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Abstract
Recently there has been considerable interest in incor-

porating timing effects of microarchitectural features of
processors (e.g. caches and pipelines) into the schedula-
bility analysis of tasks running on them. Following this line
of work, in this paper we show how to account for the ef-
fects of cache-related preemption delay (CRPD) in the stan-
dard schedulability tests for dynamic priority schedulers
like EDF. Even if the memory space of tasks is disjoint, their
memory blocks usually map into a shared cache. As a re-
sult, task preemption may introduce additional cache misses
which are encountered when the preempted task resumes ex-
ecution; the delay due to these additional misses is called
CRPD. Previous work on accounting for CRPD was re-
stricted to only static priority schedulers and periodic task
models. Our work extends these results to dynamic prior-
ity schedulers and more general task models (e.g. sporadic,
generalized multiframe and recurring real-time). We show
that our schedulability tests are useful through extensive ex-
periments using synthetic task sets, as well as through a de-
tailed case study.

1 Introduction
Model-based design is increasingly emerging as the key

to tackle the growing complexity of modern real-time and
embedded systems. It typically involves choosing an ap-
propriate task model which accurately reflects the charac-
teristics of the underlying application, annotating such a
model with parameters such as execution times, deadlines
and periods, followed by a schedulability analysis to verify
whether all timing constraints are satisfied for all possible
runs of the system. For such an analysis to be meaningful,
it is important to accurately estimate the execution times of
the different tasks constituting the system being designed.
This has led to a lot of recent work on what is referred to
as the worst-case execution time (WCET) analysis of pro-
grams [5, 10, 12, 16], which involves both program path
analysis and modeling the timing effects of processor mi-
croarchitectural features (e.g. caches and pipelines).

However, such WCET analysis is usually carried out for
each task in isolation and there has been relatively less em-
phasis on estimating the effects of inter-task interferences

on the execution times of tasks. For example, depending on
the cache blocks shared by two tasksT andT ′, the preemp-
tion of T by T ′ introduces additional cache misses when
T resumes execution, thereby incurring an increase in its
execution time. This additional execution time or delay is
referred to as the cache-related preemption delay (CRPD)
[7, 11]. Here, it may be noted that many timing analysis
and system integration tools (e.g. SymTA/S which targets
the automotive electronics domain [8, 15]) require the de-
signer to annotate each task with its execution time (as dis-
cussed above), but currently do not provide any convenient
mechanism to account for the CRPD. However, neglecting
the CRPD may lead to unsafe execution time estimates for
tasks (and hence incorrect schedulability tests).

Our contribution and relation to previous work: To ad-
dress this shortcoming, there have been a number of recent
attempts to integrate a CRPD estimation scheme within a
schedulability analysis framework [6, 13, 14]. But all of
these efforts were restricted to strictly periodic task sets and
static priority schedulers. In this paper we show how CRPD
can be accounted for within a dynamic priority schedulabil-
ity analysis framework. Further, our proposed technique is
not restricted to periodic task sets; it is applicable to more
general task models such as sporadic [3], multiframe, gen-
eralized multiframe [2], and recurring real-time [1]. Our
technique comprises three main steps: (i) using program
analysis techniques to estimate the maximum CRPD in-
curred byeachpreemption of a task, due to possible pre-
empting tasks. (ii) bounding the number of preemptions of
each task. (iii) augmenting the execution time of each task
with its total CRPD (due toall possible preemptions) and
using these augmented execution times to perform a schedu-
lability analysis using the processor demand criterion [2, 3].

As one might expect, our tests are safe (sufficient) but
not tight (necessary). The pessimism arises from both steps
(i) and (ii). However, through a number of experiments us-
ing both synthetic task sets and a case study, we show that
our tests are useful. In particular, we show that many task
sets which were originally schedulable, fail our tests when
CRPD is taken into account. At the same time, our tests are
not overly pessimistic.



Figure 1. Overview of the proposed CRPD-aware dy-
namic priority schedulability analysis framework.

A schematic overview of our analysis framework is
shown in Figure 1. Given the program code correspond-
ing to each task and its layout in the memory, we use cache
modeling and program analysis techniques to estimate the
WCET and CRPD in step (i). This is followed by estimat-
ing the number of task preemptions in step (ii). Towards
this, we propose two possible techniques. The first uses
task deadlines and is more practical for reasons we describe
later. The second relies on computing the worst case re-
sponse times (WCRT) of tasks. Although for a restricted
class of task sets this might lead to a less pessimistic test,
such task sets would rarely arise in real-life applications.
Finally, in step (iii) we use the augmented execution times
of tasks to compute theirdemand bound functions(DBFs)
and use these functions to perform a schedulability test.

The rest of the paper is organized as follows. In the next
section we outline our program analysis technique to esti-
mate the maximum CRPD incurred by each task of a task
set (i.e. step (i)). In Section 3 we discuss the details of
steps (ii) and (iii). Finally, an experimental evaluation of
our framework is presented in Section 4, followed by a dis-
cussion on possible directions for future work in Section 5.

2 Cache-Related Preemption Delay
In the following, we consider the effects of instruction

cache to concretely define and understand the concept of
CRPD. As the reader will observe, the same definitions and
analysis can be employed (with minor modifications) for
data cache as well. Also, we implicitly assume a direct-
mapped cache for simplicity of discussion; again this can
be extended in a straightforward fashion to set-associative
caches. We do not make any assumptions about whether
the code memories of different tasks share memory blocks.

Thus the memory space of different tasks can be considered
disjoint, even though the memory blocks of different tasks
get mapped to the same cache block.

Given a preempted taskT and a preempting taskT ′, the
cache-related preemption delay is an upper bound on the
delay due to additional cache misses caused by preemption
of T by T ′. Consequently we have to consider all possible
program points ofT where it can get preempted and capture
the possible “cache states” at these preemption points. Fur-
ther, in each such cache state we need to find which memory
blocks in the cache will be used in subsequent execution of
T . We can then consider all possible “cache states” whenT ′

completes, and combine it with the possible “cache states”
due toT at preemption, to get the maximum number of
cache misses inT (after it resumes) due to the preemption
by T ′. This number multiplied by the cache miss penalty
providesCRPD(T, T ′), the cache-related preemption de-
lay of T due to preemption byT ′.

2.1 Abstract Cache States
Our preceding discussion on CRPD is a high-level one,

since we did not discuss what “cache states” are and how
they are computed. This indeed is a matter of choice since
we can tune the level of abstraction at which we capture the
cache states. This decides the precision of the analysis and
the tightness of the CRPD estimation.

Assuming direct-mapped cache, it is possible to define
a concrete cache stateas a mapping{1, . . . , n} → M ∪
{⊥}; wheren is the number of blocks in the cache,M is
the set of memory blocks (which get mapped to different
cache blocks) and⊥ denotes the situation where a certain
cache block is empty. Conceptually, an abstract cache state
representsa set ofconcrete cache states. However, there can
be differences in representation of an abstract cache state
leading to different degrees of abstraction. Here we present
two possible choices to illustrate this issue. The notation2S

for a setS denotes the powerset ofS.

• For each cache blockc, the content ofc is not a sin-
gle memory block (as would be the case for a concrete
cache state in a direct-mapped cache) but a set of mem-
ory blocks (see [6]). Thetypeof such an abstract cache
state is{1, . . . , n} → 2M∪{⊥}.

• The content of the cache is not given by one map-
ping from cache blocks to memory blocks, but a set
of mappings from cache blocks to memory blocks (see
[11]). The type of such an abstract cache state is
2{1,...,n}→M∪{⊥}.

In the first choice, an abstract cache state can be given by

1 → {a,⊥}, 2 → {b, d}
or [{a,⊥}, {b, d}] for a direct-mapped cache with two cache
blocks into which memory blocks{a, b, c, d} get mapped



to. This abstract state represents four concrete cache states
[a, b], [⊥, b], a, d], [⊥, d] — corresponding to the two
choices in each of the two cache blocks. In the second
choice, the abstract cache state isdirectly represented as a
set of concrete cache states. We have adopted the second
choice in this paper since it leads to more precise program
analysis.

2.2 Associating Abstract Cache States with Pro-
gram Points

Given a definition of abstract cache states, we can tra-
verse the control flow graph of a taskT to associate each
program point ofT with anIncoming Abstract Cache State.

Definition 1. An incoming abstract cache state for a pro-
gram pointp must capture all the concrete cache states with
whichp can be reached.1

Since the control flow graph contains loops, the compu-
tation of theIncoming Abstract Cache Statewill be itera-
tive, where theIncoming Abstract Cache Stateestimate for
each program point gets updated in every iteration. This
is continued until a (least) fixed-point is reached. Con-
vergence to a fixed point is guaranteed because the set of
concrete cache states represented by theIncoming Abstract
Cache Stateestimates monotonically increase and the do-
main of concrete cache states is finite.

Similar to theIncoming Abstract Cache Statecomputa-
tion, we also computeOutgoing Abstract Cache Statefor
each program point of a taskT .

Definition 2. An outgoing abstract cache state for a pro-
gram pointp must capture all concrete cache states at which
any cache block can be first referenced afterp.

Again, theOutgoing Abstract Cache Statefor each point
is also computed as a (least) fixed-point. The only differ-
ence between the two fixed point computations is that while
computing theIncoming Abstract Cache Stateof a program
point p, we (iteratively) propagate the abstract cache states
for p’s predecessors in the task’s control flow graph. How-
ever, for computing theOutgoing Abstract Cache Stateof
p, we (iteratively) propagate the abstract cache states ofp’s
successors.

2.3 CRPD Estimation

Using the above notions, we can now compute
CRPD(T, T ′) — the cache related preemption delay due
to the preemption of taskT by taskT ′ — as follows.

For each program pointp in the preempted taskT (there
are only finitely many such points), we compute (i) the

1Depending on the precision of the analysis, it could also represent
some concrete cache states with whichp is never reached in concrete pro-
gram executions.

incoming abstract cache state ofp, (ii) the outgoing ab-
stract cache state ofp, and (iii) a pointwiseintersection
(performed on a per cache block basis) between incoming
and outgoing cache states ofp. The intersection conserva-
tively estimates the cache blocks which contain such mem-
ory blocks at program pointp that they are referenced after
p. We call such cache blocks asUseful cache blocksat pro-
gram pointp of taskT , and denote this set asUCB(p, T ).

After having computed theUseful Cache Blocksat every
program point of the preempted taskT , we compute theIn-
coming Abstract Cache stateat the end of the preempting
taskT ′. This will be done by a fixed-point analysis over the
control flow graph ofT ′. From the incoming abstract cache
state of the termination point ofT ′ we can find out the num-
ber of cache blocks used by some memory block ofT ′. Let
us call these theUsed Cache blocksof T ′ and denote this
set asusedCB(T ′). We can now computeCRPD(T, T ′)
as follows.

CRPD(T, T ′) = maxp∈Prog(T ) | UCB(p, T )∩usedCB(T ′) |

Here,Prog(T ) is the set of all program points in taskT .
Thus we want to capture those cache blocks which could be
useful at some program pointp of taskT , andare used by
taskT ′ when it preemptsT — thereby resulting in addition
cache misses when taskT resumes execution from program
pointp.

Indirect preemptions: In the preceding discussion, we
sketched a method for estimatingCRPD(T, T ′). But in
a system with more than two tasks,T may be preempted by
T ′, which further gets preempted by another taskT ′′. Since
all tasks share the same cache, the execution ofT ′′ can also
potentially introduce additional cache misses which are en-
countered whenT resumes. To solve this problem in a
clean way, we always define the CRPD between a pair of
tasks, and conservatively estimate the delay due to indirect
preemptions. Thus, the cache-related delay in the execu-
tion of T owing to the preemption scenario whereT gets
preempted byT ′ andT ′ gets preempted byT ′′ is conser-
vatively estimated to beCRPD(T, T ′) + CRPD(T, T ′′).
Hence, given a task set, it is sufficient to compute the CRPD
for all possible (ordered) task pairs only.

3 CRPD-aware Schedulability Analysis
In what follows, for simplicity of exposition we only

consider sporadic task sets being preemptively scheduled
using the Earliest Deadline First (EDF) scheduler. How-
ever, it will not be difficult to see that our framework can be
used for more general task models as well.

Each taskT in a sporadic task setτ , is characterized by
a Worst Case Execution Timee, a deadlined andp, which
is the minimum seperation in time between two consecutive
releases ofT [3]. In order to account for cache-related inter-
task interferences, we need to augmente with the CRPD



that may be incurred byT due to all preempting tasks. This
is given by:

ê = e +
∑

T ′∈pr(T )

CRPD(T, T ′)× n(T, T ′)

where, ê is the augmented execution time ofT , pr(T ) is
the set of all tasks that may preemptT under EDF schedul-
ing policy andn(T, T ′) is the number of preemptions ofT
due toT ′. In the following subsection, we discuss how to
computepr(T ) andn(T, T ′), before presenting our schedu-
lability test.

3.1 Computing the Set of Preempting Tasks
Whereas computing the set of preempting tasks is

straightforward for static priority scheduling disciplines,
computingpr(T ) is less obvious for EDF.

Theorem 1. A taskT can preempt a taskT ′ under EDF
scheduling policy only ifT has a smaller deadline than that
of T ′ (i.e. d < d′).

Proof. SupposeT has a deadlined, which is greater than or
equal toT ′’s deadlined′. At any execution point, whenT ′

has been executing for some timet andT becomes ready,
the remaining deadline forT (which is d) will always be
greater than the remaining deadline forT ′ (which isd′− t).
Hence,T can never preemptT ′.

Hence, given a task setτ , any taskT ∈ τ can only be
preempted by tasks belonging to the setpr(T ) = {T ′ |
T ′ ∈ τ ∧ d′ < d}. It may be noted that with static priority
schedulers, ifT has a higher priority thanT ′, then every
instance ofT will preempt the execution ofT ′. However,
with dynamic priority schedulers, in particular EDF,T ∈
pr(T ′) only implies thatsomeinstances ofT may preempt
T ′, depending on their remaining deadlines. However, a
task that does not belong topr(T ′) will never be able to
preemptT ′.

Using WCRT to bound the number of preemptions:
Accurately determiningn(T, T ′) under EDF is not possible
without unrolling a concrete schedule. Hence, we use an
upper bound on the number of possible preemptions ofT
to approximaten(T, T ′). Towards this, we first exploit the
observation that the maximum number of preemptions of
T due toT ′ under a static priority assignment can serve as
an upper bound on the number of preemptions under EDF.
Such a static priority assignment may be obtained using a
deadline monotonic scheduler (i.e. a task having a smaller
deadline has a higher priority). Let us denote the result-
ing bound on the number of preemptions ofT due toT ′ as
nWCRT (T, T ′), where

nWCRT (T, T ′) = dR(T )
p′

e

Here,R(T ) is the Worst Case Response Time (WCRT) of
T under the above-mentioned static priority assignment and
p′ is the minimum separation time ofT ′. R(T ) may be ob-
tained using well-known techniques for WCRT computa-
tion for periodic and sporadic task models.

Using deadlines to bound the number of preemptions:
There are two problems with the above approach: (i) it
might lead to overestimation, and (ii) computing the WCRT
for more general task models (e.g. generalized multiframe
and recurring teal-time) is non-trivial. To avoid these draw-
backs, an alternative approach is to boundn(T, T ′) using
the task deadlines.

It is easy to see that under EDF, forT ′ to preemptT n
times, the following inequality must hold:d′+(n− 1)p′ <
d. This inequality holds irrespective of whether the task
set is feasible or not. Using this inequality, it is possible to
obtain the following upper bound on the number of preemp-
tions ofT by T ′:

ndeadline(T, T ′) = dd− d′

p′
e

Although this bound onn(T, T ′) might also be pessimistic
at times, it will often be tighter thannWCRT (T, T ′). More
importantly, this technique is applicable to a much wider
variety of task models.

3.2 Putting Everything Together

We are now ready to describe our schedulability test
which takes into account the CRPD incurred by tasks. As
mentioned in Section 1, we use theprocessor demand
criterion-based test [2, 3], where for each taskT we
compute itsdemand bound functionT.dbf(t) and check
whether the following set of inequalities hold:

∑

T∈τ

T.dbf(t) ≤ t, ∀0 ≤ t ≤ t(τ)

wheret(τ) is a bound that we will derive shortly. Now, if
we use the deadline-based approach to boundn(T, T ′) then
the augmented execution time of any taskT is given by:

ê = e +
∑

T ′∈pr(T )

CRPD(T, T ′)× (dd− d′

p′
e)

andT.dbf(t) = ê×max{0, b t−d
p c+ 1}. Alternatively, the

WCRT-based approach may also be used to computeT ’s
augmented execution time. Finally, the boundt(τ) on the
number of tests is given by the following lemma.

Lemma 1. If a task setτ is not schedulable and
∑

T∈τ
ê
p ≤

1, then
∃ t ≤ (max

T∈τ
{p− d})×

∑
T∈τ

ê
p

1−∑
T∈τ

ê
p

for which
∑

T∈τ T.dbf(t) > t.



Figure 2. Relationship between the schedulability tests
based onnWCRT (T, T ′) andndeadline(T, T ′).

Proof sketch.If τ is not schedulable then it follows from
the processor demand criterion that there exists somet′ for
which t′ >

∑
T∈τ T.dbf(t′). Solving this inequality leads

to an upper bound ont′.

3.3 Discussion

It should be noted that the two bounds we obtained for
n(T, T ′) are both meaningful. However, in the following
discussion we aim to show thatndeadline(T, T ′) is more rel-
evant from a practical point of view, apart from it being easy
to derive for a wide variety of task models. Figure 2 shows
three sets of task setsS, S1 andS2, whereS is the set of
all schedulable sporadic task sets,S1 is the set of sporadic
task sets which pass our schedulability test using WCRT
to bound the number of preemptions, andS2 is the set of
sporadic task sets which pass thendeadline-based schedula-
bility test.

Task sets inS − (S1 ∪ S2) are schedulable task sets
which fail both our tests. As mentioned in Section 1, this
is due to the pessimism introduced by the CRPD estima-
tion and the bound on the number of task preemptions. A
more interesting set isS1−S2. This set comprises task sets
which pass thenWCRT -based test, but fail thendeadline-
based test. This would happen for task sets with tasks hav-
ing large deadlines but small execution times (and hence
small response times). This results inndeadline(T, T ′) be-
ing overly pessimistic compared tonWCRT (T, T ′). How-
ever, this pessimism alone is not sufficient for such task sets
to fail the ndeadline-based test. This is because such task
sets are schedulable under a deadline monotonic scheduler
and hence pass our processor demand criterion-based test.
For such task sets to fail thendeadline-based test, the CRPD
of the constituent tasks must contribute to a large fraction
of the tasks’s execution time (i.e.ê), which for most realis-
tic applications in not true. In summary,S1 − S2 consists
of task sets whose tasks have small execution times, large
deadlines, and relatively large CRPD compared to the orig-
inal WCET.

Finally, S2 − S1 consists of task sets whose tasks have
large (possibly infinite) worst case response times, incur
high processor utilization and cannot be scheduled using
a static priority scheduler. These task sets would fail the
CRPD-aware static priority schedulability tests proposed in
[6, 13, 14].

PDCdeadline

pass fail
SPcrpd pass 498 0

fail 279 223

Table 1. Results forSPcrpd versusPDCdeadline.

PDCdeadline

pass fail
PDC pass 763 42

fail 0 195

Table 2. Results forPDC versusPDCdeadline.

4 Experimental Evaluation
To evaluate the usefulness of our analysis framework, we

applied it to both synthetic task sets, as well as to a real-life
case study. The results obtained show that (i) many task
sets which were originally schedulable, fail our tests when
the CRPD is taken into account, and (ii) a number of task
sets which failed a CRPD-aware static priority (deadline
monotonic) schedulability test, passed our test (meaning
that they are schedulable under EDF). These show that ac-
counting for CRPD within a schedulability analysis frame-
work might often be necessary, depending on how critical
are the real-time constraints. Secondly, our proposed tests
are not overly pessimistic; more specifically, they can dis-
tinguish between task sets which are feasible under a dy-
namic priority scheduler, but infeasible with static priority
scheduling.

4.1 Using Synthetic Task Sets
We randomly generated1000 sporadic task sets with

the number of tasks in each set varying between2 and6.
The execution times of these tasks varied between1000
and5000, and the minimum separation timep of each task
T = (e, p, d) in τ was set toα× |τ | × e, whereα was uni-
formly chosen from the range[1.0, 2.0]. Hence, the proces-
sor utilization due toτ varied between0.5 and1. The dead-
line d was chosen to lie betweene andp andCRPD(T, T ′)
was randomly chosen to be approximately5% of T ’s worst
case execution time.

We subjected these task sets to three different schedula-
bility tests: (i) SPcrpd – which is a CRPD-aware schedu-
lability test for static priority (deadline monotonic) sched-
ulers (as proposed in [6, 13, 14]), (ii)PDC – proces-
sor demand criterion-based dynamic priority schedulabil-
ity analysis, which ignores CRPD, and (iii)PDCdeadline

– CRPD-aware dynamic priority schedulability analysis
which uses task deadlines to bound the number of task pre-
emptions (proposed by us in this paper). The results we
obtained are shown in Tables 1 and 2. From Table 1, note
that 279 task sets pass thePDCdeadline test but fail un-
derSPcrpd; these are task sets which are schedulable under
EDF but not using a deadline monotonic scheduler, which
shows that our proposed test is not overly pessimistic. Ta-
ble 2 shows the result of accounting for CRPD;42 task



sets (i.e.4.2% of the total task sets) which were originally
schedulable fail when the effects of CRPD are taken into ac-
count, thereby pointing to the importance of CRPD-aware
dynamic priority schedulability analysis.

4.2 Case Study: A 3G Phone Application

Our setup is motivated by a 3G mobile phone applica-
tion which involves audio and video decoding (of incoming
streams) as well as encoding (for transmission over a net-
work). For audio, we chose the well-knownadpcm pro-
gram; themediabenchsuite [9] contains source codes for
theadpcm encoder as well as decoder. For video, we chose
one representative task from the MPEG encoder/decoder.
In particular, for MPEG encoding (decoding), we selected
thedct (idct ) program performing discrete cosine trans-
form (inverse discrete cosine transform). Out of these four
programs, we constructed different task sets by varying pa-
rameters such as the resolution and frame rate (for video
encoding and decoding) and sampling rate (for audio en-
coding and decoding). For video, we considered resolution
choices of120 × 90 and160 × 120 pixels; the frame rates
were varied from15− 25 frames per second. For audio, we
considered sampling rates from25 − 44.1 KHz. This re-
sulted in as many as 900 different task sets. The execution
times of the four tasks remained constant across the differ-
ent task sets. But their deadlines varied depending on the
choices of the frame resolution, frame rate and audio sam-
pling rate. The minimum separation time for all tasks were
always equal to their deadlines.

To study the impact of CRPD on schedulability anlysis
we considered two possible processor configurations, which
were (deliberately) made to differonly in their number of
cache blocks. We chose cache sizes of32 blocks in the first
processor (call itP1), and128 blocks in the second (call
it P2). Both P1 andP2 ran at500 Mhz, and had a direct-
mapped cache with cache miss penalty of20 clock cycles.
We used the Chronos WCET analyzer [4] to estimate the
WCET of each of the four programs (uninterrupted execu-
tion time not considering CRPD) running onP1 andP2.

Once again, we subjected the different task sets to the
three different schedulability tests listed in Section 4.1.
Whereas only356 task sets passed theSPcrpd test,545 task
sets passed our proposedPDCdeadline test on the proces-
sorP1. On the processorP2 these numbers were392 and
510 respectively. The increase in the number of schedula-
ble task sets can be attributed to the larger number of cache
blocks inP2.

Finally, 728 task sets inP1 passed thePDC test, com-
pared to only545 sets passing thePDCdeadline test. Again,
onP2 these numbers were556 and510 respectively, thereby
showing the importance of accounting for CRPD within a
schedulability analysis framework.

5 Concluding Remarks

In this paper we presented a dynamic priority schedula-
bility analysis framework that takes into account the CRPD
incurred by tasks. This framework extends previous work,
which considered only static priority schedulers and peri-
odic task models. Note that we associated the worst case
CRPD with each preemption of a task. One possible im-
provement would be to account for the fact that different
preemptions might incur different cache penalties, and fac-
tor this into the schedulability test. As a long-term goal, it
would be meaningful to model the timing impacts of other
microarchitectural features like pipelines and branch pre-
diction within a schedulability analysis framework.
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