
Generating Test Programs to Cover Pipeline Interactions

Thanh Nga Dang Abhik Roychoudhury Tulika Mitra Prabhat Mishra
National University of Singapore Univ. of Florida, Gainesville

{dangthit,abhik,tulika}@comp.nus.edu.sg prabhat@cise.ufl.edu

ABSTRACT
Functional validation of a processor design through execution of a
suite of test programs is common industrial practice. In this paper,
we develop a high-level architectural specification driven method-
ology for systematic test-suite generation. Our primary contribu-
tion is an automated test-suite generation methodology that covers
all possible processor pipeline interactions. To accomplish this au-
tomation, we (1) develop a fully formal processor model based on
communicating extended finite state machines, and (2) traverse the
processor model for on-the-fly generation of short test programs
covering all reachable states and transitions. Our test generation
method achieves several orders of magnitude reduction in test-suite
size compared to the previously proposed formal approaches for
test generation, leading to drastic reduction in validation effort.

Categories and Subject Descriptors
B.1.3 [CONTROL STRUCTURES AND MICROPROGRAM-
MING]: Control Structure Reliability, Testing, and Fault-Tolerance—
Test Generation

General Terms
Algorithms,Verification

Keywords
Pipelines, Automated test generation, State space exploration.

1. INTRODUCTION
The increasing complexity of embedded systems is driving the

dominance of high-performance processors as the design choice.
The higher computational requirement of these systems generally
translates to the inclusion of complex but performance boosting
features, such as caches and pipelines, in the processor architecture.
However, the non-trivial interactions among these performance en-
hancing features are major sources of errors in the processor im-
plementation. A significant portion of the processor design effort
is thus spent in validation. A common industrial practice in proces-
sor validation is to generate billions of random test programs at the
instruction-set architecture (ISA) level. Such a test program gener-
ation process is micro-architecture agnostic, and it fails to exercise
the subtle micro-architectural artifacts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM 978-1-60558-497-3 -6/08/0006 ...$5.00.

In this work, we develop a fully formal framework for micro-
architecture aware test program generation. There are three major
challenges in developing such a framework. First, an automated
test program generator would require a formal specification of the
architectural details. We note that architectural components and
their interactions are lost at a Register Transfer Level (RTL) model.
Instead, we develop a formal processor model based on communi-
cating extended finite state machines. Our model is an extension of
the Operation State Machine (OSM) model [8] proposed in the con-
text of MESCAL Architecture Description Language (MADL) [9].

The second and central contribution is the generation of a test
suite that covers all possible pipeline interactions. In its full gen-
erality, a pipeline interaction can be viewed simply as a transition
in the global state space of the pipeline. Such a global transition
may involve several pipeline resources being acquired or released
by multiple in-flight instructions. Existing research on coverage-
driven test generation for embedded processor pipelines [5, 6] take
a restricted view of pipeline interactions — they typically enumer-
ate and cover interactions among k resources for some small value
of k (say 1 ≤ k ≤ 3). Clearly, we cannot artificially restrict
the number of participating resources in a global transition to be
a small number. Moreover, even if the test generation method is
scaled to include interactions among large number of resources, it
still fails to cover all pipeline interactions. This is because a sin-
gle global transition may also involve interaction among multiple
instructions in the pipeline for the same resource rather than inter-
action among multiple resources (e.g., multiple instructions trying
to acquire the same functional unit in a single clock cycle). The
resource-centric coverage model does not capture such pipeline in-
teractions. To achieve complete coverage of all possible pipeline
interactions, both inter-resource interactions and inter-instruction
interactions have to be accounted for. We construct an efficient
automated method that generates the entire test-suite via a single
on-the-fly exploration of the global pipeline state space to cover all
the transitions and thereby cover all possible pipeline interactions.

Our state space explorer produces paths in the global state space
leading to different pipeline interactions. Our last and final task
is to generate test programs (sequence of instructions) that actu-
ally exercise all these paths. Note that a single test program can
potentially cover several pipeline interactions. Suppose transitions
t1 and t2 are global transitions denoting certain interactions among
pipeline components, and t1 leads to t2. When we construct/explore
the state space, we use the same test program to cover both t1 and
t2. This reduces the test-suite size by more than two orders of mag-
nitude compared to existing works [6].

In summary, we develop a fully formal processor model, traverse
the model to cover all possible pipeline interactions, and generate
a drastically reduced test suite covering all pipeline interactions.

2. RELATED WORK
Test program generation for processor validation is a well-studied

topic. The Genesys tool developed by IBM [1] performs pseudo-
random test program generation based on an architecture/testing
knowledge base with primary focus on testing the ISA. Subse-
quently, the focus has been on generating test patterns for micro-
architecture. Diep and Shen [4] enumerate the possible pipeline
hazards given a low-level processor specification; for each of these
hazards a test program is then automatically constructed. Zhu et
al. [11] synthesize directed tests from a high-level description to
test the bypass paths in a pipelined processor. Mishra and Dutt [7]
exploit test program templates for canonical events like pipeline
hazards and exceptions. However the template generation is not
automated, and this has to be done manually by the designer.

Among the formal methods driven approaches to test generation,
Ur and Yadin [10] suggest coverage directed test generation. How-
ever, they model a very small portion of the processor (only han-
dling of arithmetic instructions) at a low-level (akin to state ma-
chine like modeling as in the SMV model checker). It is not at
all clear how such an approach will scale up to real-life processors.
Moreover, instead of covering all global states/transitions, their test
generation covers selected state variables (selected manually).

Geist et al. [5] and Koo et al. [6] have used model checkers
to generate test programs for processor pipelines. The aim is to
achieve a coverage of the state space by covering enough temporal
properties. The witness test program for each property is gener-
ated automatically by the model checker. However, the designer
has to provide the large number of properties required for realistic
processors. Apart from automation of the entire process, our key
contribution is that we generate the entire test suite through one ex-
ploration of the global state space. This is in contrast to approaches
like [6], which query an external model checker millions of times.

3. ARCHITECTURE MODELING

Memory F1 F2 (Fetch width)

Fetch Buffer

(Hit 1cc/
miss 10cc)

DP1 DP2(Decode width,

Integer Registers
16 Registers

DP1 DP2(,
decode& dispatch)

CM1 CM2

(C it idthInstruction Window (8 slots) (Commit width,
commit in-order)

C I1 I2 (Issue width)

MemPort
Hit 1cc/ MUL ALU

CDB I1 I2 (Issue width)

Hit 1cc/
Miss 10cc 3cc 1cc

Figure 1: Processor Pipeline Structure

Our formalism models various micro-architectural features for
test program generation purposes. For illustration, we will use a 2-
way superscalar, out-of-order execution pipeline shown in Figure
1. The pipeline consists of the following stages: Instruction Fetch,
Instruction Decode and Dispatch, Issue, Execute, Write Back, and
Commit. We assume 10 cycle cache miss penalty.

To construct the formal pipeline model, we augment the cen-
tral ideas in the Operation State Machine (OSM) model [8]. The
OSM models a processor at two levels — the operation level and
the hardware level. At the operation level, the OSM describes the
movement of the instructions across the pipeline stages as Extended

Finite State Machines (EFSM) [3]. An EFSM is a finite-state ma-
chine with variables; in our pipeline modeling we only consider
finite domain variables. Each transition in an EFSM involves (1) a
source and a destination state, (2) a guard on the variables (which
serves as a pre-condition for the enabledness of the transition), and
(3) an action (involving assignments to the variables).

At the hardware level, the OSM models various hardware re-
sources (e.g., instruction window, functional units, etc.) as “token
managers”. The operation EFSMs progress from one state to an-
other by acquiring/releasing tokens from/to the token managers of
the resources. Currently, in the OSM model [8], the communica-
tion among operation EFSMs and hardware resources are handled
by executing some code corresponding to the token managers. We
extend OSMs to develop a fully formal processor model as follows.

The processor pipeline model consists of a collection of EFSMs.
This collection can be partitioned into two groups. The first group
contains operation EFSMs that show the advancement of instruc-
tions across the pipeline stages. For a pipeline with maximum
N in-flight instructions (N = 10 in Figure 1), we have N such
EFSMs executing concurrently. In the second group, we have re-
source EFSMs modeling the individual pipeline resources. The
instructions progress by acquiring these resources. We also model
the instruction/data cache as separate resources that needs to be
acquired for an instruction/data to be fetched. This models the in-
teraction between caches and pipeline. In our cache modeling, we
ensure that when a memory block is accessed, only the first instruc-
tion/data in the block can be cache hit/miss; the remaining accesses
in the block result in cache hits. Exceptions are modeled by intro-
ducing additional transitions in the corresponding EFSMs.

The pipeline is modeled as a concurrent composition of oper-
ation EFSMs and resource EFSMs. These EFSMs communicate
among themselves, in particular, an operation EFSM needs to com-
municate with several resource EFSMs. The communication prim-
itive needs to capture interactions among more than two compo-
nents as an operation EFSM may need to communicate with sev-
eral pipeline resources to move an instruction from one stage to
another. For example, to issue an instruction to the ALU, the guard
in the Issue → ALU transition (Fig. 2(a)) at the operation level
EFSM should check for the availability of the ALU and the source
registers. Thus, we cannot use a simple send-receive rendezvous
communication involving two components. Moreover, a transition
in an EFSM Mi (representing advancement of an instruction in the
pipeline) may refer to variables of other EFSMsMj (the resources).

We propose communicating EFSMs for this purpose where the
guard and the action in an EFSM transition may involve guards and
actions of other EFSMs. Formally, given a collection of communi-
cating EFSMs M1, . . . ,Mn, we define any transition in Mi with:
(1) a source state, drawn from the set of states in Mi, (2) a destina-
tion state, drawn from the set of states in Mi, (3) a guard, which is
a conjunction of guard methods (each of these methods is a guard
method for some EFSM Mj where j is not necessarily equal to i),
and (4) an action, which is a sequence of action methods (each of
these methods is an action method for some EFSM Mj where j is
not necessarily equal to i). Any guard method in our model is a
condition that is evaluated without side-effects to true or false. Any
action method in our model is a collection of assignments that are
executed simultaneously. In other words, the ownership of a vari-
able by an EFSM is for the convenience of the designer. Strictly
speaking, these variables function as shared variables where a vari-
able in Mj can be assigned as an effect of a transition in Mi.

Given a collection of communicating EFSMs M1, . . . ,Mn, the
execution of a transition t inMi performs the following atomically.
1. Check that all the guard methods in t are true.

DecodeWidth.avail()
Window.avail()/
FetchBuffer.release()
DecodeWidth.acquire()
dst = Window.acquire()

ICache.hit()
FetchWidth.avail()
FetchBuffer.avail()/
FetchWidth.acquire()

if src1 == null && Data Dependency /
src1 = busyRegister()

Idle

Register.obtain(dst)FetchBuffer.acquire()

Fetch Decode Issue
IssueWidth avail()

if op== null &&
FunctionalUnitStall /
op = busyUnit()

ICache.miss()/
ICache.fetchMemory()

IssueWidth.avail()
Register.avail(src1, src2)
Port/MUL/ALU.avail()/
IssueWidth.acquire()
Port/MUL/ALU.acquire()
Instantiate op, src1, src2op = null

Memory
P t

MULALU

LDMULBR/MOVE/ADDsrc1 = ‐1
src2 = ‐1
dst = ‐1

DCache.miss()/

Port/MUL/ALU.done()/
P t/MUL/ALU l ()

PortALU DCache.fetchData()

Write
back

Commit

Port/MUL/ALU.release()
Window.CDB()
Register.update(dst)

CommitWidth.avail()/
CommitWidth.acquire()
Window.release()
Register. release(dst)

Note
•If any condition is not satisfied, the instruction is stalled.
•FetchWidth, DecodeWidth, IssueWidth and CommitWidth are reset every clock cycle

(a)

ALU WB
ALU_Unit.canRelease()

OSM

ALU WB
ALU_Unit.release(),
Window.CDB()
//update other instructions which use result of
//this instruction ~ data dependency

canAcquire() /

acquire()

¬canRelease() /
incr_time()

ALU

Empty Full

q ()

canRelease() /

release()

Variables: canRelease() ≡ (time == latency) /* Guard */

ti 1 l () (t k 0) /* A ti */time = 1 release() ≡ (token = 0) /* Action */

token = 1 /* latency is pre-defined constant */

(b)

Figure 2: (a) Operation EFSM for the pipeline, (b) A simplified sample transition in the Operation EFSM (shown with
guards/actions) and a simplified Resource EFSM for the ALU Unit.

2. Check that all the action methods of t can be executed. If an
action method at involves assignments to variables inMi, at can be
executed. If at involves assignments to variables of another EFSM
Mj , we check whether in the current state of Mj there exists an
enabled transition t′ such that (i) the guards of t′ are true, and (ii)
the action method at is the action corresponding to t′.
3. Execute all the action methods of t, changing the state of Mi as
well as those of all Mj whose action methods appear in t.

The operation EFSM for our processor pipeline appears in Fig-
ure 2(a). In Figure 2(b), we show the guard and action of a sample
transition in the operation level EFSM. This transition involves a
communication between an operation EFSM and the resource EF-
SMs for the ALU unit and the instruction Window. Figure 2(b) also
shows a simplified version of the ALU EFSM. It has two variables:
token (representing whether an instruction is currently executing
inside the unit) and time (representing the number of clock cycles
since the currently executing instruction started execution). When
the operation EFSM makes the transition from ALU state to WB
state (signifying end of the EX stage of an arithmetic or logic in-
struction), it checks whether the ALU unit is ready to finish. This
check is captured as a guard method canRelease.

4. TEST PROGRAM GENERATION
We now describe our test program generation method.

4.1 Coverage Metric
Previous works on specification driven test generation mostly

consider pipeline structure to define the coverage metric. For ex-
ample, the coverage metric can be defined to ensure that all the
pipeline components are exercised. However, given only the struc-
tural specification of the pipeline, one cannot define behavioral
scenarios such as — in one clock cycle, one instruction (say I1)
is issued to the ALU unit and another store instruction (say I2) is
stalled in the instruction window as I2 is dependent on I1. We seek
to capture behavioral scenarios in our test suite.

Given the pipeline model as a collection of communicating EF-
SMs M1, . . . ,Mn, we compose the EFSMs to construct a global
FSM. Any state of the global FSM consists of a local state and vari-
able valuations for each of the component EFSMs. A transition in
the global FSM constitutes a pipeline interaction. Note that a sin-
gle transition in the global state space may involve progress (or lack
thereof) of one or more instructions. In particular, a transition can
include (1) the progress of one or more instructions in their opera-
tion EFSMs, which in turn requires cooperation from the respective
resource EFSMs, and/or (2) progress in one or more resource EF-
SMs without any change in the operation EFSMs. An example of
the latter is when an instruction is executing on the multiplier unit
with multi-cycle latency. Here, the number of cycles left to com-
plete execution is a variable associated with the multiplier EFSM.
The multiplier EFSM will make a local self-transition and decrease
the variable value; the operation EFSM of the corresponding in-
struction remains in the same state with same variable valuations.

Clearly, if we cover all the reachable states and transitions in the
global FSM, we can cover all possible pipeline interactions. This
is our coverage metric. That is, our generated test suite must cover
all reachable states and transitions of the global FSM.

4.2 An Example
We now describe the test generation algorithm through a simple

example. The example illustrates the main features of our method.
Suppose we have reached the global FSM state s illustrated in

figure 3. State s has only four active instructions, three of which
(I1, I2, I3) are in the instruction window and one is in the
fetch queue (I4). We assume that the operation level EFSMs of the
inactive instructions are in the idle state. Instruction I1 has already
been instantiated as a load instruction and it is now in the "execute"
state (operation EFSM state of the instruction I1). This load in-
struction causes a cache miss; so the data cache (the DCache unit
in Fig. 3) is currently in the "miss" state with elapsed time equal
to 1. The other two instructions in the instruction window (I2 and
I3) are still in the "issue" state; they have not been instantiated to
any operation class. Two functional units, ALU and MUL, are in
"empty" state. The register resource is in the "partial" state with

Figure 3: Global FSM states and transitions.

three tokens currently being held by three instructions in the win-
dow (register will be in "full" state when all the 16 registers are
being used). The last instruction I4 is in the "decode" state and
is holding one token from the fetch queue. The fetch queue is in
the "partial" state with one free slot available. As the instruction
window and the fetch queue preserve the program order, we can
deduce program order of I1, I2, I3 and I4. At this point, the
partially instantiated test program is as follows. Note that an unin-
stantiated opcode is written as null and an uninstantiated operand
is written as -1.
I1: <op>LD <dst>R1 <src1>R0 <src2>R0 // Dmiss
I2: <op>null <dst>R2 <src1>-1 <src2>-1
I3: <op>null <dst>R3 <src1>-1 <src2>-1
I4: <op>null <dst>-1 <src1>-1 <src2>-1

Now we construct all global FSM states reachable from the state
s shown in Figure 3. We process the operation level EFSMs in the
order of the pipeline stages they are in, i.e., first the operation level
EFSMs in the commit state, followed by write-back state, execute
state, and so on. So we first process operation EFSM of instruc-
tion I1. For I1 to make progress in the operation level EFSM, the
resource EFSM of the memory port unit has to move to "comple-
tion" state, which in turn requires the data cache EFSM to move
to "completion" state. As data cache needs 10 clock cycles to load
data from memory, I1 remains in the "execute" state. However, the
data cache EFSM updates its elapsed time to 2 units.

Next, we check guard conditions in all possible transitions from
the "issue" state in the operation level EFSMs of I2 and I3. Sev-
eral transitions can be satisfied. For purpose of illustration, let us
choose the scenario where I2 is instantiated as a load. I2 will be
stalled in the "issue" state due to resource contention for the mem-
ory port unit with instruction I1. For operation EFSM of I3, we
choose the transition where it is also stalled in the "issue" state due
to data dependency with I2. Accordingly, the opcode of I2 and
source register of I3 are updated in the test program template.

Now we proceed to the operation level EFSM of instruction I4,
which is in the "decode" state. The guard condition for a transi-
tion from "decode" to "issue" requires tokens from both the decode
width and instruction window. Both of these conditions are satis-
fied. So I4 returns one token to the fetch buffer, obtains new tokens
from decode width and instruction window, and also gets a token

for its destination register. The newly obtained register is recorded
in the register resource by increasing it token count.

Finally, we progress the operation level EFSMs currently in the
"idle" state. Suppose we fetch one instruction from the instruction
cache and this instruction causes a cache miss. Consequently, one
operation level EFSM moves from "idle" state to the "fetch" state.
A new instruction I5 is appended to our test program. The instruc-
tion cache transitions to the "miss" state with zero elapsed time.

This completes one of the global transitions from the global state
s and a new global state is reached as illustrated in figure 3. Our
test program template is now refined to:
I1: <op>LD <dst>R1 <src1>R0 <src2>R0 // DMiss
I2: <op>LD <dst>R2 <src1>-1 <src2>-1
I3: <op>null <dst>R3 <src1>R2 <src2>R2
I4: <op>null <dst>R4 <src1>-1 <src2>-1
I5: <op>null <dst>-1 <src1>-1 <src2>-1 // IMiss

Clearly we can choose different transitions from the current state
of I2, I3, I5. The combination of different local transitions leads
to different global states, i.e., different pipeline interactions.

Note that the program with the instructions we generated above
uses registers that have not been pre-loaded. So, to make the test
program executable, we need to introduce instructions in the be-
ginning to load registers from memory. We also make sure that the
data for the instruction I1 (above) will not be present in the cache.
Furthermore, we need NOP instructions to ensure that the pipeline
is empty when our synthesized program starts execution.

4.3 Algorithm
Algorithm 1 is our test generation algorithm. In our approach,

(i) construction of the global FSM, (ii) traversal of the paths of
the global FSM, and (iii) test program generation of the individual
paths — all of these are fused into a single step. We do not construct
and store the global FSM in advance. Instead, we generate the test
suite on-the-fly, as we are traversing the FSM.

We start with the initially empty pipeline state S0. As mentioned
before, a global state consists of states and variable valuations for
the operation and resource EFSMs. If we can have at most x in-
flight instructions, then we have O1, . . . , Ox operation EFSMs —
all in idle state in the beginning. Similarly, we have R1, . . . , Ry

resource EFSMs — all in empty state in the beginning. We search
the global state space recursively starting with the initial state.

Algorithm 1 Constructing the suite of test programs - Schematic
Require: O1, . . . , Ox operation EFSMs, R1, . . . , Ry resource EFSMs;
Ensure: Test program suite testSuite;

S0 ← Initial state of O1, . . . , Ox and R1, . . . , Ry ;
testPgm(S0)← null; testSuite← null; V isited← {S0};
call TGen(S0);

function TGen(S: Global state, testPgm: Test program){
for all combinations of enabled local transitions in EFSMs {

Let t1, . . . , tx be the chosen transitions in O1, . . . , Ox;
Let t′1, . . . , t′y be the chosen transitions in R1, . . . , Ry ;
/* check feasibility of global transition consisting of local transitions */
tempS ← S;
for each operation EFSM Oi in reverse order of pipeline stages {

if guard of ti is true and action of ti is feasible in tempS {
tempS ← update(tempS, Oi, ti);

}
}
for each resource EFSM Ri {

Let t′i = s→ s′;
if Ri is not in state s in tempS continue;
if guard of t′i is true and action of t′i is feasible in tempS {

tempS ← update(tempS, Ri, t′i);
}

}
if (tempS = S) continue; /* global transition is not feasible */
testPgm(tempS)← refine(S, tempS, testPgm(S));
if (tempS ∈ V isited){

testSuite← testSuite ∪ {testPgm(tempS);
} else { /* new global state */

V isited← V isited ∪ {tempS}; TGen(tempS);
}

}
}

The recursive routine TGen (see Algorithm 1) identifies all reach-
able global transitions starting with a global state S. A global tran-
sition consists of one or more local transitions in the operation and
resource EFSMs. So we choose all feasible combination of local
transitions out of state S. Given a combination of local transitions,
we give priority to the moves of the operation EFSMs and among
them the ones that are in the commit stage first, followed by those
in the write-back stage, execute stage and so on. For two operation
EFSMs in the same pipeline stage, we give priority to the one corre-
sponding to the earlier instruction in program order. It is necessary
to consider operation EFSMs in this order. As an operation EFSM
makes a transition, it forces some resource EFSMs to make transi-
tions as well. This may enable the next operation EFSM to make
a transition. For example, in register bypassing, when an instruc-
tion I1 moves from ALU to the write-back stage, another instruc-
tion I2 dependent on I1 can move from issue stage to execution.
In hardware, these two moves happen in a single clock cycle; we
achieve the same effect by advancing the operation EFSM of I1
followed by that of I2 in the same global transition.

If the transition ti of operation EFSM Oi is feasible, then we
apply the action method of ti on the global state to create a tem-
porary global state tempS through the update function. Note that
this action method may change the state of some resource EFSMs
as well. For the next operation EFSM, the feasibility of the local
transition is checked on this temporary global state tempS rather
than on the original global state.

Once all the operation EFSMs make their transitions, we move
on to the resource EFSMs. The resource EFSMs may make inde-
pendent transitions without affecting the operation EFSMs. How-
ever, the transitions of the operation EFSMs may disable some of
the possible transitions of the resource EFSMs. Hence we check
that the resource EFSMRi is in the same local state in both tempS

and S. The transition of the resource EFSM may enable transition
of the operation EFSMs in the next global state.

While exploring the global FSM corresponding to a processor
model, the set of visited states in the global state space is main-
tained via the V isited set (we implement it as a hash table for ef-
ficient access). The path π = S0 → S1 . . . → Sm from the initial
global state S0 to the current state Sm is maintained implicitly via
the procedure invocation stack. For each state Si (0 ≤ i ≤ m) in
π, we maintain a test program testPgm(Si) which is the sequence
of instructions driving execution along the path π from empty state
S0 up to state Si. The test program at Si may be “partially instanti-
ated” where the opcodes/operands of some of the program instruc-
tions may be un-instantiated (this was shown in our illustrative ex-
ample). These un-instantiated opcodes/operands are lazily instanti-
ated as the instructions proceed along the pipeline stages. Having
partially instantiated test programs allows us to maintain one test
program for each state Si while exploring a path S0 → . . . → Si.
Similarly, when we backtrack during state space exploration — say
from state Si+1 we backtrack to its parent state Si and then to an-
other successor S′ of Si — we can readily use the (partially instan-
tiated) test program of Si to construct the test program for S′.

Given a reachable global transition S → tempS, the refine
function refines the test program at S to create the test program at
tempS. If the destination state tempS has already been visited,
we output the test program corresponding to it; otherwise we con-
tinue state exploration from tempS. If a generated test program
contains any partially instantiated instruction, it means that any un-
instantiated opcode/operands can be instantiated arbitrarily.

The following properties hold for our test generation algorithm.
THEOREM 1. Algorithm 1 visits all global transitions reach-

able from the initial state S0.

Note that for any global state S reachable from S0, Alg. 1 invokes
a recursive call TGen(S). Further, all outgoing transitions from
any reachable global state are explored.

THEOREM 2. The testSuite size from Alg. 1 is bounded by the
number of global transitions reachable from the initial state S0.

This can be proved by showing that each test program generated
covers at least one new reachable global transition. As observed
from experiments, our test-suite size is much smaller than the num-
ber of global transitions (which in turn is much smaller than the
test-suite size produced by existing approaches like [6]).

5. EXPERIMENTAL EVALUATION
Our test suite generation framework consists of three main com-

ponents: Formal Specification of ISA and micro architecture for the
target processor, State space exploration, and target ISA-compatible
executable test program construction. We have modeled an Alpha
21264 like superscalar processor in the SimpleScalar architectural
simulation framework [2]. We specify the ISA in MESCAL Ar-
chitecture Description Language (MADL) [9]. This includes static
properties of the instructions such as operation semantics, assembly
syntax, and binary encodings. The current version of MADL can
only support the operation level of the OSM model. The hardware
level, including the token managers and the structural hardware
components, is not part of MADL (as the OSM model itself lacks
formalization of the internal behaviors of the token managers). In-
stead, we rely on Extensible Markup Language (XML) to specify
the operation level and hardware level communicating EFSMs. The
parser in our test generation framework reads in the ISA (specified
in MADL) and the micro-architecture (specified in XML), and cre-
ates a mapping between the two. Next, the state space exploration

Processor # States # Transitions # Test Programs Avg. Test Test Gen.
Configuration |S| |T | |T P| Program Length Time

In-order, superscalarity=1 42,754 95,086 13,232 16 1m30s
In-order, superscalarity=2 43,590 124,256 15,334 17 1m44s

Out-of-order, superscalarity=1 220,039 522,088 84,401 17 8m26s
Out-of-order, superscalarity=2 310,993 851,041 116,260 20 12m24s

Table 1: Statistics for our test generation algorithm for different processor configurations: reachable states, transitions, test pro-
grams, length of test programs (in number of instructions), and test generation time.

Figure 4: Coverage from random test generation. Our cover-
age is 100%.

module is invoked to traverse and identify all reachable states in the
global FSM (obtained by composing the communicating EFSMs).
Recall that a partially instantiated test program is maintained as
we traverse a path through the global FSM state space. Once a path
with at least one previously unexplored global FSM state is formed,
our test program construction component creates an assembly level
program that can exercise this path. Thus, a test-suite is formed.
We also validated our test-suite by successfully executing the gen-
erated test programs.

We consider four different processor pipeline configurations. The
most complex pipeline supports out-of-order and 2-way superscalar
execution. We restrict superscalarity to one (i.e, scalar pipeline),
and also study in-order pipelines (with superscalarity = 1 or 2).

Table 1 presents the various statistics on our test generation algo-
rithm. We report the number of reachable global states/transitions.
Note that the number of reachable states and transitions are only a
fraction of the total number of global states and transitions (which
are in the order of 1020). The number of test programs generated
by our method are given in the next column. As discussed earlier,
we cover all reachable states and transitions via our test program
suite. However, as a generated test program covers several global
states/transitions, the test suite size is much smaller than the total
number of global states/transitions.

The average length of our test programs vary between 16–20 in-
structions, which is pretty small. The runtime of our test program
generation algorithm is very reasonable. Even for the most com-
plex processor, we can generate all the test programs to cover 116K
transitions within 12 minute 24 seconds (on a 2.6 GHz Intel Pen-
tium IV machine with 1 GB of main memory).

Next, we evaluate random test generation methods. We identify
the set of states R visited by the random test programs among all
reachable states S. Then (|R||S| × 100) is the coverage percentage.
Our method is guaranteed to achieve 100% coverage. The cover-
age percentage of random method (Y-axis in Figure 4) diminishes
quickly to as low as 31% with increasing complexity of processor.

Finally, we compare the quality of our test suite with that of the
most recently proposed fault model [6] for processor pipeline in-
teractions (see Figure 5). Assume that there are n resources each
with an average of r activities. The work of [6] estimates the total
number of pipeline interactions as

∑n
k=1

nCk × rk, and gener-

1500000

2000000

2500000

Pr
og
ra
m
s

Number of Test Programs

0

500000

1000000

1500000

1 2 3 4 5 6 7 8 9 10 11 12

N
um

be
r o

f T
es
t

Number of resources participating in an interaction

Figure 5: Test-suite size from existing formal approach [6].

ates test programs for these interactions with the help of a model
checker. We choose the simplest architecture with in-order exe-
cution and superscalarity = 1 for the comparison. The X-axis of
Figure 5 shows k, the restriction on the number of functional units
participating in a pipeline interaction (this number is imposed by
[6]), and the Y-axis shows the number of test programs for varying
k. Given k, we find which of the

∑k
i=1

nCi × ri interactions are
actually encountered in the global state space; only the number of
test programs corresponding to these feasible interactions appears
in the Y-axis of Figure 5. We see that [6] generates more than 2
million tests (Fig. 5), whereas we require 13,232 tests (Table 1).

6. CONCLUSION
In this paper, we have presented a fully formal processor mod-

eling framework and used our processor models for systematic test
generation. Our test generation method is (i) efficient, (ii) covers
all pipeline interactions, (iii) produces executable test programs of
short length and, (iv) produces a compact test-suite which is less
than 1% in size compared to test-suites produced by existing ap-
proaches. Thus, our approach greatly reduces validation effort.

Acknowledgments. This work was partially supported by an
A*STAR (Singapore) grant R252-000-258-305.

7. REFERENCES
[1] A. Aharon et al. Test program generation for functional verification of PowerPC

processors in IBM. In DAC, 1995.
[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for

computer system modeling. IEEE Computer, 35(2), 2002.
[3] K.T. Cheng and A.S. Krishnakumar. Automatic functional test generation using

the extended finite state machine model. In DAC, 1993.
[4] T.A. Diep and J.P. Shen. Systematic validation of pipeline interlock for

superscalar microarchitectures. In FTCS, 1995.
[5] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolfsthal.

Coverage-directed test generation using symbolic techniques. In FMCAD, 1996.
[6] H-M. Koo and P. Mishra. Functional test generation using design and property

decomposition techniques. ACM TECS, 8(4), 2009.
[7] P. Mishra and N. Dutt. Specification-driven directed test generation for

validation of pipelined processors. ACM TODAES, 13(2), 2008.
[8] W. Qin and S. Malik. Flexible and formal modeling of microprocessors with

application to retargetable simulation. In DATE, 2003.
[9] W. Qin, S. Rajagopalan, and S. Malik. A formal concurrency model based

architecture description language for synthesis of software development tools.
In LCTES, 2004.

[10] S. Ur and Y. Yadin. Micro-arachitecture coverage directed generation of test
programs. In DAC, 1999.

[11] Q. Zhu, A. Shrivastava, and N. Dutt. Functional and timing validation of
partially bypassed processor pipelines. In DATE, 2007.

