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Abstract

Recently there has been considerable interest in incor- on the execution times of tasks. For example, depending on
porating timing effects of microarchitectural features of the cache blocks shared by two ta§kandT”, the preemp-
processors (e.g. caches and pipelines) into the schedulation of T' by T" introduces additional cache misses when
bility analysis of tasks running on them. Following this line T resumes execution, thereby incurring an increase in its
of work, in this paper we show how to account for the ef- execution time. This additional execution time or delay is
fects of cache-related preemption delay (CRPD) in the stan-referred to as the cache-related preemption delay (CRPD)
dard schedulability tests for dynamic priority schedulers [7, 11]. Here, it may be noted that many timing analysis
like EDF. Even if the memory space of tasks is disjoint, their and system integration tools (e.g. SymTA/S which targets
memory blocks usually map into a shared cache. As a re-the automotive electronics domain [8, 15]) require the de-
sult, task preemption may introduce additional cache missessigner to annotate each task with its execution time (as dis-
which are encountered when the preempted task resumes excussed above), but currently do not provide any convenient
ecution; the delay due to these additional misses is calledmechanism to account for the CRPD. However, neglecting
CRPD. Previous work on accounting for CRPD was re- the CRPD may lead to unsafe execution time estimates for
stricted to only static priority schedulers and periodic task tasks (and hence incorrect schedulability tests).
models. Our work extends these results to dynamic prior- Our contribution and relation to previous work: To ad-
ity schedulers and more general task models (e.g. sporadic.dress this shortcoming, there have been a number of recent
generalized multiframe and recurring real-time). We show attempts to integrate a CRPD estimation scheme within a
that our schedulability tests are useful through extensive ex-schedulability analysis framework [6, 13, 14]. But all of
periments using synthetic task sets, as well as through a dethese efforts were restricted to strictly periodic task sets and

tailed case study. static priority schedulers. In this paper we show how CRPD
_ can be accounted for within a dynamic priority schedulabil-
1 Introduction ity analysis framework. Further, our proposed technique is

Model-based design is increasingly emerging as the keynot restricted to periodic task sets; it is applicable to more
to tackle the growing complexity of modern real-time and general task models such as sporadic [3], multiframe, gen-
embedded systems. It typically involves choosing an ap-eralized multiframe [2], and recurring real-time [1]. Our
propriate task model which accurately reflects the charac-technique comprises three main steps: (i) using program
teristics of the underlying application, annotating such a analysis techniques to estimate the maximum CRPD in-
model with parameters such as execution times, deadlinesurred byeachpreemption of a task, due to possible pre-
and periods, followed by a schedulability analysis to verify empting tasks. (ii) bounding the number of preemptions of
whether all timing constraints are satisfied for all possible each task. (i) augmenting the execution time of each task
runs of the system. For such an analysis to be meaningful with its total CRPD (due tall possible preemptions) and
it is important to accurately estimate the execution times of using these augmented execution times to perform a schedu-
the different tasks constituting the system being designed.lability analysis using the processor demand criterion [2, 3].
This has led to a lot of recent work on what is referred to  As one might expect, our tests are safe (sufficient) but
as the worst-case execution time (WCET) analysis of pro- not tight (necessary). The pessimism arises from both steps
grams [5, 10, 12, 16], which involves both program path (i) and (ii). However, through a number of experiments us-
analysis and modeling the timing effects of processor mi- ing both synthetic task sets and a case study, we show that
croarchitectural features (e.g. caches and pipelines). our tests are useful. In particular, we show that many task

However, such WCET analysis is usually carried out for sets which were originally schedulable, fail our tests when
each task in isolation and there has been relatively less emCRPD is taken into account. At the same time, our tests are
phasis on estimating the effects of inter-task interferencesnot overly pessimistic.
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A schematic overview of our analysis framework is  oyr preceding discussion on CRPD is a high-level one,
shown in Figure 1. Given the program code correspond-since we did not discuss what “cache states” are and how
ing to each task and its layout in the memory, we use cachéthey are computed. This indeed is a matter of choice since
modeling and program analysis techniques to estimate th&ye can tune the level of abstraction at which we capture the
WCET and CRPD in step (i). This is followed by estimat- ache states. This decides the precision of the analysis and
ing the number of task preemptions in step (ii). Towards ipe tightness of the CRPD estimation.
this, we propose two possible techniques. The first uses Assuming direct-mapped cache, it is possible to define
task deadlines and is more practical for reasons we describg, concrete cache statas a mapping1,...,n} — M U
later. The second relies on computing the worst case re—{L}; wheren is the number of blocks in the cach&/ is
sponse times (WCRT) of tasks. Although for a restricted he set of memory blocks (which get mapped to different
class of task sets this might lead to a less pessimistic testogche blocks) and. denotes the situation where a certain
such task sets would rarely arise in real-life applications. c3che block is empty. Conceptually, an abstract cache state
Finally, in step (iii) we use the augmented execution times representa set ofconcrete cache states. However, there can
of tasks to compute thettemand bound function®BFs)  pe differences in representation of an abstract cache state
and use these functions to perform a schedulability test.  |eading to different degrees of abstraction. Here we present

The rest of the paper is organized as follows. In the next o possible choices to illustrate this issue. The notaion
section we outline our program analysis technique to esti-for 4 setS denotes the powerset 6t

mate the maximum CRPD incurred by each task of a task ) )
set (i.e. step (i)). In Section 3 we discuss the details of ® FOr €ach cache block the content of: is not a sin-

steps (i) and (iii). Finally, an experimental evaluation of gle memory block (as would be the case for a concrete

our framework is presented in Section 4, followed by a dis- cache state in a direct-mapped cache) but a set of mem-

cussion on possible directions for future work in Section 5. ory blocks (see [6]). Thgypeof such an abstract cache
stateis{1,...,n} — 2MU{L}

2 Cache-Related Preemption Delay e The content of the cache is not given by one map-

ping from cache blocks to memory blocks, but a set
of mappings from cache blocks to memory blocks (see

[11]). The type of such an abstract cache state is
2{1,4..,77,}—»]\1U{J_}.

In the following, we consider the effects of instruction
cache to concretely define and understand the concept of
CRPD. As the reader will observe, the same definitions and
analysis can be employed (with minor modifications) for
data cache as well. Also, we implicitly assume a direct- In the first choice, an abstract cache state can be given by
mapped cache for simplicity of discussion; again this can
be thended ina straigphtforward fashion to set-associative L=Aa, 1}, 2= {bd}
caches. We do not make any assumptions about whetheor[{a, L}, {b, d}] for a direct-mapped cache with two cache
the code memories of different tasks share memory blocks.blocks into which memory blockéa, b, ¢, d} get mapped



to. This abstract state represents four concrete cache statdacoming abstract cache state qf (ii) the outgoing ab-

[a,b], [L,b], a,d], [L,d] — corresponding to the two
choices in each of the two cache blocks.
choice, the abstract cache stataliiectly represented as a

stract cache state of, and (iii) a pointwiseintersection

In the second(performed on a per cache block basis) between incoming

and outgoing cache statesof The intersection conserva-

set of concrete cache states. We have adopted the secontilely estimates the cache blocks which contain such mem-
choice in this paper since it leads to more precise programory blocks at program point that they are referenced after

analysis.

2.2 Associating Abstract Cache States with Pro-
gram Points

p. We call such cache blocks biseful cache blockat pro-
gram pointp of taskT’, and denote this set 48C'B(p, T').
After having computed theseful Cache Blockat every
program point of the preempted tafkwe compute thén-
coming Abstract Cache statd the end of the preempting

Given a definition of abstract cache states, we can tra-task7”. This will be done by a fixed-point analysis over the

verse the control flow graph of a tagkto associate each
program point ofl” with anincoming Abstract Cache State

Definition 1. An incoming abstract cache state for a pro-
gram pointp must capture all the concrete cache states with
whichp can be reached.

Since the control flow graph contains loops, the compu-

tation of thelncoming Abstract Cache Stateill be itera-
tive, where thdncoming Abstract Cache Sta¢stimate for

each program point gets updated in every iteration. This

is continued until a (least) fixed-point is reached. Con-

) )
vergence to a fixed point is guaranteed because the set OI@SkT when it preemptd’

concrete cache states represented byritbeming Abstract
Cache Stateestimates monotonically increase and the do-
main of concrete cache states is finite.

Similar to thelncoming Abstract Cache Statemputa-
tion, we also comput®utgoing Abstract Cache Stater
each program point of a tagk

Definition 2. An outgoing abstract cache state for a pro-
gram pointp must capture all concrete cache states at which
any cache block can be first referenced afier

Again, theOutgoing Abstract Cache Stdfier each point
is also computed as a (least) fixed-point. The only differ-

control flow graph off”. From the incoming abstract cache
state of the termination point @’ we can find out the num-
ber of cache blocks used by some memory block’ofLet
us call these th&Jsed Cache blocksf 77 and denote this
set asusedCB(T"). We can now comput€’ RPD(T,T")

as follows.

CRPD(T,T') = mazyeprog(r) | UCB(p, T)NusedCB(T") |

Here, Prog(T) is the set of all program points in tagk
Thus we want to capture those cache blocks which could be
useful at some program poiptof taskT’, and are used by
— thereby resulting in addition
cache misses when tagkresumes execution from program
pointp.

Indirect preemptions: In the preceding discussion, we
sketched a method for estimatifgrPD(T,T"). Butin

a system with more than two tasksmay be preempted by
T’, which further gets preempted by another t&8k Since

all tasks share the same cache, the executi@r’afan also
potentially introduce additional cache misses which are en-
countered wherl” resumes. To solve this problem in a
clean way, we always define the CRPD between a pair of
tasks, and conservatively estimate the delay due to indirect
preemptions. Thus, the cache-related delay in the execu-

ence between the two fixed point computations is that while tion of 7" owing to the preemption scenario whefegets

computing thdncoming Abstract Cache Stabéa program

preempted by’ andT” gets preempted by’ is conser-

point p, we (iteratively) propagate the abstract cache statesvatively estimated to b€’ RPD(T,1") + CRPD(T,T").

for p’s predecessors in the task’s control flow graph. How-
ever, for computing th®©utgoing Abstract Cache Staté

p, we (iteratively) propagate the abstract cache statgs of
SuUCCeSSors.

2.3 CRPD Estimation

Using the above notions, we can now compute
CRPD(T,T'") — the cache related preemption delay due
to the preemption of task by task7” — as follows.

For each program pointin the preempted task (there
are only finitely many such points), we compute (i) the

1Depending on the precision of the analysis, it could also represent

some concrete cache states with whidls never reached in concrete pro-
gram executions.

Hence, given a task set, it is sufficient to compute the CRPD

for all possible (ordered) task pairs only.

3 CRPD-aware Schedulability Analysis

In what follows, for simplicity of exposition we only
consider sporadic task sets being preemptively scheduled
using the Earliest Deadline First (EDF) scheduler. How-
ever, it will not be difficult to see that our framework can be
used for more general task models as well.

Each taskl' in a sporadic task set, is characterized by
a Worst Case Execution Time a deadlinel andp, which
is the minimum seperation in time between two consecutive
releases of" [3]. In order to account for cache-related inter-
task interferences, we need to augmentith the CRPD



that may be incurred by due to all preempting tasks. This Here, R(T) is the Worst Case Response Time (WCRT) of

is given by: T under the above-mentioned static priority assignment and
p’ is the minimum separation time @f. R(T") may be ob-
é=e+ Y CRPD(T,T') xn(T,T') tained using well-known techniques for WCRT computa-
T"€pr(T) tion for periodic and sporadic task models.

where, é is the augmented execution time Bf pr(7T) is Using deadlines to bound the number of preemptions:
the set of all tasks that may preemipunder EDF schedul- There are two problems with the above approach: (i) it
ing policy andn (7', T") is the number of preemptions f might lead to overestimation, and (ii) computing the WCRT
due toT”. In the following subsection, we discuss how to for more general task models (e.g. generalized multiframe
computepr(T) andn (T, T"), before presenting our schedu- and recurring teal-time) is non-trivial. To avoid these draw-

lability test. backs, an alternative approach is to bour(d’, T") using
the task deadlines.
3.1 Computing the Set of Preempting Tasks It is easy to see that under EDF, f6f to preemptl’ n

times, the following inequality must hold! + (n — 1)p’ <

d. This inequality holds irrespective of whether the task
set is feasible or not. Using this inequality, it is possible to
obtain the following upper bound on the number of preemp-
Theorem 1. A taskT can preempt a tasi” under EDF tions of T by T": d—d

scheduling policy only if" has a smaller deadline than that Ndeadtine (T, T') = [——]

of 77 (i.e.d < d'). p

Proof. Supposé has a deadlind, which is greater than or  Although this bound om/(7', ") might also be pessimistic
equal toT"’s deadlined’. At any execution point, whew’  at times, it will often be tighter thany ¢ rr (T, 7"). More
has been executing for some tirhand 7' becomes ready, |mp_ortantly, this technigue is applicable to a much wider
the remaining deadline faF (which is d) will always be ~ Variety of task models.
greater than the remaining deadline Tdr(which isd’ — t). . ]
Hence,T’ can never preem’. 0 3.2 Putting Everything Together

We are now ready to describe our schedulability test
which takes into account the CRPD incurred by tasks. As
mentioned in Section 1, we use tipeocessor demand
criterion-based test [2, 3], where for each task’ we
compute itsdemand bound functioff.dbf(¢t) and check
whether the following set of inequalities hold:

Whereas computing the set of preempting tasks is
straightforward for static priority scheduling disciplines,
computingpr(7T) is less obvious for EDF.

Hence, given a task set any taskl’ € = can only be
preempted by tasks belonging to the setT) = {T" |
T € 7 Ad' < d}. It may be noted that with static priority
schedulers, ifl" has a higher priority thafi”, then every
instance ofl" will preempt the execution df”. However,
with dynamic priority schedulers, in particular EDF, €
pr(T") only implies thatsomeinstances of” may preempt Z T.dbf(t) <t, Y0<t<i(r)
T’, depending on their remaining deadlines. However, a a -
task that does not belong jo(7") will never be able to
preemptl”. wheret(7) is a bound that we will derive shortly. Now, if
we use the deadline-based approach to boufid7”) then
the augmented execution time of any tdsks given by:

d—d
pal

Ter

Using WCRT to bound the number of preemptions:
Accurately determining.(7',7”) under EDF is not possible
without unrolling a concrete schedule. Hence, we use an
upper bound on the number of possible preemption®’ of
to approximate:(7T,T"). Towards this, we first exploit the
observation that the maximum number of preemptions of
T due toT’ under a static priority assignment can serve as
an upper bound on the number of preemptions under EDF.
Such a static priority assignment may be obtained using a
deadline monotonic scheduler (i.e. a task having a smaller

é=e+ >  CRPD(T,T')x(]
T epr(T)

andT.dbf (t) = & x max{0, | =¢] + 1}. Alternatively, the
WCRT-based approach may also be used to compige
augmented execution time. Finally, the bourid) on the
number of tests is given by the following lemma.

deadline has a higher priority). Let us denote the result- Lemma 1. If a task setr is not schedulable anETETﬁ <
ing bound on the number of preemptionsiofiue to7” as 1, then D é
nworr(T,T'), where 3 ¢ < (max{p — d}) x ———<TP_

Ter 1-— ZTGT %

R(T), ,
1% forwhich) .. T.dbf(t) > t.

nwerr(T,T') = |
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the processor demand criterion that there exists sorioe 4 Experimental Evaluation

L , . L .
which ' > 3 re, T.dbf (). Solving this inequality leads To evaluate the usefulness of our analysis framework, we
to an upper bound oti. O

applied it to both synthetic task sets, as well as to a real-life
. . case study. The results obtained show that (i) many task
3.3 Discussion sets which were originally schedulable, fail our tests when

It should be noted that the two bounds we obtained for the CRPD is taken into account, and (i) a number of task
n(T,T') are both meaningful. However, in the following Sets which failed a CRPD-aware static priority (deadline
discussion we aim to show thageqqsine (T, T") is more rel- monotonic) schedulability test, passed our test (meaning
evant from a practical point of view, apart from it being easy that they are schedulable under EDF). These show that ac-
to derive for a wide variety of task models. Figure 2 shows counting for CRPD within a schedulability analysis frame-
three sets of task se§ S; and S,, wheres is the set of work might often be necessary, depending on how critical
all schedulable sporadic task se$s,is the set of sporadic ~ are the real-time constraints. Secondly, our proposed tests
task sets which pass our schedulability test using WCRT are not overly pessimistic; more specifically, they can dis-
to bound the number of preemptions, afidis the set of tinguish between task sets which are feasible under a dy-
sporadic task sets which pass e .in.-based schedula- namic priority scheduler, but infeasible with static priority
bility test. scheduling.

Task sets inS — (S; U S3) are schedulable task sets ] ]
which fail both our tests. As mentioned in Section 1, this 4-1 Using Synthetic Task Sets
is due to the pessimism introduced by the CRPD estima- We randomly generated000 sporadic task sets with
tion and the bound on the number of task preemptions. Athe number of tasks in each set varying betw@eand 6.
more interesting set iS; — S». This set comprises task sets The execution times of these tasks varied betw&@io
which pass thewy o rr-based test, but fail the g.qqiine- and5000, and the minimum separation tinpeof each task
based test. This would happen for task sets with tasks hav<a" = (e, p, d) in 7 was set tax x |7| x e, wherea was uni-
ing large deadlines but small execution times (and henceformly chosen from the range.0, 2.0]. Hence, the proces-
small response times). This resultsrig.qqiine (T, T") be- sor utilization due ta- varied betweef.5 and1. The dead-
ing overly pessimistic compared taycrr(T,7"). How- line d was chosen to lie betweerandp andCRPD(T,T")
ever, this pessimism alone is not sufficient for such task setswas randomly chosen to be approximat&ly of T"'s worst
to fail the ng.qq1ine-Dased test. This is because such task case execution time.
sets are schedulable under a deadline monotonic scheduler We subjected these task sets to three different schedula-
and hence pass our processor demand criterion-based teshility tests: (i) SP.,,q — which is a CRPD-aware schedu-
For such task sets to fail thgj.,q1in.-bDased test, the CRPD lability test for static priority (deadline monotonic) sched-
of the constituent tasks must contribute to a large fraction ulers (as proposed in [6, 13, 14]), (ilpDC — proces-
of the tasks’s execution time (i.€), which for most realis-  sor demand criterion-based dynamic priority schedulabil-
tic applications in not true. In summar§; — S, consists ity analysis, which ignores CRPD, and (ilfDCycadiine
of task sets whose tasks have small execution times, large- CRPD-aware dynamic priority schedulability analysis
deadlines, and relatively large CRPD compared to the orig-which uses task deadlines to bound the number of task pre-
inal WCET. emptions (proposed by us in this paper). The results we

Finally, Sy — S; consists of task sets whose tasks have obtained are shown in Tables 1 and 2. From Table 1, note
large (possibly infinite) worst case response times, incurthat 279 task sets pass thBDCyeqa1ine test but fail un-
high processor utilization and cannot be scheduled usingderSF,,,q; these are task sets which are schedulable under
a static priority scheduler. These task sets would fail the EDF but not using a deadline monotonic scheduler, which
CRPD-aware static priority schedulability tests proposed in shows that our proposed test is not overly pessimistic. Ta-
[6, 13, 14]. ble 2 shows the result of accounting for CRPL2; task



sets (i.e.4.2% of the total task sets) which were originally 5 Concluding Remarks
schedulable fail when the effects of CRPD are taken into ac-
count, thereby pointing to the importance of CRPD-aware
dynamic priority schedulability analysis.

In this paper we presented a dynamic priority schedula-
bility analysis framework that takes into account the CRPD
incurred by tasks. This framework extends previous work,
which considered only static priority schedulers and peri-
odic task models. Note that we associated the worst case
CRPD with each preemption of a task. One possible im-

Our setup is motivated by a 3G mobile phone applica- provement would be to account for the fact that different
tion which involves audio and video decoding (of incoming  preemptions might incur different cache penalties, and fac-
streams) as well as encoding (for transmission over a net+oy this into the schedulability test. As a long-term goal, it
work). For audio, we chose the well-knovepcm pro- would be meaningful to model the timing impacts of other

gram; themediabenctsuite [9] contains source codes for mjcroarchitectural features like pipelines and branch pre-
theadpcm encoder as well as decoder. For video, we chose giction within a schedulability analysis framework.
one representative task from the MPEG encoder/decoder.
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