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Abstract. Software fault localization involves locating the exact cause
of error for a “failing” execution run – a run which exhibits an unexpected
behavior. Given such a failing run, fault localization often proceeds by
comparing the failing run with a “successful” run, that is, a run which
does not exhibit the unexpected behavior. One important issue here is
the choice of the successful run for such a comparison. In this paper,
we propose a control flow based difference metric for this purpose. The
difference metric takes into account the sequence of statement instances
(and not just the set of these instances) executed in the two runs, by
locating branch instances with similar contexts but different outcomes
in the failing and the successful runs. Given a failing run πf and a pool of
successful runs S, we choose the successful run πs from S whose execution
trace is closest to πf in terms of the difference metric. A bug report is then
generated by returning the difference between πf and πs. We conduct
detailed experiments to compare our approach with previously proposed
difference metrics. In particular, we evaluate our approach in terms of
(a) effectiveness of bug report for locating the bug, (b) size of bug report
and (c) size of successful run pool required to make a decent choice of
successful run.
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1 Introduction

Debugging is an important program development activity. In the past few years,
substantial research has been conducted to improve debugging tools by identi-
fying the error cause of an observable error with higher degree of automation [3,
7, 11–13, 18]. These fault localization approaches compare the failing execution
run, which exhibits the observable error, with one that does not. Most of the
research in this topic has focused on how to compare the successful and failing
execution runs. In this paper, we present a control flow based difference metric to
choose a successful run from a pool for such a comparison; the pool of successful
program runs could be constructed by picking successful runs from a test-suite of
program inputs. Our difference metric measures “similarity” between execution
runs of a program. Given a failing run πf and a pool of successful runs S, we



1. while (lin[i] != ENDSTR) {
2. m=...

3. if (m >= 0) {
4. ...

5. lastm = m;

6. }
7. if ((m == -1) || (m == i)) {
8. ...

9. i = i + 1;

10. }
11. else

12. i = m;

13. }
14. ...

Fig. 1. An example program fragment.

select the most similar successful run πs ∈ S in terms of the difference metric,
and generate a bug report by returning the difference between πf and πs.

Our difference metric considers branch instances with similar contexts but
different outcomes in two execution runs, because these branch instances may
be related to the cause of error. When these branch instances are evaluated
differently from the failing run, certain faulty statements may not be executed —
leading to disappearance of the observable error in the successful run. Consider
the program fragment (from a faulty version of replace program in the Siemens
benchmark Suite [6, 14] — simplified here for illustration) in Figure 1, where the
bug fix lies in strengthening the condition in line 3 to if ((m >= 0) && (lastm
!= m)). This piece of code changes all substrings s1 in string lin matching a
pattern to another substring s2, where variable i represents the index to the
first un-processed character in string lin, variable m represents the index to the
end of a matched substring s1 in string lin, and variable lastm records variable
m in last loop iterations. At the ith iteration, if variable m is not changed at
line 2, line 3 is wrongly evaluated to true, and substring s2 is wrongly returned
as output, deemed by programmer as an observable “error”. The execution of
the ith iteration of this failing run πf could follow path 〈1, 2, 3, 4, 5, 7, 8, 9〉. In
this case, a successful run πs whose ith iteration follows path 〈1, 2, 3, 7, 8, 9〉 can
be useful for error localization. By comparing πf with πs, we see that only the
branch at line 3 is evaluated differently. Indeed this is the erroneous statement
in this example, and was pinpointed by our method in the experiment. For
programs whose erroneous statement is not a branch, our method will try to
report the nearest branch for locating the error.

Summary of Results The main results of this paper are as follows. We propose a
control-flow based difference metric to compare execution runs (i.e. data flow in
the runs is not taken into account). We take the view that the difference between
two runs can be summarized by the sequence of comparable branch statement
instances which are evaluated differently in the two runs. This difference metric
is used to choose a successful run from a pool of successful runs for automated
debugging. We return as bug report the branch statements whose instances (1)
have similar contexts, and (2) are evaluated differently in the failing run and
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the selected successful run. We experimentally evaluate the quality of our bug
report, the volume of our bug report, and the impact of successful run pool size
on the quality of our bug report. We also share some experience in using our
method for debugging real-life programs.

2 Related work

In this section, we discuss work on localizing software errors. There have been a
lot of techniques [1, 3, 7, 10–13, 18] proposed for automatic program error local-
ization by comparing successful and failing runs of the buggy program. These
techniques compare different characteristics of execution runs, e.g. acyclic paths
[13], potential invariants [11], executed statements [1, 7, 15], basic block profiling
[12], program states [3, 18], predicates [10] or return value of methods [9]. Unlike
our method, most of these works focus on how to compare successful and failing
execution runs to generate accurate bug reports.

The focus of our method is to choose a successful run from a given pool of
successful runs, provided we have access to the failing run. In other words, we
do not (semi)-automatically generate the successful run. Generating a successful
run (and a corresponding input) close to a given failing run has been studied in
various papers [2, 5, 19], including our past work [17].

Our difference metric bears similarities to the notion of proximity between
runs proposed by Zeller et al. in [3, 18]. Their approach compares program states
with similar contexts for fault localization at some control locations. Through
a series of binary search over the program state and re-executing (part of) the
program from “mixed” states, a set of variables which may be responsible for the
bug are mined and reported. However, these “mixed” states may be infeasible.
Furthermore, it may be quite costly to compare program states and to re-execute
the program several times.

The work of Renieris and Reiss [12] is related to ours. They have demon-
strated through empirical evidence that the successful run which is “closest” to
the failing run can be more helpful for error localization than a randomly selected
successful run. However, [12] measures the proximity of two runs by comparing
the set of basic blocks1 executed in each run. Thus, they cannot distinguish be-
tween runs which execute exactly the same statements but in different order —
consider the program for (....){ if (...) S1 else S2 } and the two exe-
cution runs 〈S1, S2〉, 〈S2, S1〉. We consider the sequence of statements executed
in each run for determining proximity between two runs. Detailed experiments
comparing our method with [12] are reported in Section 5.

3 Measuring Difference between Execution Runs

We elaborate on the difference metric used for comparing execution runs in
this section. We consider each execution run of a program to be a sequence of
1 Actually a sorted sequence of the basic blocks based on execution counts is used;

this is different from the execution sequence of the basic blocks in the failing run.
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events 〈e0, e1, ..., en−1〉 where ei refers to the ith event during execution. Each
event ei represents an execution instance of a line number in the program; the
program statement corresponding to this line number is denoted as stmt(ei). To
distinguish events from different execution runs, we denote the ith event in an
execution run π as eπ

i , that is, the execution run appears as a superscript. We
will drop the superscript when it is obvious from the context.

Our difference metric measures the difference between two execution runs π
and π′ of a program, by comparing behaviors of “corresponding” branch state-
ment instances from π and π′. The branch statement instances with differing
outcomes in π, π′ are captured in diff(π, π′) – the difference between execu-
tion run π and execution run π′. In order to find out “corresponding” branch
instances, we have defined a notion of alignment to relate statement instances
of two execution runs. Our alignment is based on dynamic control dependence.
Given an execution run π of a program, an event eπ

i is dynamically control depen-
dent on another event eπ

j if eπ
j is the last event before eπ

i in π where stmt(eπ
i ) is

statically control dependent [4] on stmt(eπ
j ). Note that any method entry event

is dynamically control dependent on the corresponding method invocation event.
We use the notation dep(eπ

i , π) to denote the event on which eπ
i is dynamically

control dependent in run π. We now present our definition of event alignment.

Definition 1 (Alignment) For any pair of event e in run π and event e′ in
run π′, we define align(e, e′) = true (e and e′ are aligned) iff.

1. stmt(e) = stmt(e′), and
2. either e, e′ are the first events appearing in π, π′ or

align(dep(e, π), dep(e′, π′)) = true.

When a branch event eπ
i cannot be aligned with any event from the execu-

tion π′, this should only affect alignments of events in π which are transitively
dynamically control dependent on eπ

i . In addition, the ith iteration of a loop in
the execution π will be aligned with the ith iteration of the same loop in the
execution π′, in order to properly compare events from different loop iterations.

A simple illustration of alignment appears in Figure 2; here π, π′ and π′′

represent three execution runs of the program segment in Figure 1 (page 2). In
Figure 2, events along the same horizontal line are aligned. From this example,
we can see that events in the ith loop iteration in run π are aligned with events
in the ith loop iteration in run π′.

According to the notion of alignment presented in Definition 1, for any event
e in π there exists at most one event e′ in π′ such that align(e, e′) = true.
The difference between π and π′ (denoted diff(π, π′)) captures all branch event
occurrences in π which (i) can be aligned to an event in π′ and (ii) have different
outcomes in π and π′. Formally, the difference between two execution runs can
be defined as follows.

Definition 2 (Difference Metric) Consider two execution runs π, π′ of a pro-
gram. The difference between π, π′, denoted diff(π, π′), is defined as:

diff(π, π′) = 〈eπ
i1 , . . . , e

π
ik
〉
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π
11
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π''
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512
713

1214
1415

Execution Run
π   π' π   π''

Alignment
diff(π, π') diff(π, π'')

•

•

•

•

Difference

Fig. 2. Example to illustrate alignments and difference metrics. The first three columns
show the event sequences of three execution runs π, π′ and π′′ of the program fragment
in Figure 1 (page 2). Next two columns show alignments of (π, π′) and (π, π′′), where
solid lines indicate aligned statement instances and dashed lines indicate unaligned
statement instances. The last two columns show the difference between execution runs.

such that

1. each event e in diff(π, π′) is a branch event occurrence drawn from run π.
2. the events in diff(π, π′) appear in the same order as in π, that is, for all

1 ≤ j < k, ij < ij+1 (event eπ
ij

appears before event eπ
ij+1

in π).
3. for each e in diff(π, π′), there exists another branch occurrence e′ in run π′

such that align(e, e′)=true (i.e. e and e′ can be aligned). Furthermore, the
outcome of e in π is different from the outcome of e′ in π′ 2.

4. all events in π satisfying criteria (1) and (2) are included in diff(π, π′).

As a special case, if execution runs π and π′ have the same control flow, then
we define diff(π, π′) = 〈eπ

0 〉.

Clearly we can see that in general diff(π, π′) 6= diff(π′, π). The reason for
making a special case for π and π′ having the same control flow will be explained
later in the section when we discuss comparison of differences.

Consider the example in Figure 2. The difference between execution runs
π and π′ is: diff(π, π′) = 〈33, 714〉, as indicated in Figure 2. This is because
branch instances 33, 714 are aligned in runs π and π′ and their outcomes are
different in π, π′. If the branches at lines 33, 714 are evaluated differently, we
get π′ from π. Similarly, the difference between execution runs π and π′′ is:
diff(π, π′′) = 〈76, 714〉.

Why do we capture branch event occurrences of π which evaluate differently
in π′ in the difference diff(π, π′) ? Recall that we want to choose a successful

2 Since e, e′ can be aligned, they denote occurrences of the same branch statement.
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run for purposes of fault localization. If π is the failing run and π′ is a successful
run, then diff(π, π′) tells us which branches in the failing run π need to be
evaluated differently to produce the successful run π′. Clearly, if we have a
choice of successful runs we would like to make minimal changes to the failing
run to produce a successful run. Thus, given a failing run π and two successful
runs π′, π′′, we choose π′ over π′′ if diff(π, π′) < diff(π, π′′). This requires us
to compare differences. How we do so is elaborated in the following.

Definition 3 (Comparison of Differences) Let π, π′, π′′ be three execution
runs of a program. Let

diff(π, π′) = 〈eπ
i1 , e

π
i2 , . . . , e

π
in
〉 and diff(π, π′′) = 〈eπ

j1 , e
π
j2 , . . . , e

π
jm
〉

We define diff(π, π′) < diff(π, π′′) iff there exists an integer K ≥ 0 s.t.

1. K ≤ m and K ≤ n
2. the last K events in diff(π, π′) and diff(π, π′′) are the same, that is,

∀0 ≤ x < K in−x = jm−x.
3. one of the following two conditions holds

– either diff(π, π′) is a suffix of diff(π, π′′), that is, K = n < m
– or the (K + 1)th event from the end in diff(π, π′) appears later in π as

compared to the (K + 1)th event from the end in diff(π, π′′), that is,
in−K > jm−K .

Thus, given a failing run π and two successful runs π′, π′′ we say that
diff(π, π′) < diff(π, π′′) based on a combination of the following criteria.

– Fewer branches of π need to be evaluated differently to get π′ as compared
to the number of branches of π that need to be evaluated differently to get
π′′. This is reflected in the condition K = n < m of Definition 3.

– The branches of π that need to be evaluated differently to get π′ appear closer
to the end of π (where the error is observed), as compared to the branches
of π that need to be evaluated differently to get π′′ . This is reflected in the
condition in−K > jm−K of Definition 3.

To illustrate our comparison of differences, consider the example in Figure 2.
Recall that diff(π, π′) = 〈33, 714〉, and diff(π, π′′) = 〈76, 714〉, as illustrated by
the “•” in the last two columns of Figure 2. Comparing 〈33, 714〉 with 〈76, 714〉, we
see that 〈76, 714〉 < 〈33, 714〉 since statement instance 76 occurs after statement
instance 33 in execution run π.

According to the comparison of differences in Definition 3, we favor last
differing branch instances instead of early ones. This is because the early branch
instances (where the two runs are different) are often not related to the error.
For example, many programs check whether the input is legal in the beginning.
If we favor early branch instances, we may get failing and successful runs which
only differ in whether the input is legal for such programs. Comparing such runs
is unlikely to produce a useful bug report.
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Comparing runs with identical control flow Using Definitions 2 and 3 we can see
that if π is the failing run, π1 is a successful run with same control flow as that
of π (i.e. same sequence of statements executed by a different input) and π2 is
a successful run with control flow different from π we will have diff(π, π2) <
diff(π, π1). As a result, our method for choosing a successful run will avoid
successful runs with same control flow as that of the failing run. This choice is
deliberate; we want to find a successful run with minimal difference in control
flow from the failing run, but not with zero difference. Recall here that we
construct bug report by comparing the control-flow of the selected successful
run with the failing run. If the two runs have the same control flow, the bug
report is null and hence useless to the programmer. In our experiments, we
encountered few cases where there were some successful runs with same control
flow as the failing run; these were not chosen due to our method of comparing
differences between runs.

4 Experimental setup

In order to experimentally validate our method for fault localization, we devel-
oped a prototype implementation and conducted detailed experiments. We have
also implemented the Nearest Neighbor method with permutations spectrum,
which performs best in [12], for a comparison with our method. We employed
our prototype on the Siemens benchmark suite [6, 14] and used the evaluation
framework in [12] to quantitatively measure the quality of bug reports gener-
ated by both methods. The Siemens suite has been used by other recent works
on fault localization [3, 12]. In this section, we introduce the subject programs
(Section 4.1) and the evaluation framework (Section 4.2).

4.1 Subject programs

Table 1 shows the subject programs from the Siemens suite [6, 14] which we
used for our experimentation. There are 132 buggy C programs in the Siemens
suite, each of which is created from one of seven programs, by manually inject-
ing defects. The seven programs range in size from 170 to 560 lines, including
comments. The third column in Table 1 shows the number of buggy programs
created from each of the seven programs. Various kinds of defects have been
injected, including code omissions, relaxing or tightening conditions of branch
statements, and wrong values for assignment statements.

In the experiments, we found that there was no input whose execution run
observed the error, for two out of the 132 programs. Code inspection showed
that, these two programs are syntactically different from, but semantically the
same as correct programs. Actually, these two programs are not buggy programs,
so we ruled out them from our experiments. We slightly changed some subject
programs in our experiments. In particular, we rewrote all conditional expres-
sions into if statements. This is because our prototype collects execution traces
at the statement level, and cannot detect branches inside conditional expressions
which are evaluated differently.
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Subject Pgm. Description # Buggy versions

schedule priority scheduler 9

schedule2 priority scheduler 10

replace pattern replacement 32

print tokens lexical analyzer 7

print tokens2 lexical analyzer 10

tot info information measure 23

tcas altitude separation 41
Table 1. Description of the Siemens suite

4.2 Evaluation framework

In order to evaluate the effectiveness of a defect localizer, an evaluation frame-
work has been proposed by Renieris and Reiss [12]. This framework assigns a
score to each bug report to show the quality, defined as follows:

score = 1 − |DS∗|
|PDG|

(1)

where PDG refers to the program dependence graph of the buggy program.
Let DS(n) be the set of nodes that can reach or be reached from nodes in the
bug report by traversing at most n directed edges in the PDG. Then DS∗ is the
DS(n) with the smallest n which contains the observable error statement (or at
least one error statement if there are more than one observable errors).

The score measures the percentage of code that can be ignored for debugging.
Clearly, higher score indicates bug report with higher quality. Note that the
score only measures the utility of the bug report for debugging, it does not
necessarily correlate a good quality bug report with a lean bug report. To address
this weakness, we conducted separate experiments to measure bug report size.

5 Experimental results

We employed the prototype implementation of both our method and the Near-
est Neighbor method with permutations spectrum (NN method) [12] 3 to 130
buggy programs from the Siemens suite. The NN method compares code cov-
erage between a failing run and the “nearest” successful run from a pool of
successful runs. Through the experiments, we validate our method by answering
the following three questions.

– Is our method effective for fault localization?
– Is the size of generated bug report voluminous and overwhelming?
– How many successful runs are required available to make a decent choice of

successful run?

In this section, we present experimental results for these questions.
3 We used the accurate permutations spectrum for NN method and considered all

failing runs which had some successful run with a different spectrum. So, we can
study all the 130 programs compared to the 109 programs studied in [12] where
certain programs were ruled out based on a coarser spectrum (coverage).
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5.1 Locating the Bug

In the Siemens benchmark suite, each buggy program P comes with a large pool
of inputs, some of which result in successful runs, and others result in failing
runs. For each failing run πf , there is a set of successful runs Closest(πf ) which
are closest to πf , in terms of our difference metric or that of the NN method. The
score for a failing run πf averages scores of comparing πf against each successful
run πs in Closest(πf ), i.e.

score(πf ) =

∑
πs∈Closest(πf ) score(πf , πs)

|Closest(πf )|

where the quantity score(πf , πs)) is defined in Equation (1) in Section 4.2. The
score for a buggy program P averages scores of all failing run πf of P , i.e.

pgm score(P ) =

∑
πf∈Failing(P ) score(πf )

|Failing(P )|

where Failing(P ) refers to the set of failing runs of program P . Our method
differs from the NN method in which successful runs are selected for comparison,
and (hence) which statements are reported in bug report.

Score CF NN

0.9 - 1 23.1 10.8
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0.4 - 0.49 9.2 10.0

0.3 - 0.39 6.2 2.3

0.2 - 0.29 9.2 3.1
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Table 2. (a) Distribution of scores, and (b) Locating different kinds of errors, where
each category has 77, 38 and 18 programs, respectively. Note that the sum of programs
in each category is more than 130. This is because 3 programs have two bugs of different
kinds, and are counted in two categories.

Table 2(a) shows the distribution of pgm score for two methods. Our method
is shown as CF, an abbreviation for Control Flow based difference metric. As we
can see, our method performs a little better than the NN method on the Siemens
suite. Bug reports returned by our method achieved a score of 0.8 or better for
more than 37% of all the buggy programs, while the NN method achieved a
score of 0.8 or more for about 31% of the programs. Note that a bug report with
score of 0.8 or more indicates that programmer needs to inspect at most 20% of
a buggy program for fault localization using this bug report.
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In the above experiments, we computed the score of program P by averaging
scores w.r.t. all πs and πf . However, the programmer will often choose one closest
successful run πs and one failing run πf for comparison. Is our method sensitive
to the choice of πs and πf? First, our method is not sensitive to the choice of
closest successful run πs since any πs ∈ Closest(πf ) returns the same bug report,
that is, score(πf , πs) is the same for all πs ∈ Closest(πf ). Secondly, our method
is less sensitive to the choice of failing run πf than the NN method. We validated
this by computing variances w.r.t. choice of failing run for each fault program
in our experiments. Given a set of failing runs Failing(P ) of a faulty program
P , the variance of P is defined as:

variance(P ) =

∑
πf∈Failing(P )(score(πf ) − pgm score(P ))2

|Failing(P )|

where score(πf ) and pgm score(P ) are defined in the preceding. Using our
method, we found that the score’s variance was small (less than 0.01) for 56.6%
of all 130 faulty programs. On the other hand, using the NN method, only 42.3%
of 130 faulty programs had small variances (less than 0.01) in their scores.

Next we study the effectiveness of our technique in locating different kinds of
errors. We classified all the errors in the faulty programs into three categories:
Assignment Faults, Branch Faults and Missing Code, where Assignment Faults
refer to errors in assignment and return statements, Branch Faults refer to errors
in conditional branch statements and Missing Code refers to errors due to missing
program statements. Table 2(b) shows percentage of faulty programs in each
category where the bug reports got a score of 0.8 or better. We see that our
method was more effective in locating branch faults. For almost half of the
programs with branch faults, our method got a score of at least 0.8; this is
not surprising since the difference metric returned by our method contains only
branch statements with different outcomes in failing and successful runs. For
the same reason, our method did not fare as well in locating faulty assignments.
Since we report only branches in the bug report, the programmer has to follow
dependencies from these branches to the faulty assignment – thereby reducing
the score of our bug report. In presence of “missing code” errors, our method may
report branch statements on which missed code would have been (transitively)
control dependent.

5.2 Size of Bug Report

In the above experiments, we used scores to measure the quality of bug report
according to the evaluation framework in Section 4.2. The reader should note
that there is a fundamental difference between the bug report statements and
the statements that a programmer should inspect for debugging according to the
evaluation framework. Clearly, measuring the amount of code to be inspected
for debugging (captured by the bug report score) is important. However, we
feel that measuring the bug report size is also important. If the programmer is
overwhelmed with a voluminous bug report (e.g. 50 statements for a 500 line
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program), he/she may not even get to the stage of identifying which code to
inspect using the bug report.

Figure 3(a) shows sizes of bug reports produced by our method and NN
method. We can see the bug reports produced by our method are relatively small.
For example, more than 80% (40%) of bug reports in all the 130 faulty programs
contained less than 15 statements using our method (NN method). Considering
that programs in the Siemens suite are relatively small, reports with more than
15 statements may be too voluminous. The choice of the cutoff number 15 is not
crucial as can be seen in Figure 3(a); similar trends are observed for any small
cut-off number on the bug report size.

Recall from Table 2(a) that our method and NN method produced roughly
the same scores – 37 % (31 %) of all the 130 programs produced a score of 0.8 or
more with our (NN) method. However, if we study these buggy programs which
produced a high score (of 0.8 or more) with the two methods — we see that bug
report in 83% of them had less than 15 statements for our method, compared
to only 28% for the NN method.
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Fig. 3. (a) Size of bug report and (b) Impact of successful run pool-size

5.3 Size of Successful Run Pool

In the Siemens suite, each faulty program has a large set of test inputs (1000
– 5000). The successful run pool is constructed out of these inputs. How many
successful runs are required for the programmer to make a decent choice of
successful run? We study this in the following.

Given a program P , we selected the failing run πf whose score score(πf )
(using both our method and NN method) is closest to the score of the program
pgm score(P )) (again using both our and NN methods). The selected failing run
πf was used to study both our method and the NN method. We did not conduct
experiments w.r.t. all failing runs because it was too expensive.

Next, for every successful run πs in the available pool of the Siemens suite, we
computed the difference between πf and πs, generated a bug report by comparing
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πf and πs, and computed score(πf , πs) (refer Equation (1)). After all successful
runs were processed, their differences were sorted in ascending order. Let πi be
the successful run with ith smallest difference w.r.t. πf . The parameterized mean
score of a faulty program P for a successful run pool-size of k is:

par score(P, k) =
n∑

i=1

score(πf , πi) · p(i, k) p(i, k) =
n−iCk−1

nCk

where πf is the failing run chosen in P as mentioned above, n is the number of
available successful runs in Siemens suite, and p(i, k) is defined above. Here nCk

denotes a well-known quantity — the number of ways of choosing k items from n
distinguishable items. Clearly, p(i, k) denotes the probability that the ith-closest
successful run of the failing run is chosen as the nearest successful run of a failing
run from a pool of k different successful runs. Hence par score(P, k) captures
the statistical expectation of the score obtained for failing run πf using any pool
of k successful runs. Calculating the parameterized mean score par score(P, k)
allows us to avoid exhaustively enumerating the score of P for different successful
run pools of size k.

Figure 3(b) presents the parameterized mean scores for different values of k,
the successful run pool size. We see that both our method and NN method made
a decent choice of successful run from a pool of 5 runs and thereby achieved a
score of at least 0.8 in 25% of the 130 faulty programs. However, as the pool size
increases to 40, our method achieved a score of 0.8 or more for larger number of
faulty programs (for 35% of faulty programs). This is not the case for the NN
method, which in fact needed even larger pool sizes.

5.4 Threats to Validity

In our experiments, we used the evaluation framework of Section 4.2 to measure
the quality of bug report. However, the score computed by the framework of
Section 4.2 may not accurately capture the human efforts for fault localization
in practice. First, the framework assumes that the programmer can find the
error when he/she reads the erroneous statements. This assumption may not
hold for non-trivial bugs, where the programmer has to analyze program states.
Secondly, the evaluation framework requires the programmer to perform pure
breadth-first search for fault localization starting from statements in the bug
report. However, the programmer usually has some understanding of the buggy
program, and he/she can prune some irrelevant statements from bug report.

There are also threats to the validity of the study on successful run pool size.
In this experiment, we chose one failing run for each faulty program, instead of
studying all failing runs. Thus, if we chose some other failing run, the parame-
terized mean score for a pool of k successful runs may change. We expect that
such changes will not be significant (though it is possible), because the variances
w.r.t. all failing runs were small for most faulty programs.
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6 Experience and Discussion

In this paper, we present a control flow based difference metric to compare
execution runs. This difference metric can be used to choose a successful run
from a pool of program inputs, and compare the given failing run with the
chosen successful run for fault localization. Our experiments with the Siemens
suite indicate that our difference metric produces bug reports which are small
in size and effective in fault localization.

One important issue in a method like ours is the choice of the successful run
pool. In the last section, we reported experiments to measure the required size of
the successful run pool. However, even for a given pool-size many choices of the
pool are possible. So, how do we construct the pool? There are two solutions to
this problem. One possibility is to have a pre-defined large set of program inputs
Inp; this set of test-cases might have been generated using some notion of cov-
erage. Now given a failing run, we find out which of the inputs in Inp produces
a successful run — thereby getting a pool of successful runs. In our experiments
with the Siemens suite, we followed this approach by using the pre-defined pool
of inputs provided with each benchmark. Another way of constructing the suc-
cessful run pool is to use the input for the given failing run. We can slightly
perturb this failing input to generate a set of program inputs; we then classify
which of these perturbed inputs produce a successful run — thereby getting a
pool of successful runs. The main drawback of this approach is that it relies too
much on the programmer’s intuition in deciding what to perturb in the failing
input. Although automatic techniques such as Delta Debugging [19] exist, they
cannot be used for arbitrary programs. This is because these approaches con-
struct an input by removing part of the erroneous input. This is indeed suitable
for debugging programs like compilers, web-browsers — where the program input
is a large file. However, for other programs (e.g. programs with integer inputs)
this approach may be problematic.

We now conclude the paper by sharing some experience in this regard that we
gained by debugging a widely used Unix utility – the grep program. The correct
version of grep has 13,286 lines, without header files. The grep program searches
text files for a pattern and prints all lines that contain that pattern. Faulty
versions of the grep program and test cases are provided at [16]. For the sake
of illustrating our point about the successful run pool, here we only report our
experience in debugging a particular failing run of a particular buggy version.
Figure 4 presents a faulty version of grep, where the branch in line 4 should
be if (strcoll (lo, ch) <= 0 && strcoll (ch, hi) <= 0). We consider
the failing run corresponding to the input grep -G ’[1-5\]’ grep1.dat. This
failing run contains 800,738 statement instances. This run did not return all lines
which contain numbers between 1 and 5 in the grep1.dat file — an observable
error.

When we ran our debugging method against 35 selected successful runs from
the given test inputs of grep (provided in [16]) we got a bug report containing
11 statements. A line very close to the faulty branch statement in Figure 4 was
included in the report; the score of the bug report is 0.977. This means that
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1. char ch[2];

2. ch[0] = c;

3. ch[1] = ’\0’;
4. if (strcoll (ch, lo) <= 0 && strcoll (hi, ch) <= 0)

5. { ...

Fig. 4. Fragment of a faulty version of the grep program.

programmer needs inspecting about 100 lines in the worst case, considering that
the grep program has many blank lines. In practice, some statements contained
in the bug report may be pruned, depending on programmer’s understanding of
the program. This will lead to ever fewer statements for inspection.

On the other hand, if we perturb the failing input to get various sub-intervals
of [1-5] as the first argument of grep, only the following five are encountered
as successful inputs.

grep− G ′[i− i\]′ grep1.dat i ∈ {1, 2, 3, 4, 5}

When we applied our debugging method to this pool of five successful runs we
observed the following. (1) Depending on the choice of the successful run, there
was substantial variation in the bug reports and their scores (the score varied
from 0.288 – 0.998). Thus choosing a successful run seems to be important even
if the successful run pool is manually generated using programmer’s intuition.
(2) The difference corresponding to the chosen successful run produced a bug
report of 15 statements, which included the buggy statement (thereby obtaining
a nearly perfect score 0.998).

Thus, the score was slightly better than the score produced using the test
input pool provided with the grep program. However, significant intuition was
needed to manually construct the successful input pool for a specific failing run.
In practice, we feel that the choice of successful run will always benefit from the
programmer’s intuition. However fault localization methods — such as the one
described in this paper — can substantially increase the degree of automation
in this debugging task.

Future Work In terms of future work, we note that our prototype implementation
currently has limitations w.r.t. tracing overheads. Since our difference metric uses
more information (traces of the failing and successful runs) than the NN method
(which uses sets of statements in the two runs), therefore the issue of tracing
overheads becomes important. Indeed, it was costly to collect and store execution
traces using our prototype. To make our method scalable to large programs,
sophisticated instrumentation techniques (e.g. [8]) need to be employed. We are
currently working in this direction.
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