
Formal Metatheory using Implicit Syntax, and

an Application to Data Abstraction for

Asynchronous Systems

Amy P. Felty1, Douglas J. Howe1, and Abhik Roychoudhury2

1 Bell Labs, Murray Hill, NJ 07974, USA. ffelty,howeg@bell-labs.com
2 Dept. of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11790, USA.

abhik@cs.sunysb.edu

Abstract. Abstraction is a useful tool in veri�cation, often allowing
the proof of correctness of a large and complex system to be reduced to
showing the correctness of a much smaller simpler system. We use the
Nuprl theorem prover to verify the correctness of a simple but commonly
occurring abstraction. From the formal proof, we extract a program that
succeeds when the abstraction method is applicable to the concrete input
speci�cation and in this case, computes the abstracted system speci�ca-
tion. One of the main novelties of our work is our \implicit syntax"
approach to formal metatheory of programming languages. Our proof
relies entirely on semantic reasoning, and thus avoids the complications
that often arise when formally reasoning about syntax. The semantic
reasoning contains an implicit construction of the result using inductive
predicates over semantic domains that express representability in a par-
ticular protocol language. This implicit construction is what allows the
synthesis of a program that transforms a concrete speci�cation to an
abstract one via recursion on syntax.

1 Introduction

Theorem proving and model checking can be usefully combined by using a the-
orem prover to verify abstractions of protocols or system speci�cations. In par-
ticular, one can often use a model checker to verify some property of a protocol
that has an in�nite or intractably large state space, by �rst transforming the
original or concrete protocol into a more abstract version for which model check-
ing is feasible [13, 2]. A theorem prover can be used to check, for example, that
the property (or some transformation of it) holds of the abstract protocol if and
only if it holds of the original protocol. This can be done directly by formalizing
the two versions of the protocol and proving the speci�c property of interest.
This approach is taken in [7], for example, using the integration of a BDD based
model checker as a decision procedure in PVS [11]. One can also, as in [10], pro-
vide general support for doing this kind of reasoning by formalizing a re�nement
calculus and methodology relating system speci�cations and abstractions; or as
in [5], use a model checker with assumption commitment style reasoning on the

abstract system and then use a theorem prover to discharge the assumptions in
the concrete system.

Typically, when a system speci�cation is represented in a theorem prover, a
so called \shallow embedding" is used. In a shallow embedding of a programming
or speci�cation language in a theorem prover, programs and speci�cations are
directly interpreted in the logic of the theorem prover. Thus, one formalizes only
the semantics of the language. For example, the commands of an imperative
programming language might be encoded as objects of type com = state ! state.

In contrast with shallow embedding is \deep embedding", where both the
semantics and syntax of the embedded formalism are represented in the theorem
prover. Using this approach, one might have a type comsyn consisting of abstract
syntax trees of commands, and then a meaning function M 2 comsyn ! com .
Deep embeddings are considerably more di�cult to reason about in theorem
provers. In practice, shallow embeddings are used whenever possible, and deep
embeddings are done only when one is interested in some property that cannot
be expressed by referring to semantic objects alone. A comparison of these two
methods is presented in [1], for example.

In this paper we show how to exploit the constructivity of the Nuprl theorem
prover [4] to synthesize a particular veri�ed-correct abstraction algorithm. We
build a proof in Nuprl from which we can extract a program that takes a concrete
speci�cation as input, tests whether the abstraction method applies to it, and if
so, returns the abstracted system speci�cation.

One of the main novelties here is that we do not use a deep embedding. Our
proof reasons only about semantics, yet we are able to synthesize a program that
operates on syntax. Thus we reason only about the semantic aspects of the ab-
straction method, even though we are implicitly constructing the program that
builds abstracted programs. The central idea is to de�ne inductive predicates
over semantic domains that express representability in a particular protocol lan-
guage. We give a small illustrative example of the approach in Section 2.

It is not obvious that this notion of representability is adequate for non-trivial
examples. Many concepts that are natural in reasoning about syntax cannot be
directly expressed. For example, we cannot directly write down a function which
takes a command and returns a list of all program variables occurring in it, since
a command is just a function on states that is assumed to be representable, and
we cannot in general determine the list of variables from this function.

As evidence for the practicality of our approach, we apply it to a simple but
common data abstraction method. The correctness of the abstraction, as well as
the representability of the abstract system speci�cation, was proved in Nuprl.
We used the program extracted from these proofs to obtain the abstraction of a
simple communication protocol.

The only other paper we know of that uses the idea of representing syntax
implicitly in type theory via an inductive predicate is [3], where it is proposed
as a way of de�ning internal computational complexity measures. Nothing was
implemented, and no proofs are given. Furthermore, the paper does not address
the use of implicit syntax together with extraction to synthesize metaprograms.

2

We are aware of one other e�ort involving program extraction and model
checking [12], in which the correctness proof of a model checker in the Coq
proof checker yields, via extraction, an executable model checker which is then
considered as a trusted decision procedure.

2 Example

To illustrate our approach, we consider a simple, rather arti�cal, example involv-
ing a trivial imperative programming language P where programs are sequences
of assignments of variables to variables. We start with a semantic account of
the language. De�ne state = string ! int , and de�ne the type of (meanings of)
commands to be com = state ! state. Assignment and command sequencing
can now be de�ned semantically:

assg : string ! string ! com = �x: �y: �s: s[x s(y)]

seq : com ! com ! com = �c1: �c2: �s: c2(c1(s))

where s[x l] is the state which maps x to l and all other variables y to s(y).
Write x := y for assg (x)(y) and c1; c2 for seq (c1)(c2).

Consider the following fact about P : for every command c, if there is a
variable x such that c only a�ects the value of x, then c is equivalent to a
single assignment statement. This fact is false in general for members of com ;
to formalize it, we need to somehow formalize the syntax of P . We do this by
inductively de�ning a representability predicate R : com ! prop as follows.

R(c), 9x; y2string : c = (x := y)
_ 9 c1; c22com : R(c1) & R(c2) & c = (c1; c2)

De�ne u(c), for c 2 com, if there exists x 2 string such that for all y 6= x 2 string

and all s 2 state, s(y) = c(s)(y). Our fact may now be formalized as follows.

8 c2com: R(c)) u(c)) 9x; y2string : c = (x := y)

Unfortunately, the obvious proof attempt, using induction on the de�nition of
R(c), fails, because when c = (c1; c2), it is not necessarily true that u(c) implies
u(c1) and u(c2).

If we strengthen the assumption on the representation of c to require that u
hold of all subcommands, then the obvious proof will work. We can state this
property by modifying the de�nition of representability. In particular, de�ne
Rq(c), for q a predicate on com, by replacing R(c) by Rq(c) in the de�nition of
R(c) and conjoining the right-hand side of the de�nition with q(c). We can prove

8 c2com: Ru(c)) 9x; y2string : c = (x := y)

by a straightforward induction on Ru(c). Since we are formalizing in a construc-
tive logic, the proof will yield a program that takes a c and evidence for Ru(c)
and produces the x; y such that c = (x := y).

3

In order to run this program on a particular c, we need a proof of Ru(c).
Since there is no general method in the type theory to go from a member of com
to a representation, we assume we are given a proof of R(c). The method for
going from c to R(c) can be implemented in Nuprl's metalanguage. The problem
is now to go from R(c) to Ru(c). This is not always possible, so we choose, as
a simple su�cient condition, to do this only for commands whose constituent
assignments have a unique variable on the left hand side.

To deal with this kind of syntactic su�cient condition, we de�ne a possibility

operator on propositions, denoted ?. In particular, the formula ?A is de�ned to
be A_True. Clearly, for any A, ?A holds because the right disjunct is provable.
When we prove a theorem whose conclusion is ?A, we take care to choose to
prove the left disjunct (A) in situations where the su�cient condition is known
to hold. Theorems of this form give a partial correctness result. The program
that Nuprl extracts from the proof will either return a result of type A or the
constant axiom which is the proof of True. The fact that it does not return the
trivial result axiom when the su�cient condition holds is purely a metatheoretic
one.

Returning to the example, we can prove a theorem 8 c2com : R(c))?Ru(c)
by induction on the de�nition of R(c). If we construct the right kind of proof,
the extracted program will translate evidence for R(c) into evidence for Ru(c)
in the case where c satis�es the su�cient condition given above.

3 Protocol Veri�cation in Nuprl

For our data-abstraction case study, we use the environment for protocol veri�-
cation that was built in the course of verifying the SCI cache coherence proto-
col [6]. Here, we brie
y describe our shallow embedding of a Unity-like guarded
command language in which protocols are expressed. We illustrate this language
with our running example presented in Fig. 1. In this language, a speci�cation

or program is a list of guarded actions, each having a guard and a body, along
with an initial condition on values of program variables. In general guards can
be message receives or boolean conditions, and bodies can contain assignments,
conditionals, and message sends. The example presents a protocol with three dis-
tinct processes|Sender, Channel (or Queue), and Receiver, denoted s, q, and
r, respectively. Consider the two actions for the Receiver, marked r1 and r2.
In r1 the guard always holds and the body contains a message to the sender
requesting data, where request is the message type. A message can also contain
arguments as illustrated in r2. Here, the guard indicates that this action can be
executed if the �rst message in buf [r] (r's message bu�er) has type rsend . This
message has one argument, rdata , containing the requested data. The message
is removed from the queue (received) and the body is executed. The Sender
and Channel processes both have a single parametrized action (sd and qm re-
spectively). Action sd is parametrized by the value of the data transmitted to
the Channel. Action qm is parametrized by the length of the channel. Thus, the
above speci�cation represents a collection of programs where the number of data

4

Program P :
Initial Condition: sent = �1
Actions: [r1; r2; s0; : : : ; sn�1; qm] for some n > 0;m � 0

(r1) true �! s!request
(r2) buf [r]?rsend(rdata) �! rcvd := rdata

(sd) buf [s]?request �! sent := d ; q !qsend(sent ; 0)

(qm) buf [q]?qsend(data; i) �!
if i = m then r !rsend(data) else q !qsend(data; i + 1) �

Property :
Data delivery: 8y: G(sent = y) F (rcvd = y))
Order preservation: 8y1: 8y2: G((sent = y1 ^ F (sent = y2)))

F (rcvd = y1 ^ F (rcvd = y2)))

Fig. 1. Running Example

values and the length of the queue are bounded by an arbitrary �nite number.
We prove universally quanti�ed linear time temporal logic properties (such as
the data delivery property in Fig. 1) of the example protocol, by performing
data abstraction of the protocol.

Nuprl is a goal-directed interactive theorem prover in the style of LCF. It
implements a constructive type theory with a rich set of constructors. Because
of the constructivity, programs can be extracted from proofs. Logic is encoded
via the propositions-as-types principle, whereby a proposition is identi�ed with
the type of data that provides evidence for the proposition's truth. The version
of Nuprl we use [8] also supports classical reasoning, which can be used in any
part of a proof that does not a�ect the extracted program. Formal mathematics
in Nuprl is organized in a single library, which is broken into �les simulating
a theory structure. Library objects can be de�nitions, display forms, theorems,
comments or objects containing ML code. De�nitions de�ne new operators in
terms of existing Nuprl terms and previously de�ned operators. Display forms
provide notations for de�ned and primitive operators. Theorems have tree struc-
tured proofs, possibly incomplete. Each node has a sequent, and represents an
inference step. The step is justi�ed either by a primitive rule, or by a tactic.
Tactics provide automation to help with goal-directed search.

Our embedding of the semantics of state transition systems in Nuprl is fairly
straightforward. We de�ne a state as a pair where the �rst component is the
usual mapping from identi�ers to values (integers). The second component is
a history variable that records the sequence of messages that have been sent
and received during the entire execution. This history variable is important for
reasoning about data that passes via messages. Messages have two components.

5

Message types such as rsend are encoded as integers as the �rst component of a
message. The second component is a list of integers that encodes the message's
arguments.

Expressions and commands are de�ned as functions on state. De�ne exp to be
state ! Z, and, as in Section 2, de�ne com to be state ! state. The commands
and expressions used in Figure 1 are de�ned as functions over these types, and
Nuprl's display forms are used to give their applications conventional notations.
We use a dot notation for the value of a command or expression in a state, such
as e � s for (es).

A program is de�ned as a pair containing a list of commands and an initial
condition which is a predicate on state (of type state ! P1 where P1 is the type of
Nuprl propositions). The initial condition must at least require that the history
start out empty. In our model, a command is enabled if it changes the state when
applied. Thus commands whose guards are true but do not change the state are
considered disabled. A trace is de�ned in the usual way as a function of type
N ! state. A predicate trace of encodes the restriction that for any n, there is
an action such that when applied to state n results in state n + 1. Temporal
operators such as G (always) and F (eventually) are de�ned as predicates on
traces (of type trace ! P1) using a fairly direct encoding of the de�nitions in [9].
We then de�ne the notion of a property being valid of a program P in the usual
way as P j= i� 8tr : trace :trace of (P; tr)! (tr). In [6], the automation that
we developed for the veri�cation of protocols in Nuprl was discussed in detail. In
the present work, we draw mainly on the machinery for rewriting, which draws
on a large body of equality theorems for protocols. We will see some examples
in Sect. 7.

4 Overview of Data Abstraction

In this section, we give an overview of the form of data abstraction used in our
case study. Suppose we are given a program P and a property of traces of
the program, and we want to verify whether P j= , i.e. whether all traces of P
satisfy . Suppose P contains a variable v that can take on an arbitrarily large
number of data-values. We may be able to perform \data-value abstraction"
on v to create an abstract program P 0 and an abstract property 0 such that
P 0 j= 0 , P j= and such that v takes on values from a smaller set during
execution of P 0.

We �rst discuss how to compute an abstract program from a concrete pro-
gram, and then discuss some su�cient conditions, that can be checked statically,
under which this abstraction is safe.

In our example program in Fig. 1, the data that we are particularly interested
in and whose values we want to abstract is the value that gets assigned to the
identi�er sent. The
ow of this value through the program execution is important
for proving both the data delivery property and the order preservation property
mentioned in the �gure. We formalize this
ow as a set of identi�ers that are
a�ected by the value of sent. We must also consider communication via message

6

bu�ers. To take this into account, we de�ne a message reference to be a pair
hT; ii where T is a message type, and i is natural number denoting a position
in the list of arguments to a message. A data reference of a program is either
a program variable or a message reference. For example, the value of sent gets
passed via the message reference hqsend ; 0 i.

From now on, we will use d to denote the set of all data references possibly
a�ected by the values of the variable(s) being abstracted. In our example, we
have

d = fsent; hqsend; 0i; data; hrsend; 0i; rdata; rcvdg:

Clearly it is often possible to compute a suitable d, but we have not done this
in our case study and so we do not elaborate on it.

Our Nuprl development is paramterized with respect to the abstraction func-

tion ', also called a collapsing function, that will map the values taken on by
the data references in d to a small �nite domain.

In our running example, in order to verify the data delivery property in Fig. 1
we will abstract the data values to a two valued abstract domain. For instance, we
can use the functions 'y , parameterized by the y of our data delivery property,
de�ned by 'y(n) := (if n = y then y else �1). Using this function corresponds
to tracking the delivery of the data-value y. The value �1 represents all other
concrete values.

The abstraction function 'y is parameterized by y, so we would need to
generate a new abstract program for every y of interest. However, note that in
our example, the only processes to assign to sent are the processes sd, and that
the possible assigned values are f0 : : : n�1g. The protocol is symmetric on these
values: if we apply a permutation of theses values to the right-hand-sides of all
assignments of constants to sent , then we get the same protocol. Because of this
symmetry, checking the data-delivery property for an arbitrary y in f0 : : : n�1g
is the same as checking it for y = 0.

We can compute the abstract program P 0, given �, as follows. First compute
d, and then, for all u 2 d, replace any constraint u = n in the initial condition
of P , where n is a constant, by u = '(n), and replace any assignment u := expr

(and any check u = expr) in any action of P by u := '(expr) (u = '(expr)). If
we know that data values are only passed around and not manipulated in d (and
if we know that the property we want to verify satis�es certain properties) then
we are guaranteed that our data-value abstraction preserves enough information
to verify property .

We make this abstraction method more precise as follows. Suppose that:
D = f0 : : : d� 1g, m 2 D, d is a set of data references, � 2 int ! D, P and P 0

are programs, and is a predicate on traces. We �rst describe how to lift ' (the
abstraction function) to states and traces. In particular, we de�ne a function on
states, denoted
'

d
, where ' is the function to be lifted and d is a set of data

references. The collapsed state
'
d
(s) is obtained from state s by mapping the

value of each program variable x in d to '(x:s) and applying ' to each value t
such that there is a message reference hT; ii in d and t is the ith argument to a
message of type T in the history component of s. We will often just write
 when

7

' and d are obvious from context. Traces being in�nite sequences of states, we
de�ne (
'

d
(tr)):i =

'
d
(tr:i) where tr:i denotes the ith state in the trace tr, for

any natural number i. Note that we overload
'
d
. Let trace(P) denote the set of

all valid traces of program P .
Conditions for P 0 to be a correct abstraction of P are as follows.

1. 8tr :(tr 2 trace(P)), (
'
d
(tr) 2 trace(P 0))

2. 8tr:
'
d
(tr) j= (m), tr j= (m)

3. For all permutations f of D, 8tr :(tr 2 trace(P)), (
f
d
(tr) 2 trace(P))

4. For all permutations f of D, and for all m 2 D, 8tr: tr j= (m),

f
d
(tr) j=

 (f(m))

If the above conditions hold true then P 0 j= (m) i� P j= 8 y2D: (y):
Our Nuprl proof captures su�cient conditions for (1) and (3) to hold. The

extracted program will check that these conditions hold for a given P (P 0 will
be a function of P). We have not formalized the syntax of temporal logic, so our
program does not check any su�cient conditions for . In particular, conditions
(2) and (4) are proved by hand on a case-by-case basis.

A generic su�cient condition for condition (1) is that the control
ow of
program P is completely independent of the values of the data references in d.
For example, there can be no conditional branching on the value of variables
in d. Additionally, the initial condition of the program and the guards of the
program actions must be independent of the values of the data references in d.
As we will see in Sect. 7, this property can be de�ned formally as a static check
on programs.

A su�cient condition for (3) is similar to the one for (1), except that we
additionally require that in any action a containing an assignment x := n, where
n 2 D and x is in d, all assignments in a of constants to members of d have n
as the right-hand side, and, furthermore, for every other k 2 D, there is another
action a0 such that a0 is the result of replacing in a each assignment of the form
z := n by z := k.

5 De�ning Representability in Nuprl

In this section, we de�ne representability of commands which, as mentioned,
allows us to reason semantically about data abstraction, while implicitly con-
structing a program that operates on syntax. In the interests of compactness, in
this section, as well as later sections, we will usually use a more mathematical
style of presentation instead of giving exactly what would would appear in the
theorem prover. The di�erences in presentation are minor notational ones.

To talk about the representability of commands, we also need to de�ne the
representability of expressions. In both cases, we parameterize by a state invari-
ant, since ultimately we will only want a program and its representation to be
equivalent on certain states. In our case, we only need to consider states col-
lapsed by
. We de�ne equality up to invariant I of functions on states (such

8

as expressions and commands), written as =I , as equality of values on all states
satisfying I .

Representability of expressions, denoted RI(e) or R[I](e), is inductively de-
�ned below. We omit the types of bound variables when they are clear from
context. RI(e) is true i�

e =I false _ e =I true _ [9n : Z :e =I n] _ [9x : id:e =I x]
_ [9b; e1; e2:(RI (b) ^ RI(e1) ^ RI(e2)) ^ e =I (if b then e1 else e2)]
_ [9e1; e2:RI(e1) ^ RI(e2) ^ (e =I (e1 + e2) _ e =I (e1 � e2) _ e =I (e1 = e2)

_ e =I (e1 _ e2) _ e =I (e1 ^ e2))]
_ [9e0:RI(e

0) ^ e =I :e
0]

We use several abbreviations here. For example, n in the equality e =I n denotes
�s:n and x in the equality e =I x denotes �s:(x:s). Note that we overload the
operators in binary expressions. For example ^ also denotes the conjunction of
Nuprl.

Representability of commands is parameterized by an invariant, as above, and
also by a predicate on commands. Intuitively, RI;Q(c) (also denoted R[I;Q](c))
means that c is representable, up to I , in such a way that for each subcommand c0,
Q is true and c0 preserves I . The exact right-hand side in Nuprl of the de�nition
of RI;Q(c) (denoted rcom[I,Q] in Nuprl) is the following

(c =[I] skip

_ (9x:id. 9e:zexp. rexp[I] e ^| c =[I] x:=e)

_ (9c1,c2:com. (rcom[I,Q] c1 ^ rcom[I,Q] c2) ^| c =[I] (c1 ;c2))

_ (9b:zexp 9c1,c2:com

(rexp[I] b ^ rcom[I,Q] c1 ^ rcom[I,Q] c2)

^| c =[I] (if b then c1 else c2))

_ (9b:zexp. 9c':com. (rexp[I] b ^ rcom[I,Q] c') ^| c =[I] b --> c')

_ (9p:PId 9d:zexp 9M:Z. 9as:zexp List.

(rexp[I] d ^ 8(rexp[I];as)) ^| c =[I] d!M(as))

_ (9p:PId. 9c':com. 9M:Z. 9as:id List.

rcom[I,Q] c' ^| c =[I] p?M(as) --> c'))

^| (Q c ^ (8s:state. I s) I (c s)))

The occurrence of 8 applied to two arguments has the meaning that the property
(the �rst argument) holds of every element of the list (the second argument).
The operator ^| is an alternate de�nition of conjunction in Nuprl which roughly
makes the right hand side computationally insigni�cant, so that an extracted
program producing a witness for the conjunction will only produce witnessing
information for the left hand side. Using such alternate de�nitions can dramat-
ically improve the computational e�ciency of extracted programs.

For representability of programs, in addition to commands, we must represent
the initial condition predicate. We choose to represent it as a command that
only sets variable values. The initial states are those that result from running
this command on a state with an empty history. We overload R again and use
RI;Q(P) and R[I;Q](P) to denote representability of programs. A program is
representable if the initial state command is representable and each of the actions
are representable. We omit its precise de�nition.

9

6 Main Results of the Nuprl Formalization

In this section, we discuss the culminating theorems of our formal proof devel-
opment in Nuprl and illustrate how the program we extract from the formal
proofs computes a data-abstracted version of a concrete program as long as the
concrete program satis�es the condition that the control
ow is independent of
the data-values. We �rst give some additional de�nitions.

Instead of stating control/data independence explicitly as a requirement on
programs, we will prove the theorems in such a way that the extracted program
is a partial function that will succeed if the condition is satis�ed and will fail
otherwise. To do so, we use the possibility operator de�ned in Section 2.

In addition to lifting ' to states and traces as in Section 4, we also lift it
to commands and programs. For commands, we have
'

d
(c) = (
'

d
� c). Thus,

applying a collapsed command is the same as applying a command to a state and
then collapsing the state. For a program P � has; Ii (as is the list of commands,
I denotes the initial condition), we have

'
d
has; Ii = hmap (
'

d
) as; �s:9s0:(s =

'
d
(s0) ^ I(s0))i

where map is the usual mapping function on lists, and the �rst occurrence of
'
d

on the right hand side denotes the collapsing function for commands, while the
second denotes the collapsing function for states. The function
'

d
on programs

gives us a semantic notion of abstract program, which we call the pseudo-abstract
program.

There are two main theorems. The �rst of these is

8drs:dref List. 8phi:(idempotent).

8p:prog. 8psi: { f:trace ! P | respects(f;
[drs;phi]) }.

rprog p

) (8e:zexp. rexp e) rexp (phi o e))

) ?(rprog[im(
[drs;phi]),�] (
[drs;phi] p)

^| (p |= psi ()
[drs;phi] p |= psi))

This theorem says that given a list of data references, an idempotent collapsing
function on integers, a representable program, and a temporal property satisfying
a certain condition, then possibly the pseudo-abstract program is representable
(up to states in the image of the abstraction function) and is equivalent with
respect to the property psi. The hypothesis about phi is a technical detail that
is explained later. We have de�ned specialized display forms for some operators
in Nuprl, so, for example, rprog[I,Q] displays as just rprog in the case that
both I and Q are �x. True.

The second theorem is

8drs:dref List. 8d:N. 8p:prog.

rprog p

) (8psi: { f:Z ! trace ! P | perm_inv(d;drs;f) }

?(#(8y0:Nd. (8y:Nd. p |= psi y) () p |= psi y0)))

10

This says that if psi is a function from integers to temporal properties satisfying
a certain permutation invariance property, then possibly for all y0 in the set
f0; : : : ; d� 1g, the program satis�es psi at all y i� it satis�es it at y0.

We apply our abstraction method to a particular program P (which we as-
sume has been entered into Nuprl as a member of type prog) and to a particular
function from integers to temporal properties, by doing the following.

1. Prove a theorem that P is representable.
2. Prove that satis�es the condition in the second theorem above, and that
 (0) satis�es the condition in the �rst theorem.

3. Run the extraction of the second theorem with arguments d, some natural
number d , P and the extracted program from the representability theorem.
If the result is of the form inl(:), then the property under the ? holds and
so it su�ces to check the program satis�es (0); otherwise halt.

4. Run the extract from the �rst theorem on appropriate inputs. If the result
is of the form inl(x), then x will encode a representation of the abstracted
program.

Part (1) has been automated. Part (2) is manual and corresponds to parts (2)
and (4) of Section 4. In part (3), the list d must be entered manually. It would
be straightforward to write an ML function to compute such a list given P ,
but we have not done this. We have implemented a procedure that takes the
encoding produced by step (4) and makes it readable. We have proven theorems
which condense some of the steps above, and particularize to a particular class of
phi's so as to eliminate the condition on phi in the �rst theorem, but we believe
the above account is clearer. We have not bothered implementing uninteresting
procedures to take ascii representations of protocols to Nuprl representations,
nor to completely glue together the steps above.

We have applied our method to an instance of the program in Fig. 1. Let
P0 be the instance with the 3 data values f0; 1; 2g and a queue of length 8.
We choose the function '0, take d = 3, and take (y) to be G(sent = y)
F (rcvd = y)). We also use the six-element set given earlier as as the set d

of data references. Applying the steps above succeeds, and yields the result
below. We use the following abbreviation where e is any expression: F (e) :=
(if e = 0 then 0 else �1).

Initial Condition:
�s:9s 0[(s 0:2 = nil) ^ s = (sent := �1 ; sent := F (sent);

data := F (data); rdata := F (rdata); rcvd := F (rcvd); skip)(s 0)]

(r1) true �! s!request
(r2) buf [r]?rsend(rdata) �! rcvd := (F (rdata)
(s2) buf [s]?request �! sent := F (2); q !qsend(F (sent); 0)
(s1) buf [s]?request �! sent := F (1); q !qsend(F (sent); 0)
(s0) buf [s]?request �! sent := F (0); q !qsend(F (sent); 0)
(q8) buf [q]?qsend(data; i) �!

if i = 8 then r !rsend(F (data)) else i := i + 1 ; q !qsend(F (data); i) �

Because the steps succeeded, it is guaranteed that checking 8 y2f0 : : :2g: (y)
holds for P0 is equivalent to checking that (0) holds for the above program. Note

11

that some trivial simplications are possible, for example reducing or eliminating
some applications of F , and collapsing the identical actions s1 and s2. These
simplications would be straightforward to implement, but we have not done so
yet.

We wrote a small Nuprl program, given below, to glue together the com-
putational parts for this example. The evaluator for Nuprl programs is a basic
call-by-need interpreter, and so is quite slow. We implemented a simple-minded
general program optimizer before running the example program. The example
terminated in about 5 seconds (on a 400MhZ PC).

Below is a closed Nuprl term whose evaluation produces the representation
of the abstracted program.

let phi = phi_eg(0) in let psi = �y.psi_eg1(y) in

let p = sqr_inst1 in let p_rep = ext{sqr1_rep} in

let drs = sqr_drs1 in let phi_rep = ext{phi_eg_rep} 0 in let d = 3 in

if isl(ext{poss_data_indep} drs d p p_rep psi)

then let res = ext{abs_thm_2} drs phi p (psi 0) p_rep phi_rep in

if isl(res) then outl(res) else "No" fi

else "No" fi

The expressions ext{abs_thm_2} and ext{poss_data_indep} name the respec-
tive programs extracted from the two theorems discussed in section 6. Recall that
both of these programs produce a value in a disjoint union. The program above
�rst uses poss data indep to test if the example program (bound to p, with
representation bound to p rep) satis�es the permutation invariance property
expressed in the second theorem. If so (i.e. if the result is in the left part of the
disjoint union), then it runs abs thm 2, testing the result for success using isl.
In the unsuccessful cases, "No" is returned.

We could have typechecked the above program to ensure that we put the
pieces together properly, and that the result satis�es the desired properties.
Doing this typechecking would have entailed proving the appropriate conditions
on psi. We just proved these separately.

The output of this program is an explicit piece of data that completely spec-
i�es the required abstract program. However, it is rather hard to read, involving
numerous injections into disjoint sums, and also junk such as parts of the pro-
gram's semantics. To help with readability, we implemented a conventional kind
of recursive data type in the type theory for representing terms and expressions,
and extracted a function that translates to this second representation. From this
latter representation, we obtained by inspection the form of the result given in
section 6.

7 Some Details of the Nuprl Proofs

Most of the work in the proof is related to conditions (1) and (3) of Section 4
and is independent of the kind of temporal properties being checked. We give
details only on the parts related to condition (1). Most of the work related to
condition (3) is similar. The work related to condition (1) is divided into three

12

main theorems. These theorems form the bulk of the proof of the �rst \top-
level" theorem given Section 6. We discuss each theorem below, and describe
a few example steps of their proofs. In what follows, we are taking the P 0 in
condition (1) to be the pseudo-abstract program
(P).

For all three theorems, we assume that P is some program, d a set of data
references, and ' an idempotent function on integers. The idempotence require-
ment is necessary to show that certain commands satisfy the homomorphism
property discussed below.

The �rst theorem says that condition (1) holds assuming that for all com-
mands c in P , (
�c) = (
�(c�
)). We call this latter property the homomorphism

property on commands, and denote it as hom
(c). The reason that we consider
this property is that it is a simple semantic su�cient condition for the control

ow of P to be independent of the data references in d.

Let be a temporal property, i.e. a predicate on traces. De�ne respects(; F)
i� 8tr: (tr), (F (tr)) holds. Our �rst theorem is the following.

Theorem 1. Suppose R[True; hom

'

d

](P) holds, and let be a temporal prop-

erty such that respects(;
'
d
). Then P j= ,

'
d
(P) j= .

The second theorem embodies a check of a syntactic su�cient condition for
the condition R[True; hom

'

d

](P) of 1.

Theorem 2. If R[True; T rue](P) then ?R[True; hom

'

d

](P).

We prove this theorem by induction on representability, considering a case
?R[True; hom
](c) for each type of command c, and then proving the prop-
erty R[True; hom
](c) for the commands where it can be seen to hold according
to our su�cient condition. If we were using an explicit approach to syntax, this
inductive argument would correspond to a proof by induction over syntax trees
that (possibly) the homomorphism property holds of the meaning of a tree and
all of its subtrees.

One of the base cases of the induction is when c = (x := e). In this case,
we do a case analysis on x 2 d. In the case x 62 d, we use a lemma whose
conclusion is ?(e = (e �
)), which says that possibly e's value is independent of

. The lemma is proved by induction on the representability of e. In the case
x 2 d, we do a case analysis on the representation of e. In the cases where e
is a constant or a variable, we know that R[True; hom
](x := e). In the other
cases, we prove ?R[True; hom
](x := e) the trivial way, by introducing the right
disjunct of the de�nition of ?. The hardest part of the proof of Theorem 2 is the
cases for the commands for sending and receiving messages, where we have to
make a correspondence between message data references and the argument list
of the command.

To obtain a program that computes abstracted speci�cations, we must show
that the pseudo-abstract program
'

d
(P) is representable. This involves showing

that its initial condition can be expressed as a property on states, and that each
of the commands (
�c) of
(P) can be represented as a command in the guarded
command language. The program representing
'

d
(P) need only be equivalent

13

to
'
d
(P) on collapsed states, that is, states in the image of the function
. We

express this notion formally via a predicate on states, denoted im
 , de�ned by
im
(s) i� 9s

0 : state: s =
(s0). We need the additional condition on ' that for
any expression that is representable, (' � e) is also representable.

Theorem 3. Suppose that for any expression e, R[True; T rue](e) implies

R[True; T rue](' � e). If R[True; hom

'

d

](P), then R[im

'

d

; T rue](
'
d
(P)).

The proof is by induction on R[True; hom

'

d

](P). For the case c = (x := e), if

x 2 d, then we use the fact that (
 � c) = (
 � (c �
)) to show that (
 � (x := e))
is equivalent to x := (' � e). Because of the assumption on �, we know that
x := (' � e) is representable.

8 Conclusion

Using the example of data-value abstraction, we have veri�ed the correctness of
an abstraction method for speci�cations satisfying a particular su�cient condi-
tion on their syntax. We have exploited the constructivity of Nuprl to extract
a program which can compute the abstract speci�cation corresponding to any
concrete speci�cation satisfying the su�cient condition. Most importantly, we
were able to do so using only semantic reasoning.

It is unlikely that the approach of dealing with syntax implicitly will always
be preferable. This is not a problem, since it can easily coexist with the explicit
approach. For example, we could de�ne a conventional recursive type of abstract
syntax trees, write a meaning function, and prove that for every representable
program there is a tree whose meaning is the program.

Our work was complicated somewhat by our choice of protocol language
and its formalization. In particular, since commands are functions on states,
instead of relations, non-deterministic commands cannot be represented. With
non-determinism, one can include a command that non-deterministically chooses
one from an indexed set of commands | this would have been a more natural
choice for the actions sd, and would have obviated the need, in the su�cient
condition for symmetry, for �nding actions that are similar up to constants
on right-hand sides of assignments. Another complication due to the protocol
language is its lack of types. This language was developed inside Nuprl to support
reasoning about particular protocols, and not for metareasoning about programs.

The precise form of inductive de�nition mechanism implemented in standard
Nuprl [4] is not valid in the classical extension [8] used here. It is not too di�cult
to adapt it, but we have not done so yet and hence have simply axiomatized the
two inductive de�nitions we needed.

We believe that our results can be extended to deal with temporal properties
in the same way as programs. One di�culty is dealing with binding expressions
such as universal quanti�cation. It might be possible to deal with universal
quanti�cation by using a program variable in place of the quanti�ed variable. We
should also be able to extend the results to data-path abstraction, for example
collapsing the queue in our example.

14

It should be possible to use our techniques in other theorem provers based
on constructive type theory. Classical theorem provers could also formalize the
same notion of representability, but it would likely be much less useful, since
representability would not encode syntax, and theorems whose conclusion is an
application of the possibility operator would be vacuous.
Acknowledgements. The authors would like to thank R. P. Kurshan for suggest-
ing the example data-abstraction problem and for useful discussions. The third
author would also like to thank Bell Labs for providing the opportunity to work
on this problem through a summer internship.

References

1. R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel. Ex-
perience with embedding hardware description languages in HOL. In International
Conference on Theorem Provers in Circuit Design, pages 129{156. North-Holland,
1992.

2. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In
Proc. 19th Ann. ACM Symp. on Principles of Prog. Lang., Jan. 1992.

3. R. L. Constable. A note on complexity measures for inductive classes in construc-
tive type theory. Information and Computation, 143(2):137{153, 1998.

4. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.

5. J. Dingel and T. Filkorn. Model checking for in�nite state systems using data
abstraction, assumption-commitment style reasoning and theorem proving. Pro-
ceedings of the Seventh International Conference on Computer Aided Veri�cation
(CAV '95), Vol. 939 of Lecture Notes in Computer Science, pages 54{69, 1995.

6. A. P. Felty, D. J. Howe, and F. A. Stomp. Protocol veri�cation in Nuprl. In
Tenth International Conference on Computer Aided Veri�cation, pages 428{439.
Springer-Verlag Lecture Notes in Computer Science, June 1998.

7. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol veri�cation. In Proceedings of Formal Methods in Europe (FME), 1996.

8. D. J. Howe. Semantics foundations for embedding HOL in Nuprl. In Alge-
braic Methodology and Software Technology, pages 85{101. Springer-Verlag Lecture
Notes in Computer Science, 1996.

9. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer Verlag, 1991.

10. O. M�uller. A Veri�cation Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, Technische Universit�at M�unchen, 1998.

11. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model checking with
automated proof checking. In Proceedings of the Seventh International Conference
on Computer Aided Veri�cation (CAV '95), Vol. 939 of Lecture Notes in Computer
Science, pages 84{97. Springer-Verlag, 1995.

12. C. Sprenger. A Veri�ed Model Checker for the Modal �-calculus in Coq. Proceed-
ings of TACAS98, pages 167{182, 1998.

13. P. Wolper. Expressing interesting properties of programs in propositional temporal
logic. In Proc. 13th Ann. ACM Symp. on Principles of Prog. Lang., Jan. 1986.

15

