is strongly
weight consistent.

Case 2: C is unfolded.

Let the L1 be the positive body literal of C that is unfolded. Let the clause used
to resolve L1 in the derivation Dr be C1 and the ground instance of C1 used be
L1:� L1;1; : : : ; L1;k. By de�nition of unfolding L:� L1;1; : : : ; L1;k; L2; : : : ; Ln is
a ground instance of a clause C 0

1 in Pi+1 with
i+1
lo (C 0

1) = ilo(C)+ilo(C1). Also,
let N1;1; : : : ;N1;k be the sequence of negative literals derived by L1;1; : : : ; L1;k

in Dr. Then, by strong weight consistency w(L1;l;N1;l) < w(L1;N1) < w(L;N)
for all 1 � l � k. Thus we have strongly weight consistent derivations L1;l Pi+1

N1;l. We construct Dr0 by applying L:� L1;1; : : : ; L1;k; L2; : : : ; Ln at the root
and then appending the strongly weight consistent derivations L1;l Pi+1

N1;l

(for all 1 � l � k) and Ll Pi+1
Nl (for all 2 � l � n). Since Dr is strongly

weight consistent, therefore

w(L;N) � ilo(C) +
P

1�l�n w(Ll;Nl)

and w(L1;N1) � ilo(C1) +
P

1�l�k w(L1;l;N1;l)

) w(L;N) � i+1lo (C 0
1) +
P

1�l�k w(L1;l;N1;l) +
P

2�l�n w(Ll;Nl)

This shows that Dr0 is strongly weight consistent.

Case 3: C is folded

Let C (potentially with other clauses) be folded, using folder clause(s) from
Pj(j � i), to clause C 0 in Pi+1. Assume that L1; : : : ; Lk are the instances of the
body literals of C which are folded. Then, C 0 must have a ground instance of
the form L : �B;Lk+1; : : : ; Ln, where B:� L1; : : : ; Lk is a ground instance of a
folder clause D in Pj . Since, we have derivations Ll Pi

Nl for all 1 � l � k,
therefore by I1(Pi)^I1(Pj) there exist derivations Ll Pj

Nl. Then, there exists
a derivation B Pj

NB where NB is obtained by appending the sequences
N1; : : : ;Nk. Since Pj is a weight consistent program, this derivation must be

weakly weight consistent, and therefore w(B;NB) �
j
hi(D)+

P
1�l�k w(Ll;Nl).

By strong weight consistency of Dr, we have

w(L;N) � ilo(C) +
X

1�l�k

w(Ll;Nl) +
X

k+1�l�n

w(Ll;Nl)

� ilo(C) + w(B;NB)�
j
hi(D) +

X

k+1�l�n

w(Ll;Nl) � � � � � � (�)

> w(B;NB) (by condition (5) of folding)

Hence there exists a strongly weight consistent derivation B Pi+1
NB . We

now construct Dr0 with L:� B;Lk+1; : : : ; Ln at the root and then append-
ing below the strongly weight consistent derivations B Pi+1

NB ; Lk+1 Pi+1

Nk+1; : : : ; Ln Pi+1
Nn. To show that Dr0 is strongly weight consistent, note

that i+1lo (C 0) � ilo(C) � jhi(D) since C and D are folded and folder clauses.
Combining this with (*),

w(L;N) � i+1lo (C 0) + w(B;NB) +
X

k+1�l�n

w(Ll;Nl)

This completes the proof. 2

Thus we have shown that all positive ground derivations are preserved at
every step of our transformation. Now we show how our notion of positive ground
derivations directly corresponds to the notion of semantic kernel. Intuitively, this
connection is clear, since a clause in the semantic kernel of program P is derived
by repeatedly resolving the positive body literals of a ground instance of a clause
in P until the body contains only negative literals. Formally, we prove that :

Theorem 3 Let P be a normal logic program and A;B1; : : : ; Bn(n � 0) be
ground atoms in the Herbrand base of P . Let N be the sequence :B1; : : : ;:Bn.
Then, A derives N in P i� (A:� N) 2 SK(P)

Proof Sketch:We proveA P N) (A:� N) 2 SK(P) by strong induction on
the weight (i.e. the number of internal nodes, refer de�nition 5) in the derivation
A P N . The proof for (A:� N) 2 SK(P)) A P N follows by �xed-point
induction. 2

We can now prove that the semantic kernel is preserved across any unfold/fold
transformation sequence.

Corollary 3 (Preservation of Semantic Kernel) Suppose P0; : : : ; Pn is a
sequence of normal logic programs where Pi+1 is obtained from Pi by unfold-
ing (Rule 1) or folding (Rule 2). Then 80 � i < n SK(Pi) = SK(P0).

Proof: We prove that SK(P0) = SK(Pi) for any arbitrary i. By Theorem 2
we know that A P0 N , A Pi

N for any ground atom A and sequence of
ground negative literalsN . Then, using Theorem 3 we get (A:� N) 2 SK(P0),
(A:� N) 2 SK(Pi). Thus, SK(P0) = SK(Pi). 2

Following Theorem 1 and Corollary 3 we have:

Theorem 4 (Correctness of Unfolding/Folding) Let P0; : : : ; Pn be a se-
quence of normal logic programs where Pi+1 is obtained from Pi by an applica-
tion of unfolding (Rule 1) or folding (Rule 2). Then, for all 0 � i < n we have
(1) If P0 is a de�nite logic program, then P0 and Pi have the same least Herbrand
Model.
(2) If P0 is a strati�ed program, then P0 and Pi have the same perfect model
semantics.
(3) P0 and Pi have the same well-founded model.
(4) P0 and Pi have the same stable model(s).
(5) P0 and Pi have the same set of partial stable models.
(6) P0 and Pi have the same stable theory semantics.

4 Discussion

In this paper we have presented an unfold/fold transformation system, which to
the best of our knowledge, is the �rst to permit folding in the presence of recur-
sion, disjunction, as well as negation. Such a system is particularly important
for verifying temporal properties of parameterized concurrent systems (such as

a n-bit shift register for any n) using logic program evaluation and deduction [5,
17].

The transformation system presented in this paper can be extended to incor-
porate a goal replacement rule which allows the replacement of a conjunction of
atoms in the body of a clause with another semantically equivalent conjunction
of atoms provided certain conditions are satis�ed (which ensure preservation of
weight consistency). In future, it would be interesting to study how we can per-
form multiple replacements simultaneously without compromising correctness
(as discussed in [3]).

Apart from the transformation system, the details of the underlying cor-
rectness proof reveal certain interesting aspects generic to such transformation
systems. First of all, our proof exploits a degree of modularity that is inher-
ent in the unfold/fold transformations for logic programs. Consider a modular
decomposition of a de�nite logic program where each predicate is fully de�ned
in a single module. Each module has a set of \local" predicates de�ned in the
current module and a set of \external" predicates used (and not de�ned) in the
current module. It is easy to see that Lemma 1, 2 and Theorem 2 can be mod-
i�ed to show that unfold/fold transformations preserve the set of local ground
derivations of a program. We say that A B1; B2; : : : ; Bn is a local ground
derivation (analogous to a positive ground derivation), if each Bi contains an
external predicate, and there is a proof tree rooted at A whose leaves are labeled
with B1; : : : ; Bn (apart from true). Consequently, transformations of a normal
logic program P , can be simulated by an equivalent positive program module Q
obtained by replacing negative literals in P with new positive external literals.
The newly introduced literals can be appropriately de�ned in a separate module.
Thus any transformation system for de�nite logic programs that preserves local
ground derivations also preserves the semantic kernels of normal logic programs.

Secondly, we showed that positive ground derivations form the operational
counterpart to semantic kernels. This result, which makes explicit an idea in the
proof of Aravindan and Dung [1], enables the correctness proof to be completed
by connecting the other two steps: an operational �rst step, where the mea-
sure consistency technique is used to show the preservation of positive ground
derivations and the �nal model-theoretic step that applies the results of Dung
and Kanchanasut [6] relating semantic kernels to various semantics for normal
logic programs.

Semantic kernel is a fundamental concept in the study of model-based se-
mantics. By it very nature, however, semantic kernels cannot be used in proving
operational equivalences such as �nite failure and computed answer sets. The im-
portant task then is to formulate a suitable operational notion that plays the role
of semantic kernel in the correctness proofs with respect to these equivalences.

References

1. C. Aravindan and P.M. Dung. On the correctness of unfold/fold transformations
of normal and extended logic programs. Journal of Logic Programming, pages
295{322, 1995.

2. A. Bossi, N. Cocco, and S. Dulli. A method of specializing logic programs. ACM
TOPLAS, pages 253{302, 1990.

3. A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacement in normal programs.
Journal of Logic and Computation, 6(1):79{120, February 1996.

4. D. Boulanger and M. Bruynooghe. Deriving unfold/fold transformations of logic
programs using extended OLDT-based abstract interpretation. Journal of Symbolic
Computation, pages 495{521, 1993.

5. B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C.R. Ramakrishnan, I.V. Ramakr-
ishnan, A. Roychoudhury, S.A. Smolka, and D.S. Warren. Logic programming and
model checking. In Proceedings of PLILP/ALP, LNCS 1490, pages 1{20, 1998.

6. P.M. Dung and K. Kanchanasut. A �xpoint approach to declarative semantics of
logic programs. Proceedings of North American Conference on Logic Programming,
1:604{625, 1989.

7. M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for de�nite clause
programs. In Proceedings of PLILP, LNCS 844, pages 340{354, 1994.

8. T. Kanamori and H. Fujita. Formulation of Induction Formulas in Veri�cation of
Prolog Programs. Proceedings of International Conference on Automated Deduc-
tion (CADE), pages 281{299, 1986.

9. T. Kanamori and H. Fujita. Unfold/fold transformation of logic programs with
counters. In USA-Japan Seminar on Logics of Programs, 1987.

10. M. Leuschel, D. De Schreye, and A. De Waal. A conceptual embedding of folding
into partial deduction : Towards a maximal integration. In Joint International
Conference and Symposium on Logic Programming, pages 319{332, 1996.

11. J.W. Lloyd. Foundations of Logic Programming, 2nd Ed. Springer-Verlag, 1993.
12. M. J. Maher. Correctness of a logic program transformation system. Technical

report, IBM T.J. Watson Research Center, 1987.
13. M. J. Maher. A transformation system for deductive database modules with perfect

model semantics. Theoretical Computer Science, 110:377{403, 1993.
14. A. Pettorossi and M. Proietti. Transformation of logic programs, volume 5 of

Handbook of Logic in Arti�cial Intelligence, pages 697{787. Oxford University
Press, 1998.

15. A. Pettorossi, M. Proietti, and S. Renault. Reducing nondeterminism while spe-
cializing logic programs. In Proceedings of POPL, pages 414{427, 1997.

16. A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakr-
ishnan. A parameterized unfold/fold transformation framework for de�nite logic
programs. In Principles and Practice of Declarative Programming (PPDP), LNCS
1702, pages 396{413, 1999.

17. A. Roychoudhury, K. Narayan Kumar, C.R. Ramakrishnan, and I.V. Ramakrish-
nan. Proofs by program transformations. To appear in proceedings of Logic-based
Program Synthesis and Transformation (LOPSTR), 1999.

18. H. Seki. Unfold/fold transformation of strati�ed programs. In Theoretical Com-
puter Science, pages 107{139, 1991.

19. H. Seki. Unfold/fold transformation of general logic programs for well-founded
semantics. In Journal of Logic Programming, pages 5{23, 1993.

20. H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In Pro-
ceedings of International Conference on Logic Programming, pages 127{138, 1984.

21. H. Tamaki and T. Sato. A generalized correctness proof of the unfold/ fold logic
program transformation. Technical report, Ibaraki University, Japan, 1986.

