
Introducing Model Checking to Undergraduates

Abhik Roychoudhury

Department of Computer Science, National University of Singapore
abhik@comp.nus.edu.sg

Abstract. Introducing temporal logics and model checking to under-
graduate students is usually an involved activity. The difficulty stems
from the students’ lack of exposure to logics, unfamiliarity with reactive
systems and lack of conviction that model checking search can lead to
anything practical. Here, I narrate some experiences in attempting to
overcome these stereotypes over a period of five years at the National
University of Singapore.

1 Introduction

Teaching of formal techniques has always been a topic of discussion and debate in
Computer Science (CS) education. CS academics have underlined the importance
of encouraging formal system development practices by trying to incorporate
them into the CS curriculum (e.g. see [2]).

However, in reality the task of convincing students of the value of formal
methods could be a formidable one. This is typically because of the paucity of
formal methods courses in the CS curriculum which results in students’ inher-
ent lack of exposure to formal techniques. Often times, we face the following
arguments from our students (or even our colleagues).

– CS students (particularly undergraduates) are not strong enough to learn
formal methods, or

– It is difficult to get CS students used to the rigor of formal methods (even if
they are capable), or

– Formal methods is mostly about mathematics which is of limited value for
building (computer) systems.

As a formal methods educator, I feel that all of these arguments are false. The
question is how to do we get past such stereotype arguments which may reside
in the minds of our students (who might think that formal methods courses are
to be avoided) or even our colleagues (who might perceive formal methods to be
of little value).

In this year’s International Conference on Software Engineering (ICSE), there
was a panel on Formal Methods where the panelists were asked — if you have $10
million for promoting formal methods how would you invest it ? Several panelists
underscored the value of education for such investment. More importantly, an
interesting analogy [1] was drawn with engineering undergraduates who reguarly

learn complex mathematical concepts (such as differential equations) thereby
strongly alluding to the incorrectness of the usual argument that Computer
science undergraduates are not strong enough to learn formal methods.

In this article, I describe some experiences in teaching formal methods to
undergraduate students over five years. Primarily, I deal with issues arising from
exposing undergraduate students in Computer Engineering to a course on model
checking. All course materials have been made freely available from

http://www.comp.nus.edu.sg/∼abhik/CS4271

Before proceeding to elaborate on the teaching methods, I give some back-
ground information about the course which may be helpful in judging the ap-
plicability of my teaching methods.

2 Background Information about the Course

The course in question was offered as an elective module once a year for five
years at the National University of Singapore. It was part of the Computer
Engineering curriculum, that is, it was offered to our Computer Science students
specializing in Computer Engineering. These students take a wide variety of
Computer Science courses with a concentration of courses on embedded system
design. Consequently, they are required to take four electives on system design
from various courses such as:

– Critical Systems and their Verification
– Hardware Software Codesign
– Mobile Computing
– Performance Analysis of Embedded Systems
– Embedded Software Design
– An advanced course on Computer Networks
– An advanced course on Programming Language Design and Implementation
– ...

The course we are discussing here is the first one in the above list – Critical
Systems and their Verification. Note that the other courses in the list are more
focused on (embedded) system performance rather than formal techniques. So,
our course (which was offered as an elective) is inherently somewhat different
from the other elective modules.

Our course on formal verification is taken by third or fourth year Computer
Engineering undergraduates with most of the students coming from the fourth
year. The total number of students in the Computer Engineering programme
is approximately 75 out of which approximately 45 students have opted for the
formal verification module in the last three offerings of the module. The exact
enrolment numbers over the five years are as follows.

2001-02 2002-03 2003-04 2004-05 2005-06
3 32 34 45 54

Since our verification course was offered as part of the Computer Engineering
curriculum, we could not require a course in Logic to be a pre-requisite (since a
Logic course in not mandatory in our Computer Engineering curriculum). This
in fact made the offering of the course more challenging. The only pre-requisites
of our course on formal verification were:

– a first year undergraduate course on Discrete Mathematics (which gives the
students brief exposure to propositional and predicate logic), and

– a first year undergraduate course on Computer Organization (which gives
the students some exposure to combinational/sequential circuits, buses etc).

Note that most of our students were in their fourth year and they only had a
brief introduction to logic in their first year of undergraduate study. Hence it was
necessary to communicate to them that the course goes beyond logic/discrete
maths. On the other hand, it was also important to refresh their background on
logics while introducing temporal logics. In the next section, I proceed to outline
the main strategies that were adopted as an attempt to enhance the students’
learning experience. Some of these strategies are standard ones, while some were
learnt gradually by offering the course multiple times.

3 Strategies to Enhance Students’ Learning Experience

For enhancing the students’ learning experience, we need to elicit more stu-
dent interest and participation by relating the techniques (in this case model
checking) to real-life. However, this is often done in a rather extreme way by
mentioning dramatic historical disasters which happened due to lack of formal
verification. Too often we motivate a formal verification technique by mentioning
the Arianne space shuttle disaster, or the Therac-25 accidents. If we (the for-
mal methods educators) decide to be a bit more down-to-earth while motivating
our techniques, at most we refer to the Intel Pentium floating-point error from
1994 (which resulted in substantial financial loss for Intel). Clearly, mention-
ing these historical incidents to the students serve an important purpose— they
get the students’ initial attention/interest. However, from my experience, this
interest is often difficult to retain — possibly because many of these historical
disasters seem to be far removed to the students. Emphasizing these historical
incidents also serves to emphasize the students’ perception that formal methods
is something “exotic” — a perception we as educators should fight against.

Students need to understand, they do not need to be surprised As a first step,
I have avoided mentioning historical disasters in my lectures for the purpose
of motivating formal verification. Instead, in the first lecture, I try to refer to
existing industry practice in “verification and validation” — why these practices
do not amount to formal verification, and what needs to be done to achieve
formal verification. Since my course is part of a programme with Embedded
System focus, I refer to some existing Electronic Design Automation industry
practices in this regard (methods like in-circuit emulation). I try to explain how

the existing methods are intrusive to the design process and how a model-based
technique can help the design cycle. This results in a rather different pedagogical
style, where the aim is to discuss the system design cycle with the students rather
than impressing/surprising the students with the power of formal verification.

Presenting formal verification as a tool to improve the system design cycle
helps. It removes the misconception that formal methods are required only for
very very safety-critical systems which normal engineers need not be bothered
with. However, until and unless the students can get some amount of gratifica-
tion from using formal methods, they are quite likely to forget about it once the
semester ends. Often, we (as formal methods educators) take a view that the
theory should be taught prior to the tool. In a course focusing on model check-
ing this would mean that the students need to learn about Kripke Structures,
Temporal Logics, Explicit-state checking, Binary Decision Diagrams (BDD) and
Symbolic Checking — even before they can write a single line of code in a model
checker! Clearly, such an approach is unlikely to evoke student interest. We could
try to improve the state of affairs by teaching only Kripke Structures, Temporal
Logics and explicit-state checking prior to discussing model checkers. However,
from my experience, a significant fraction of the students still feel lost by the
time the model checkers are introduced. To effectively teach model checking, it is
important to discuss system modeling (from requirements) as early as possible.

Discuss System Modeling as early as possible To address this issue, I try to
familiarize the students with (at least) the input language of a model checker
even before they learn temporal logics and model checking. So, the rough flow
of my course (which focuses on model checking) is

– Transition Systems and Kripke Structures
– SMV model checker and case studies
– Temporal Logics
– Explicit-state Model Checking
– Binary Decision Diagrams (BDDs)
– Symbolic Model Checking using BDDs

A few points need to be emphasized at this stage. When we discuss SMV and
its case studies, I try to pick moderate sized but real-life case studies. These
examples serve an important purpose — they are not toy examples, but they
are not so large that their modeling cannot be discussed in details. I believe this is
more effective than mentioning some very large case studies, where the students
may be more surprised/impressed but they may not understand the intricacies
of modeling a real-life protocol. Also, note that when we discuss the SMV model
checker and case studies, the students have not yet been introduced to temporal
logics. Hence, the properties being verified in the case studies are mentioned
informally at this stage and they are formalized in subsequent lectures. The
detailed flow of the course is available (in the form of a Lesson Plan) from

http://www.comp.nus.edu.sg/∼abhik/CS4271/lesson-plan.html

Unfamiliarity (with temporal logics & reactive systems) breeds contempt From
my experience, students are often uncomfortable with one of the following.

– connection between program behaviors and transition systems,
– understanding reactive systems which have execution traces of infinite length
– interpreting temporal logic formulae over infinite execution traces.

The first hurdle is relatively easy to overcome. A refresher revision hour on
operational semantics might help in this regard. However, since the students are
typically familiar with transformational systems it takes them substantial time
to make the conceptual switch to systems with execution traces of infinite length.
This can be aided by presenting (successively more complex) example transition
systems in class and telling the students to list out the infinite execution traces of
the given transition system. Getting familiar with reactive systems (and infinite
length execution traces) is often the primary hurdle in the minds of students.
Once this barrier is overcome, they can (relatively) easily adapt to the concept
of Linear-time temporal logic (LTL) and its operators. Branching-time temporal
logics are then covered by building on Linear-time logics.

Finally, keep it project-based The final point that I want to discuss here is a
lesson that was learnt the hard way. In retrospect, it is probably an obvious
lesson but it was not obvious (to me) when I started teaching the course. To
give the students hands-on experience with the model checking tools, I had the
option of designing a series of assignments or allowing them to choose term-
projects. From a pragmatic point of view, managing an assignment-based course
is easier (for grading and other purposes). I ran the course in two successive
years in two different modes (project based and assignment-based). The student
response was overwhelmingly in favor of the project-based version. In retrospect,
this was so for more reasons than one.

– A term project allows the student some choice and encourages some indepen-
dent exploration for fixing the project as well as during modeling/validation.

– A term project gradually builds on itself during the entire semester and is
more substantial. This way the students can see the benefit of using model
checking on some substantial-sized examples.

I feel that engaging the students in a medium-sized term project might be the
best way to convince them of the applicability of formal techniques. However,
if the entire class does the same term-project it becomes a bit like an extended
assignment depriving the students of a sense of independent exploration. For
this reason, it might be important to allow students (individually or in groups of
2-3) choose different term projects even if the module administration becomes
difficult.

An initial list of possible project ideas that I gave out to students in my
course is available from

http://www.comp.nus.edu.sg/∼abhik/CS4271/proj-ideas.html

Needless to say, students did projects outside this list as well. We should
note that for a course based on independent term projects there are several
adminstration issues involved such as counseling the students on deciding their
project (particularly this needs to be done at the beginning of the semester when
the students are not yet familiar with formal tools/techniques). If the course is
offered multiple times, there is the additional issue of modifying/upgrading the
list of project ideas in subsequent years.

One should emphasize here that prior to actually doing their term projects,
the students go through substantial experience in modeling and analysis of several
case studies, particularly when I introduce the SMV tool. These include

– medium-sized examples which are fleshed out in full details for the students
to grasp intricacies of system modeling (such as the examples in [4]), and

– larger scale real-life protocol verification examples (such as lessons learnt
from model checking the AMBA system-on-chip bus protocol running on
ARM processors [3]) which lets the students appreciate the value of modeling
and model checking.

4 Discussion

The lessons mentioned in this paper should be (at least partially) applicable to
various formal methods courses — even those not covering model checking. The
generic versions of these lessons are as follows.

– Do not rely on historical incidents to motivate formal methods.
– Emphasize system modeling (from requirements) rather than focusing only

on verification techniques.
– Introduce verification tools prior to techniques as far as practicable.
– Allow students freedom in doing term projects (rather than assignments or

fixed projects) even if module administration becomes difficult.

I sincerely hope that these general issues (which I learnt gradually over a
period of five years) and the course materials (which I have made available
through the Internet) will be useful to fellow formal methods educators in other
universities and institutes.

References

1. John C. Knight. Position statement in Panel “Formal Methods: Too little or too
much?”. In ACM Intl. Conf. on Software Engineering (ICSE), 2006.

2. Peter J. Denning and others. A debate on teaching Computing Science. Essays
in response to Edsger W. Dijkstra’s lecture “On the cruelty of really teaching
Computer Science”. Communications of the ACM, 32(12), pages 1397-1414, 1989.

3. Abhik Roychoudhury, Tulika Mitra and S.R. Karri. Using formal techniques to
debug the AMBA system-on-chip bus protocol. Design Automation and Test in
Europe (DATE) 2003.

4. J.M. Wing and M. Vaziri-Farhani. A case study in model checking software sys-
tems. Science of Computer Programming, 28, 1997.

