
Memory Model Sensitive Bytecode Verification∗

Thuan Quang Huynh†

Department of Computer Science
University of Maryland College Park

thuan@cs.umd.edu

Abhik Roychoudhury
Department of Computer Science
National University of Singapore

abhik@comp.nus.edu.sg

Abstract

Modern concurrent programming languages like C# and Java have
a programming language level memory model, which captures the set
of all allowed behaviors of programs on any implementation platform
— uni- or multi-processor. Such a memory model is typically weaker
than Sequential Consistency and allows reordering of operations within
a program thread. Therefore, programs verified correct by assuming
Sequential Consistency (that is, each thread proceeds in program or-
der) may not behave correctly on certain platforms! The solution to
this problem is to develop program checkers which are memory model
sensitive. In this paper, we develop a bytecode level invariant checker
for the programming language C#. Our checker identifies program
states which are reached only because the C# memory model is more
relaxed than Sequential Consistency. It employs partial order reduc-
tion strategies to speed up the search. These strategies are different
from standard partial order reduction methods since our search also
considers execution traces containing bytecode re-orderings. Further-
more, our checker identifies (a) operation re-orderings which cause such
undesirable states to be reached, and (b) simple program modifications
— by inserting memory barrier operations — which prevent such un-
desirable re-orderings.

1 Introduction

Modern mainstream programming languages like C# and Java support
multi-threading as an essential feature of the language. In these languages
multiple threads can access shared objects. Moreover, synchronization mech-
anisms exist for controlling access to shared objects by threads. If every ac-
cess to a shared object by any thread requires prior acquisition of a common

∗A preliminary version of this paper appeared as [13]. The conference paper is available
from http://www.comp.nus.edu.sg/∼abhik/pdf/fm06.pdf

†This work was done when the first author was a Research Assistant at National
University of Singapore.
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lock, then the program is guaranteed to be “properly synchronized”. On the
other hand, if there are two accesses to a shared object/variable v by two
different threads, at least one of them is a write, and they are not ordered by
synchronization — the program is then said to contain a data race, that is,
the program is improperly synchronized. Improperly synchronized programs
are common for more than one reason — (a) programmers may want to
avoid synchronization overheads for low-level program fragments which are
executed frequently, (b) programmers may forget to add certain synchro-
nization operations in the program, or (c) programmers forget to maintain
a common lock guarding accesses to some shared variable v since there are
often many lock variables in a real-life program.

Problem Statement The work in this paper deals with formal verifi-
cation (and subsequent debugging) of multi-threaded C# programs which
are improperly synchronized. As a simple example consider the following
schematic program fragment, and suppose initially x = y = 0. Moreover
l1, l2 are thread-local variables while x, y are shared variables.

x = 1;
y = 1;

l1 = y;
l2 = x;

If this program is executed on a uni-processor platform, we cannot have
l1 = 1, l2 = 0 at the end of the program. However, on a multiproces-
sor platform which allows reordering of writes to different memory loca-
tions this is possible. On such a platform, the writes to x, y may be com-
pleted out-of-order. As a result, the following completion order is possible
〈y = 1, l1 = y, l2 = x, x = 1〉.

Since an improperly synchronized program can exhibit different sets of
behaviors on different platforms, how do we even specify the semantics of
such programs and reason about them? Clearly, we would like to reason
about programs in a platform-independent fashion, rather than reasoning
about a program’s behaviors separately for each platform. Languages like
Java, C# allow such platform-independent reasoning by defining a memory
model at the programming language level. Now, what does a memory model
for a programming language like C# mean? The C# memory model (also
called the .NET memory model [21]) is a set of abstract rules which capture
the behaviors of multi-threaded programs on any implementation platform
— uni-processor or multi-processor. Given a multi-threaded C# program P ,
the set of execution traces of P permitted under the .NET memory model is
a superset of the traces obtained by interleaving the operations of program
P ’s individual threads. The operations in any thread include read/write
of shared variables and synchronization operations like lock/unlock. The
.NET memory model permits certain operations within a thread to be com-
pleted out-of-order, that is, the programming language level memory model
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essentially specifies which reorderings are allowed. So, to consider all pro-
gram behaviors we need to take into account — (a) arbitrary interleavings
of threads, and (b) certain (not all) reorderings within a thread. This makes
the formal verification of improperly synchronized multi-threaded programs
especially hard.

Basic Approach In this paper, we develop a memory-model sensitive in-
variant checker for the programming language C#. Our checker verifies a
C# program at the level of bytecodes. The checker proceeds by represent-
ing and managing states at the level of C#’s stack-based virtual machine.
Even though the approach is illustrated for the C# programming language,
any language which can get compiled into CLI bytecode can be handled by
our method. Moreover, the checker’s state space exploration takes the .NET
memory model into account. In other words, it allows the reorderings per-
mitted by .NET memory model to explore additional reachable states in a
program. Thus, the programming language level memory model is treated
as a formal contract between the program and the language implementation;
we then take this contract into account during software verification.

Furthermore, we note that programmers usually understand possible be-
haviors of a multi-threaded program by using a stronger model called Se-
quential Consistency [16]. An execution model for multithreaded programs
is sequentially consistent if for any program P (a) any execution of P is
an interleaving of the operations in the constituent threads (b) the opera-
tions in each constituent thread execute in program order. Thus, if we are
model checking an invariant ϕ, our checker may uncover counter-example
traces which (a) violate ϕ , and (b) are not allowed under Sequential Consis-
tency. Disallowing such counter-example traces requires disabling reorder-
ings among operations. This is usually done by inserting memory barriers
or fence operations; a memory barrier is an operation such that instructions
before the barrier must complete before the starting of instructions after
the barriers. Since memory barriers are expensive operations (in terms of
performance) we use a maxflow-mincut algorithm to insert minimal number
of barriers/fences for ruling out program states which are unreachable under
Sequential Consistency.

Technical Contributions Our work involves the following steps — which
taken together constitute the technical contributions of this paper.

• Memory Model Specification We first understand and formally specify
the .NET memory model. Previous works [30] have investigated this
issue and discussed certain corner cases in the .NET memory model de-
scription. Unlike [30], our specification is not operational/executable,
making it more accessible to system designers (who may not have for-
mal methods background).
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• The Checker We use the .NET memory model specification to develop
a memory model sensitive invariant checker at the level of bytecodes.
It allows all execution traces permitted by .NET memory model. The
checker issues operations in program order but allows them to complete
out-of-order as long as the reordering is permitted by .NET memory
model. We integrate partial-order reduction methods into our checker
to combat state space explosion. This involves extending conventional
partial order reduction methods developed for verifying sequentially
consistent executions of concurrent programs.

• Memory Barrier Insertion Our checker is useful for uncovering all ex-
ecution traces allowed by the .NET memory model. However, when
the programmer finds “unexpected” execution traces using our checker
how does (s)he disallow this behavior? We use the well-known maxflow-
mincut algorithm [11] to rule out program states unreachable under
Sequential Consistency. The min-cut yields (a minimal number of)
places in the program where the memory barriers are to be inserted.

In Section 3 we show a simple working example to explain our identification
and removal of undesirable program behaviors.

Differences from conference paper The main differences between this
paper and its conference version [13] lie in enhancing the utility and the
applicability of our work. Towards this goal, we have given elaboration of
the issues in constructing a formal description of the C# memory model.
Some of these issues were discussed in details while explaining our formal
specification to readers during/after the conference. This discussion appears
in Section 4 of the paper.

Furthermore, in the journal version, we have integrated partial-order
reduction strategies into our checker (see Section 6). This could not be
done straightforwardly since the correctness of partial order reduction is
not proved for search strategies where execution traces formed by operation
re-orderings are also explored. Note that partial order reduction is a state-
space reduction technique which is typically employed in explicit-state model
checking of asynchronous concurrent systems [6]. It avoids exploring all
possible interleavings of different program threads by calculating at each
program state an “ample set” of enabled actions; this ample set is a subset
of all enabled actions from the state and hence all execution traces emanating
from the state need not be explored. Now, when some of the enabled actions
from a program state involve re-ordering of operations in a thread (instead of
executing the next statement in the thread), how do we calculate the ample
set of enabled actions? We show how this can be done and integrate it into
our memory model sensitive checker for C#. We evaluate the checker against
standard benchmarks (reader-writer, producer-consumer etc) which have
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been used by other recent works on software model checking with partial-
order reduction. Our contributions are not necessarily C# specific — our
results can be used for memory model sensitive software model checking.

2 Related Work

Developing formal specification of memory models has been well-studied in
the context of hardware multiprocessors. Similar to Java threads, hardware
shared-memory multiprocessors also impose a consistency model which dic-
tates the allowed interactions among the processors via a shared memory.
Dill et. al. [8, 25] developed executable memory models for SPARC archi-
tectures and used them to verify synchronization routines. Gopalakrishnan
et. al. [12, 32] have used SAT solving to check whether an execution is
allowed by a multi-processor memory model, in particular the Intel Ita-
nium memory model. We are addressing a different problem in this paper.
Instead of checking whether one given execution is allowed, our work auto-
matically generates the transition system (capturing all possible executions)
for a given program under the C# memory model. This is made possible
because of the “local” manner in which we specify the C# memory model
— it is simply specified as a table describing which operation pairs can be
re-ordered. Consequently, we can employ these re-orderings on-the-fly while
constructing and traversing the transition system (for a given program). It
would be interesting to see whether the rules of the Intel Itanium model
can be employed in a similar “constructive” fashion to construct all possible
executions for a given program.

In recent works, Burckhardt, Alur and Martin [4, 5] study bounded
model checking of concurrent data types under relaxed hardware memory
models. Their work uses a SAT checker to verify observational equivalence
between sequentially consistent behaviors of a concurrent program and be-
haviors allowed by relaxed hardware memory models. Their work is related
to our approach, but differs in two respects. First, we focus on a pro-
gramming language level memory model (that of C#) rather than hardware
memory models. Even though hardware and software memory models can
be specified in a common framework, the level at which the verification is
carried out (source/bytecode/instructions) can be different. Since Burck-
hardt et. al. consider hardware memory models, the program for a thread
is converted to instruction sequences. In our case, we perform verification
at the bytecode level. Secondly, we give an automatic method to insert op-
timal number of fences/barriers. Thus, not only can we check whether a
given set of fences is necessary and sufficient to prove an invariant under
C#’s memory model, we can also compute the minimal number of fences
required to ensure an invariant property under C#’s memory model.

Programming language level memory models are relatively new. In the
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recent years, substantial research efforts have been invested in developing
the Java Memory Model (e.g. see [1, 17, 19]). These works mostly focus on
what should be the programming language level memory model for Java.

For the .NET memory model, a formal executable specification based
on Abstract State Machines has been discussed in [30]. In this paper, we
formally present the .NET memory model in a tabular non-operational for-
mat — clearly showing which pairs of operations can be reordered. This
makes the formal specification more accessible to system designers as well.
Furthermore, even though our memory model specification itself is not exe-
cutable (unlike [30]) we show how it can be exploited for exploring the state
space of a program.

As far as program verification is concerned, typically most works on
multi-threaded program verification are oblivious of the programming lan-
guage memory model. For all such works, the execution model implicitly
assumed is Sequential Consistency — operations in a thread proceed in pro-
gram order and any interleaving among the threads is possible. Integrating
programming language level memory models for reasoning about programs
has hardly been studied. In particular, our previous work [28] integrated
an operational specification of the Java Memory Model for software model
checking. Also, the work of [31] integrates an executable memory model
specification for detecting data races in multi-threaded Java programs. This
work develops executable descriptions of memory models, unlike our work.
The work explores the Sequential Consistency memory model, even though
in principle this restriction can be removed.

Our checker verifies programs at the level of bytecodes; its state space
representation has similarities with the Java Path Finder (JPF) model checker
[15]. However, JPF is not sensitive to Java memory model, and it implic-
itly considers sequential consistency as the program execution model. In
fact, works on bytecode level formal reasoning (e.g., see [24] and the arti-
cles therein) typically have not considered the programming language level
memory model.

The work of [18] develops a behavioral simulator to explore program
behaviors allowed by the Java memory model. Apart from the differences
in programming language (Java and C#) there are at least two conceptual
differences between our work and [18]. First of all, their explorer works at
the level of abstract operations such as read/write/lock/unlock whereas our
checker operates at the bytecode level. Secondly, and more importantly,
our tool does not only explore all program executions allowed by the .NET
memory model. It can also suggest which barriers are to be inserted for
disallowing program executions which are not sequentially consistent but
are allowed by the (more relaxed) .NET memory model. This technique is
generic and is not restricted to C#.

Finally, an alternative to our strategy of inserting memory barriers might
be to mark all shared variables in the program as volatile [20]. We however
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Thread 0 Thread 1
1. lock0 = 1;

2. turn = 1;

3. while(1){
4. if (lock1!=1)||(turn==0)

5. break; }
6. counter++;

7. lock0 = 0;

A. lock1 = 1;

B. turn = 0;

C. while(1) {
D. if (lock0!=1)||(turn==1)

E. break; }
F. counter++;
G. lock1 = 0;

Figure 1: Program encoding Peterson’s mutual exclusion

note this does not work due to the weak definition and implementation of
volatiles in C#. In particular, C# language documents [20] and C# imple-
mentations (e.g., .NET 2.0) seem to allow reordering of volatile writes occur-
ring before volatile reads in a program thread. On the other hand, memory
barriers have a clear well-understood semantics but they incur performance
overheads. For this reason, given an invariant property ϕ we insert minimal
memory barriers in the program text which disallow all non-sequentially
consistent execution traces violating invariant ϕ. Note that we are inserting
memory barriers to disallow execution traces (in a state transition graph)
which violate a given invariant property. Thus, we do not seek to avoid all
data races, our aim is to avoid violations of a given program invariant.

3 A Working Example

We consider Peterson’s mutual exclusion algorithm [27] to illustrate our
approach. The algorithm (see Figure 1) uses two lock variables and one
shared turn variable to ensure mutually exclusive access to a critical sec-
tion; a shared variable counter is incremented within the critical section.
Initially, we have lock0 = lock1 = turn = counter = 0.

In this program we are interested in the value of the variable counter
when the program exits. Under sequential consistency, the algorithm is
proven to allow only a single thread running in the critical section at the
same time and thus when the program exits, we always have counter ==
2. However when we run the program in a relaxed memory model (such as
the .NET memory model) we can observe counter == 1 at the end. One
execution trace that can lead to such an observable value is as follows.
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Thread 0 Thread 1
write lock0 = 1 (line 1)
write turn = 1 (line 2)
read 0 from lock1, break (line 4,5)
read 0 from counter (line 6)

write lock1 = 1 (line A)
write turn=0 (line B)

At this point, Thread 0 can write 1 to counter (line 6), then write 0 to
lock0 (line 7). However if the writes to counter and lock0 are reordered,
lock0 = 0 is written while counter still holds the old value 0. Thread 1
reads lock0 = 0, it will break out of its loop and load the value of counter
which is now still 0. So both threads will write the value 1 to counter,
leading to counter == 1 at the end of the program.

Finding out such behaviors is a complex and error-prone task if it is
done manually. Moreover even after we find them, how do we disable such
behaviors? A quick way to fix the problem is to disable all reorderings
within each thread; this clearly ensures Sequential Consistency. Recall that
a memory barrier requires all instructions before the barrier to complete
before the starting of all operations after the barrier. We can disable all
reorderings allowed by a given relaxed memory model by inserting a memory
barrier after each operation which can possibly be reordered. This will lead
to very high performance overheads.

Note that running the above code with all shared variables being volatile
also does not work. In Microsoft .NET Framework 2.0 on a Intel Pentium IV
multi-processor platform, the variable counter is still not always observed
to be 2 at the end of the program. This seems to be due to the possibility of
(volatile-write → volatile-read) reorderings, an issue about which the CLI
specification is also ambiguous. We discuss this matter in more details in
the next section.

In this paper, we provide a solution to the problem of finding additional
behaviors under a relaxed memory model and then disabling those behav-
iors without compromising program efficiency. Using our checker we can
first explore all reachable states under Sequential Consistency and confirm
that counter == 2 is guaranteed at the end of the program. This amounts
to verifying the invariant property AG((pc == end) ⇒ (counter == 2))
expressed in Computation Tree Logic (CTL). Here pc stands for the pro-
gram counter (capturing the control locations of both the threads) and end
stands for the last control location (where both threads have terminated).
We then check the same invariant property under the .NET memory model;
this check amounts to exploring more reachable states from the initial state
(as compared to the set of reachable states computed under Sequential Con-
sistency). We find that under the .NET memory model, our property can
be violated since counter == 1 is possible at the end of the program. The
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checker does a full reachable state space exploration and returns all the
counter-example traces, that is, all possible ways of having counter �= 2 at
the end of the program.

However, more importantly, our checker does not stop at detecting possi-
ble additional (and undesirable) behaviors under the .NET memory model.
After finding that the property AG((pc == end) ⇒ (counter == 2)) is
violated under .NET memory model, our checker employs a memory bar-
rier insertion heuristic to suggest an error correction strategy; it finds three
places in each thread for inserting memory barriers. We only show the
modified code for Thread1; Thread2’s modification is similar.

lock0 = 1; MemoryBarrier; turn = 1;

while(1){ MemoryBarrier; if((lock1 != 1) || (turn == 0)) break; }
counter++; MemoryBarrier; lock0 = 0;

The inserted memory barriers are sufficient to ensure that the algorithm
will work correctly under the relaxed memory model of C# (while still al-
lowing the compiler/hardware to reorder other operations for maximum per-
formance). This claim can again be verified using our checker — that is, by
running the checker on the program with barriers under the relaxed .NET
memory model we can verify that AG((pc == end) ⇒ (counter == 2))
holds. Moreover, the number of inserted barriers is also “optimal” — that
is, at least so many barriers are needed to disallow all possible violations of
AG((pc == end) ⇒ (counter == 2)) under the .NET memory model.

4 Memory Model Specification

In this section, we describe the programming language level memory model
for C#, also called the .NET memory model, based on the information in
two Microsoft’s official ECMA standard document [21] and [20].

We present which reorderings are allowed by .NET memory model as a
reordering table. We first describe the bytecode types it considers and then
present allowed bytecode reorderings. The bytecode types are:

• Volatile reads/writes: Reads/writes to volatile variables (Variables in
a C# program can be marked by the programmer by the keyword
“volatile” indicating that any access to such a variable should access
its master copy).

• Normal reads/writes: Reads/writes to variables which have not been
marked as volatile in the program.

• Lock/unlock: The synchronization operations.

Among these operations, the model allows the reorderings summarized
by Table 1. The model leaves a lot of possibility for optimization as long as
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Reorder 2nd bytecode
1st bytecode Read Write Vol. Read Vol. Write Lock Unlock
Read Yes Yes Yes No Yes No
Write Yes Yes Yes No Yes No
Vol. Read No No No No No No
Vol. Write Yes Yes Yes No Yes No
Lock No No No No No No
Unlock Yes Yes Yes No No No

Table 1: Bytecode reordering allowed by the .NET memory model

program dependencies within a thread are not violated (e.g., store x; load
x is never executed out-of-order due to data dependency on x). While data-
dependency removal may allow more optimizations, the CLI documents ex-
plicitly prohibit doing so — see execution order rules in section 10.10 of [20].
Furthermore, here we are presenting the memory model in terms of allowed
bytecode reorderings and not in terms of reorderings of abstract program ac-
tions. Optimizations which remove dependencies are usually performed by
the compiler (the hardware platforms respect program dependencies) and
hence would already be reflected in the bytecode.

Our reordering table is constructed based on the following considerations.

• Normal Reads and Writes are freely reordered.

• Locks and Unlocks are never reordered.

• Volatile Reads and writes have acquire-release semantics, that is, op-
erations after (before) volatile-read (volatile-write) cannot be moved
to before (after) the volatile-read (volatile-write).

More on (Volatile-write → Volatile-read) Re-orderings An inter-
esting case is when a volatile write is followed by a volatile read (to a dif-
ferent variable). If we adhere to a strict ordering of all volatile operations,
this reordering is disallowed; note that even if we allow (volatile-write →
volatile-read) reorderings, we can still ensure that all writes to volatile vari-
ables are seen in the same order from all threads of execution. But it seems
that Microsoft’s .NET 2.0 allows this reordering on Peterson’s mutual ex-
clusion example shown in Section 3. Thus, in the program of Figure 1, the
reads in Line 4 (or Line D) can get reordered w.r.t. writes in Lines 1,2
(Lines A, B) thereby leading to violation of mutual exclusion. The ECMA
documents [21] and [20] are also silent on this issue; they only mention that
operations cannot be moved before (after) a volatile read (volatile write),
thus leaving out the case when a volatile write is followed by a volatile read.
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In the following, we elaborate on this issue; we believe that this serves to
clarify the common questions/doubts the readers may have on this matter.

We consider Peterson’s mutual exclusion example shown in Figure 1. Let
us suppose that all shared variables in this program — lock0, lock1, turn,
counter — are marked as volatile. Note that, if (volatile-write → volatile-
read) re-orderings are allowed, we still cannot guarantee mutual exclusion.
Following is an execution trace which leads to counter == 1 at the end of
the program (which is only possible if mutual exclusion of critical section
access is violated).

Thread 0 Thread 1
(lock1 != 1)
exit loop
read counter (reads 0)

lock1 = 1
(lock0 != 1)
exit loop

lock0 = 1
turn = 1

turn = 0
counter++
lock1 = 0

increment counter (set 1)
lock0 = 0

In the preceding execution, note that the execution trace in each thread
does not violate any data/control dependencies, as required by ECMA exe-
cution order rules 10.10 [20]. However, the write to volatile variables lock0,
turn are moved after the read to volatile variable lock1. This seems to be
allowed by the ECMA specification since:

• the execution order rules of C# (ECMA 334 10.10 [20]) point to ECMA
334 17.4.3 [20] for re-orderings w.r.t. volatile fields, and

• The rules in ECMA 334, 17.4.3 explicitly give an ”acquire-release”
semantics to volatile reads and writes.

In particular, ECMA 334, 17.4.3 says the following about re-orderings w.r.t.
volatile reads and writes which we believe is relevant for deriving a formal
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specification of the C# memory model.

For non-volatile fields, optimization techniques that reorder instructions
can lead to unexpected and unpredictable results in multi-threaded programs
that access fields without synchronization such as that provided by the lock-
statement (15.12). These optimizations can be performed by the compiler,
by the runtime system, or by hardware. For volatile fields, such reordering
optimizations are restricted:
A read of a volatile field is called a volatile read. A volatile read has ac-
quire semantics; that is, it is guaranteed to occur prior to any references to
memory that occur after it in the instruction sequence.
A write of a volatile field is called a volatile write. A volatile write has
release semantics; that is, it is guaranteed to happen after any memory
references prior to the write instruction in the instruction sequence.

Based on the above informal specification, we can see that operations
occurring before a volatile read can occur after the read. Similarly, oper-
ations occurring after a volatile write can occur before the write. Indeed,
this is what is happening in our example execution trace for Peterson’s pro-
gram where we observe mutual exclusion violation despite marking all shared
variables as volatile.

Finally, and most importantly, we also observed violation of mutual ex-
clusion on .NET. We set up the experiment by letting each thread in Pe-
terson’ program (see Figure 1) access the critical section n times where n
is a large number. If mutual exclusion is not violated, the value of counter
at the end of the program should be 2 ∗ n. However, for large values of n
(such as n = 10, 000, 000), we observed that the value of counter is less
than 2 ∗ n at the end of the program, showing mutual exclusion violation.
The runs were taken on an IBM xSeries 255 multiprocessor machine with
four processors.

Ongoing development of the memory model The current C# mem-
ory model presented in this paper was considered too weak, and there are
currently proposals and discussions to strengthen it. But it is agreed that
the new memory model will still be weaker than the x86 memory model
for performance reasons. Considering that reasoning about correctness of
programs under x86 memory model is already difficult, it will be even more
difficult when the programmers consider the weaker C# model. A memory
model aware checker is thus essential for verifying programs’ correctness.
Having such an checker also allows programmers to write very “clever”,
lock-free high performance code with confidence.

Towards a Checker Our checker implements the .NET Common Lan-
guage Infrastructure (CLI) instruction set specified in [21]. We allow re-
ordering of operations by (a) requiring all bytecodes to issue in program
order and (b) allow certain bytecodes (whose reordering is allowed by the
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memory model) to complete out-of-order. Allowing reorderings according
to the .NET memory model involves additional data structures in the state
representation of our checker. In particular, for each thread we now need to
maintain a list of “incomplete” bytecodes — bytecodes which have been is-
sued but have not completed. The execution model allows a program thread
to either execute its next bytecode or complete one of the incomplete byte-
codes. We now proceed to elaborate on the state space representation and
the reachability analysis.

5 Invariant Checker

The core of our checker is a virtual machine that executes .NET Common
Language Infrastructure (CLI) bytecode using explicit state representation.
It supports many threads of execution by interleaving issuing and complet-
ing of bytecodes from all threads. We implemented only a subset of the
CLI. Features such as networking, I/O, class polymorphism and exception
handling are not included in the implementation. Bytecodes from .NET li-
braries are interpreted by our checker in the same manner as the bytecodes
from the application program. Our checker is geared towards verifying short
sections of code (which have probably been optimized by the programmer
for performance). Our checker cannot handle native code. Also, the state
space construction in our explicit-state model checker may not terminate if
the state space is unbounded (say due to unbounded recursion).

5.1 State Representation

We first consider the global state representation without considering the
effects of the reorderings allowed by .NET memory model. To describe a
global state we use the notion of data units of the CLI virtual machine.
The virtual machine uses data units to hold the value of variables and stack
items in the program. Each data unit has an identifier (for it to be referred
to), and a modifiable value. The type of the modifiable value can be (a)
one of the primitive data types, (b) reference types (pointers to objects),
or (c) objects. New data units are created when a variable or a new object
instance is allocated, or when a load instruction is executed. A global state
of a program now consists of the following data units, corresponding to the
different memory areas of the CLI virtual machine [21].

Program counter for each thread Each thread has a program counter
to keep track of the next bytecode to be issued.

Stack for each thread Each thread has a stack which is used by most
bytecodes to load/store data, pass parameters and return values from
functions (or certain arithmetic / branch operations).
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Heap The virtual machine has a single heap shared among all threads.
Object instances and arrays are allocated from the heap. A data unit
is created for each object as well each of its fields.

Static variables Static variables are shared among threads.

Frame Frames store local variables, arguments and return address of a
method. Each time a method is called, a new frame is created and
pushed into frame stack; this frame is popped when the method re-
turns. Each local variable/argument is assigned one data unit.

All of the above data areas of the virtual machine are included in the
global state space representation of a program. Now, in order to support
the memory model, a new data structure is added to each thread: a list of
incomplete bytecodes (given in program order). Each element of this list is
one of the following type of operations — read, write, volatile read, volatile
write, lock, unlock (the operation types mentioned in the .NET memory
model, see Table 1). This completes the state space representation of our
checker. We now describe the state space traversal.

5.2 Search Algorithm

Our checker performs reachability analysis by an explicit state depth-first
search (starting from the initial state) over the state space representation
discussed in the preceding. Given any state, how do we find the possible
next states? This is done by picking any of the program threads, and letting
it execute a single step. So, what counts as a single step for a program
thread? In the usual model checkers (which implicitly assume Sequential
Consistency), once a thread is chosen to take one step, the next operation
from that thread forms the next step. In our checker the choices of next-
step for a thread includes (a) issuing the next operation and (b) completing
one of the pending operations (i.e., operations which have started but not
completed). The ability to complete pending operations out of order allows
the checker to find all possible behaviors reachable under a given memory
model (in this case the .NET memory model).

Thus, the search algorithm in our checker starts from the initial state,
performs depth-first search and continues until there are no new states to
be traversed. In order to ensure termination of this search, our checker of
course needs to decide whether a given state has been already encountered.
In existing explicit state software model checkers, this program state equiv-
alence test is often done by comparing the so-called memory image in the
two states, which includes the heap, stacks, frames and local variables. Our
checker employs a similar test; however it also considers the list of incom-
plete operations in the two states. Two states are considered equivalent if
we can establish a bijection between the two sets of data units such that the
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structural relation between two data units in one state is the same as the
relation between their corresponding units in the other state.

Formally, two states s and s′ with two sets of data units D = {d1, d2, ..., dn}
and D′ = {d′1, d′2, ..., d′n} are equivalent if and only if the program counters
in all threads are equal and there exists a bijective function f : D → D′

satisfying:

• For all 1 ≤ i ≤ n, the value stored in di and f(di) are equal.

• A static variable x in s is allocated data unit di if and only if it is
allocated data unit f(di) in s′.

• Data unit di is the kth item on the stack (or frame, local variable,
argument list, list of incomplete bytecodes) of the jth thread in s iff
f(di) is the kth item on the stack (or frame, local variable, argument
list, list of incomplete bytecodes) of the jth thread in s′.

• The reference type data unit di points to data unit dj in s if and only
if f(di) points to f(dj) in s′.

In our implementation, the global state representation is saved into a single
sequence so that if two state’s sequences are identical, the two states are
equivalent. Like the Java Path Finder model checker [15], we also use a
hash function to make the state comparison efficient.

5.3 Experiments

In this section, we report the experiments used to evaluate our checker. Our
checker for C# programs is itself implemented in C#. It takes the binaries
of the benchmarks, disassembles them and checks the bytecode against a
given invariant property via state space exploration.

The multi-threaded programs used in our experiments are listed in Table
2. Out of these, peterson, and tbarrier are standard algorithms that work
correctly under Sequential Consistency, but require more synchronizations
to do so in the C# memory model. The tournament barrier algorithm
(taken from Java Grande benchmarks) provides an application program level
implementation of the concurrency primitive “barrier” (different from our
memory barriers which prevent reordering of operations) which allows two
or more threads to handshake at a certain program point.

The programs rw-vol and dc have been discussed recently in the context
of developing the new Java memory model [1]. In particular, dc has been
used in recent literature as a test program to discuss the possible semantics of
volatile variables in the new Java memory model [10]; this program involves
the lazy initialization of a shared object by several threads.

The programs rowo and po are test programs taken from the ARCHT-
EST benchmark suite [7, 23]. ARCHTEST is a suite of test programs where
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Program Description # of # of # of
b. p.b. threads

peterson Peterson’s mutual exclusion [27] 120 37 2
tbarrier Tournament barrier algorithm —

Barrier benchmark from [14] 153 104 2
dc Double-checked locking pattern [29] 77 59 2
rw-vol Read-after-Write

Java volatile semantic test [26] 92 20 2
rowo Multiprocessor diagnostic tests 87 14 2

ARCHTEST (ROWO)[7]
po Multiprocessor diagnostic tests 132 20 2

ARCHTEST (PO) [7]
iw1 Independent workers problem 1 [9] 102 64 2
iw2 Independent workers problem 2 [9] 105 67 2
rw Two readers, single writer

lock algorithm 161 62/51 3
bb Bounded buffer

Producer-consumer problem 252 87/90 3

Table 2: Test programs used in our experiments. Column 3shows the total
number of bytecodes. Column 4 shows the number of bytecodes in the parallel
region of each thread, for problems with different code for each thread (i.e.
reader/writer) two numbers are shown.

the programs have been systematically constructed to check for violations of
memory models (by generating violation of memory ordering rules imposed
by the memory models). In particular, the program rowo checks for violation
of ordering between multiple reads as well as multiple writes within a pro-
gram thread; the program po checks for violation of program order among
all operations in a program thread. These programs are effective for eval-
uating whether our checker can insert memory barriers to avoid behaviors
not observable under Sequential Consistency.

Independent workers iw1 and iw2 are benchmarks to show the effective-
ness of Partial Order Reduction 6 on programs with most of their data are
local to the thread. The other programs rw and bb are two popular patterns
for multithreaded programming programs: Reader-Writer and Producer-
Consumer problem.

Program invariants For each of our benchmarks in Table 2 we also pro-
vide a program invariant for the reachability analysis to proceed and report
violations. For the Peterson’s algorithm (peterson) this invariant is the
mutually exclusive access of shared resource. The invariant for tbarrier
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follows from the definition of the concurrency primitive “barrier”. For the
Double checked Locking pattern (dc) this invariant states that whenever
the shared object’s data is read, it has been initialized. The invariant for
rw-vol benchmark is obtained from [26]. For the ARCHTEST programs
rowo and po, this invariant is obtained from the rules of read/write order
and program order respectively (see [7, 23]). The invariants for independent-
workers, readers-writers, and producer-consumer — come from the problem
definitions.

For all of the above benchmarks we employ our checker to find all reach-
able states under (a) Sequential Consistency and (b) .NET memory model.
For the latter, recall that we allow each program thread to maintain a list
of incomplete bytecodes so that bytecodes can be completed out of order.
For our experiments we do not impose any a-priori bound on the size of
this list of incomplete bytecodes. So in practice it is bounded only by the
(finite) number of bytecodes in a program thread, and the program depen-
dencies (if a bytecode is data/control dependent on another, they cannot be
re-ordered). This exposes all possible behaviors of a given program under
the .NET memory model.

# S.C. max First C.E Total
Pgm. # states # transitions states queue time(s) time(s)
peterson 903 2794 101 5 0.16 0.91
tbarrier 1579 5812 154 8 0.7 1.51
dc 228 479 94 8 0.11 0.41
rw-vol 1646 5616 251 6 0.33 2.02
rowo 1831 4413 257 7 0.3 1.41
po 6143 22875 415 7 0.52 7.71
iw1 14886 67589 677 6 N/A 22.81
iw2 92613 285430 3477 5 N/A 86.53
rw 7762 28310 1832 8 N/A 8.82
bb 16072 51447 5707 10 N/A 25.11

Table 3: Summary of invariant verification results. Column 2 and 4 shows
the number of states under .NET memory model and Sequential Consistency
(S.C.) Column 5 shows the maximum length of the incomplete bytecode queue
in any thread during the execution with .NET memory model. Column 6
shows the time taken to find an invariant violating behavior (or counter-
example abbreviated as C.E.) under .NET memory model that cannot be
found in S.C. Column 7 shows the total time to search the entire state graph.

Our checker performs reachability analysis to explore the reachable states
under Sequential Consistency and the .NET memory model. Clearly, the
reachability analysis under the .NET memory model takes more time since
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it involves exploring a superset of the states reachable under Sequential Con-
sistency. In Table 3 we report the running time of our checker for obtaining
the first counter-example (column CE) and for performing full reachability
analysis (column FR). The time taken to find the first counter-example is
not high; so if the user is only interested in detecting a violation our checker
can produce one in a short time. The time to perform full reachability analy-
sis (thereby finding all counter-example traces) is tolerable, but much larger
than the time to find one counter-example. All experiments were conducted
on a 2.2 Ghz machine with 2.5 GB of main memory. We do not report the
time taken to find the first counter-example in certain benchmarks — these
benchmarks do not have any counter-examples, that is, the invariant being
verified is true.

6 Partial Order Reduction

By allowing program operations to complete out-of-order, our checker ex-
plores more behaviors than the normal model checkers based on Sequential
Consistency. It is necessary to reduce the number of states visited by the
search while preserving the correctness of the algorithms. Partial Order Re-
duction is a well-established technique (e.g. see the book [6], Chapter 10 to
get a background on the topic and its relevant references) to reduce size of
the state space using the commutativity of independent transitions. In [6],
the independence relation between transitions is defined statically based on
the effect of the transition, and regardless of the state they are in. Partial
Order Reduction with dynamic escape analysis [9] expanded the concept of
independence so that transitions can be independent in some states while
dependent in other states.

6.1 Forever Thread-local Transitions and Thread-local Inde-
pendence Condition

In this paper, we have modified the algorithm in [6] to work with instruction
re-orderings, dynamic independence relation, and also improved the ample
set choosing algorithm. We first give some basic definitions.

Definition 1 (Transition). A transition in the state transition graph of a
program can be one of the following.

• Execute an action (one bytecode).

– complete immediately (branching, arithmetic, comparison or syn-
chronization bytecodes)

– schedule an incomplete action (read, write, lock or unlock byte-
codes)
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• Complete an incomplete action.

Definition 2 (Thread-local data). Data elements that can be accessed by
only one thread are defined as thread-local data. Static variables are globally
accessible and thus not thread-local. Stack items, local variables, formal
parameters are thread-local. Data elements on the heap are thread-local or
not depending on the memory structure at each state.

Definition 3 (Thread-local transition). Using the definition of transitions
and thread-local data, we can define a thread-local transition as follows: A
transition t at state s is thread-local if t is one of the following:

• Execute an instruction that completes immediately and have effect on
thread-local data only.

• Schedule an incomplete action.

• Complete an incomplete action having effect on thread-local data only.

A data item can change its thread-local property in another state because
of data passing and/or changing data on the heap. So a transition is thread-
local or not depends on the state it is in. If a heap-allocated object is
accessible from only one thread in a certain state s, we say that the object
is thread local in s. However, there are data items that can only be accessed
by a single thread: operations on them are local regardless of the states they
are in. We call these forever-local-transitions, defined in the following.

Definition 4 (Forever-local-transition). Forever-local-transitions are tran-
sitions that only affects local thread state: scheduling an incomplete action
or completing an incomplete action that only affects a thread’s stack, local
variables or formal parameters.

We are now in a position to define the notion of thread-local independence
of transitions.

Definition 5 (Thread-local Independence of transitions). For all state s,
for all threads t1 and t2, for all transitions α of t1 and β of t2, α and β are
independent iff

• α is forever thread-local

• t1 �= t2 and α is thread-local at s.

We need to prove that the above independence relation satisfies two
conditions of Enabledness and Commutativity in [6]. The set of transitions
enabled in a state s is denoted as enabled(s).
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• Enabledness: If α, β ∈ enabled(s) then α ∈ enabled(β(s)).

The only way in which β disables α is through thread synchronization
actions by locking the resource that α is going to acquire. But by
definition, one of them must be a thread-local or forever-thread local
transition, which cannot be a synchronization action. So enabledness
is preserved.

• Commutativity: If α, β ∈ enabled(s) then α(β(s)) = β(α(s)).

When α and β are on different threads, one of them must be lo-
cal so the effect of each transition is not visible to the other, thus
α(β(s)) = β(α(s)). When α and β are on the same thread, by de-
finition one of them must be forever-local. There are two types of
forever-local transition: scheduling an incomplete action and com-
plete an incomplete action that only affects data structure local to
the threads (stack, local variable and formal parameters). There are
three cases:

– If α is scheduling an incomplete action and β is an access to
thread-local data structures, then it is clear that their effects are
not overlapping, and α(β(s)) = β(α(s)).

– α and β are both scheduling an incomplete action. Because in the
same thread scheduling incomplete actions must respect program
order, there can never be two such transitions enabled in a state.
So this case never happens.

– α and β are both accesses to thread local data structures. If
the values they are accessing are overlapping, data dependency
restricts one to complete after the other, thus they can not be in
enabled(s) at the same time. If the values they are accessing are
not overlapping, it is clear that α(β(s)) = β(α(s)).

6.2 Choosing the ample set

The ample set construction proceeds as follows. When there is a forever-
thread-local transition α in a state s, we choose ample(s) = {α}. If such
a transition does not exist, the ample set is chosen as the whole set of
transitions of a thread t if it satisfies three conditions C1, C2, C3 for ample
sets. If no such thread t can be found we simply set ample(s) = enabled(s),
the set of enabled transitions in state s (i.e., there is no reduction in the set
of transitions to be explored from s).

The conditions C1, C2, C3 are given in [6], but in our setting they need
to be modified as follows. The modifications are similar to [9]. However
[9] does not consider operation re-orderings which is crucial to any memory
model sensitive checker. In the following, we use enabled thd trans(s, t) ⊆
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enabled(s) to denote the set of transitions of thread t which are enabled in
state s.

We also use the notion of invisible as in [6] — a transition is invisible
when its execution from any state does not affect the invariant we want to
check.

Algorithm 1 Ample set construction
function Ample(s)

for all transition a ∈ state s do
if a is forever-local then

return a
end if

end for
for all thread t do

if enabled thd trans(s, t) �= ∅ and check c1(s, t) and check c2(s, t)
and check c3(s, t) then

return enabled thd trans(s, t)
end if

end for
return enabled(s)

end function

We modify condition C1 in [6] for state-wise independence relation as
follows. Along every path in the full state graph that starts at s, the fol-
lowing condition holds: a transition that is dependent at s on a transition
in ample(s) cannot be executed without a transition in ample(s) occurring
first. In order to check C1, we use a conservative approach to make sure
that the ample set we are choosing does not violate C1, but may rule out
some feasible ones. In particular, let Ei be the set of data elements that
thread ti can reach. Ei is computed by including ti’s local data structures
(stack, local variables, incomplete action queue, ...) and following the refer-
ences/pointers from these data. Let E = E1 ∪ . . .∪Ek−1 ∪Ek+1 ∪ . . . ∪En.
If a transition α in tk can access E then the set of transitions of thread
tk is not a candidate for ample(s). In the absence of such transitions, the
transitions in tk are independent of the transitions in enabled(s)\ample(s),
and ample(s) is chosen as all transitions from thread t.
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Algorithm 2 Check C1 algorithm
function check c1(state s, thread t)

G = static variables and data accessed from static variables
for all thread t′ �= t do

G = G∪{data accessible by t′}
end for
for all transition a ∈ t do

if a accesses data in G then
return false

end if
end for
return true

end function

Condition C2 in [6] is If s is not fully expanded, then every α ∈ ample(s)
is invisible. (C2) is satisfied if all transitions in t is invisible.

Algorithm 3 Check C2 algorithm
function check c2(state s, thread t)

for all transition a ∈ t do
if visible(a) then

return false
end if

end for
return true

end function

Condition C3 in [6] is: A cycle is not allowed if it contains a state in
which some transitions α is enabled, but is never included in ample(s) for
any state s on the cycle. C3 is check using the algorithm in [6]: if the
resulting state of a transition α ∈ t is on the search stack, we do not choose
this set of t’s transitions as ample(s) because doing so will make a cycle
violating the condition.

Algorithm 4 Check C3 algorithm
function check c3(state s, thread t)

for all transition a ∈ t do
if on stack(a(s)) then

return false
end if

end for
return true

end function
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The reduced state graph is built using depth first search, at each state
s the next transitions are retrieved from ample(s) instead of enabled(s).
Because the size of ample(s) is usually much smaller than enabled(s), the
size of the state space is significantly reduced.

6.3 Correctness Proof

We now modify the correctness proof of partial order reduction given in
Chapter 10 of [6] to obtain the correctness proof of our ample set choosing
method.

The correctness proof in Section 10.6 of [6] shows that for every path
in the full state graph, we can construct a stuttering equivalent path be-
longing to the reduced state graph by reordering the order of independent
transitions. The properties of the path allows us to prove that the reduced
state graph and the full state graph are stuttering equivalent, so searching
in either of them gives us the same reachability or LTL X result. We show
that the proof is still applicable with our method for choosing ample sets.

Let η = s0
α1→ s1

α2→ ...
αk→ sk and θ = s′0

β1→ s′1
β2→ ...

βk→ s′k′ . If sk = s′0
then η ◦ θ denotes the path s0

α1→ s1
α2→ ...

αk→ sk
β1→ s′1

β2→ ...s′k′
We will construct recursively πi+1 from πi = ηi ◦θi to produce an infinite

sequence of paths π0, π1, ... from some infinite path σ in the full state graph
such that π0 = σ and πi = ηi ◦ θi, |ηi| = i. Let θi = s0

α0=α→ s1
α1→ s2

α2→ ...
Consider the following two cases.

• α ∈ ample(s0). Let ηi+1 = ηi ◦ (s0
α→ α(s0)) and θi+1 = s1

α1→ s2
α2→...

• α /∈ ample(s0), so α = α0 is independent with the transitions in
ample(s0). The transitions in ample(s0) continue to be independent
with other transitions at subsequent states sk from s. We prove this
by induction on k with the help of the following Lemma.

Lemma 1. If α is independent with β0, β1 in state s, and s′ = β0(s)
then α is independent with β1 in s′.

Proof of Lemma 1: There are three cases.

– α is forever-thread-local, it is obvious that α is still independent
with β1 because it is not possible to change thread-locality of α

– α is thread-local, the only way to make β1 dependent on α is
making α non thread-local. To do so, β0 must be in the same
thread with α in order to make the data accessed by α to be
globally accessible. But β0 is independent with α, so it must be
either on another thread or forever-thread-local. In both cases β0

cannot affect thread-locality of α.
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– α is not thread-local, so β0 and β1 must be thread-local or forever-
thread-local. Because they are both accessing local data, they
cannot make the other non-thread-local. So α is still dependent
in β0(s).

This completes the proof of Lemma 1. �

Continuing with our induction argument for the case α /∈ ample(s0),
let us consider a transition β in ample(s0).

– k = 1. By Lemma 1, β ∈ enabled(s1) and by applying Lemma
1 with β1 = αi we have β still independence with each αi for
i = 1, ...n

– Induction hypothesis: k = m: If β ∈ enable(s0) and β is inde-
pendent with α0, α1, ...αk, then β ∈ enabled(sm) and β is inde-
pendent with αm, αm+1, ...αn

– k = m + 1. We have β ∈ enabled(sm) and β is independent with
αm, αm+1, ...αn. Applying Lemma 1 to sm, αm and β we have
β ∈ enabled(sm+1) and β is independent with αm+1, αm+2...αn.

This completes the induction argument for the case α /∈ ample(s0). We
have proved that, in this case, the transitions in ample(s0) continue
to be independent with other transitions at subsequent states.

Because every transition β ∈ enabled(s0) stays independent with the
other transitions, we have two cases to consider.

– β ∈ ample(s0) appears on ηi after k independent transitions:

s0
α0→ s1

α1→ ...sk−1
αk−1→ sk

β=αk→ sk+1
αk+1→ ...

Because β and αk−1 are independent, by the commutativity prop-
erty, we can change the order of applying transition β and αk−1:

sk−1
β=αk→ β(sk−1)

αk−1→ αk−1(αk(sk−1)) = αk(αk−1(sk−1)) = sk+1

It has the effect of moving up β before αk−1. By repeatedly
moving up β one transition at a time with αk−2, αk−3, ..., we
have the path

ξ = s0
β→ β(s0)

α0→ β(s1)
α1→ ...

αk−1→ β(sk)
αk+1→ ...

Let ηi+1 = ηi ◦ (s0
β→ β(s0)) and θi+1 be the path obtained from

ξ by removing the first transition.

– β is independent of all αi ∈ θ. Similarly, there is also a path
ξ = s0

β→ β(s0)
α0=α→ β(s1)

α1→ ... and we can define ηi+1, θi+1 as
above.
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The construction of ξ is crucial in providing a stuttering equivalent path
belonging to the reduced state graph for every path in the full state graph.
The rest of the proof follows exactly as in [6].

Work of [9] We note that exploiting independence by locality of data has
been studied in [9] but without the use of forever-thread-local transitions
(Def. 4). The execution model assumed in [9] is the traditional sequentially
consistent interleaving model. The notion of forever thread-local transitions
(introduced by us), turns out to be very useful in reducing behaviors when
operation re-orderings are allowed (by relaxed memory models). This was
confirmed by our experiments. We now present our experiments to show
the state space reduction achieved.

6.4 Experimental results

We have measured the efficacy of partial reduction by evaluating the time
to perform full reachability analysis with and without partial reduction.
The results for these experiments appear in Table 4. The multi-threaded
programs used in our experiments have been described in the last section
(see table 2).

We can observe that the benefits from partial order reduction vary widely
across programs. If a program uses lot of local data (especially like iw1 and
iw2), many of the transitions are discarded by our partial-order reduction
and hence the time for reachability analysis reduces dramatically. However,
for multi-threaded programs which have lot of data shared across threads,
the benefits from partial-order reduction are not substantial.

7 Disabling Undesirable Program Behaviors

Given a multi-threaded C# program, we are interested in computing the set
of reachable states from the initial state. The set of reachable states under
the .NET memory model is guaranteed to be a superset of the reachable
state set under Sequential Consistency. In this section, we discuss tactics
for disallowing the additional states reached under the .NET memory model.
Since these additional states are reached due to certain reordering of opera-
tions within program threads, we can avoid those states if such reorderings
are disabled by inserting barriers/fences in the program text.

While doing reachability analysis we build (on-the-fly) the state tran-
sition graph. Each vertex represents one state, each directed edge repre-
sents a transition from one state to another. Consider the state transition
system constructed for the .NET memory model. Because this memory
model is more relaxed than Sequential Consistency, we can divide the graph
edges into two types: solid edges correspond to transitions which can be
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Normal With POR
Pgm. # of # of time # of # of time

states transitions (sec) states transitions (sec)
peterson 903 2794 0.91 881 2697 0.90
tbarrier 1579 5812 1.51 801 2641 1.5
dc 228 479 0.41 150 272 0.36
rw-vol 1646 5616 2.02 1613 5458 2.06
rowo 1831 4413 1.41 1776 4231 1.36
po 6143 22875 7.71 6091 22595 7.64
iw1 14886 67589 22.81 246 557 0.59
iw2 92613 285430 86.53 353 560 0.63
rw 7762 28310 8.82 6851 22119 7.48
bb 16072 51447 25.11 1704 4048 2.08

Table 4: Comparison of state transition graph size and time taken to build
the graph

performed under Sequential Consistency (complete the bytecodes in order
within a thread) and dashed edges correspond to transitions which can only
be performed under .NET memory model (requires completing bytecodes
out-of-order). From the initial state, if we traverse only solid edges we
can visit all states reachable under Sequential Consistency. We color the
corresponding vertices as white and the remaining vertices as black. The
black vertices denotes the additional states which are reached due to the
reorderings allowed by the relaxed memory model (see Figure 2 for illus-
tration). Note that if (a) we are seeking to verify an invariant property ϕ
under Sequential Consistency as well as the .NET model, (b) ϕ is true under
Sequential Consistency and (c) ϕ is false under the .NET memory model —
the states violating ϕ must be black states. However, not all the black states
may denote violation of ϕ as shown in the schematic state transition graph
of Figure 2.

Basic Mincut Formulation To prevent the execution from reaching the
violating black states, we need to remove some of the edges from the graph.
The solid edges cannot be removed because their corresponding transitions
are allowed under Sequential Consistency. The dashed edges can be removed
selectively by putting barriers. However note that the barriers will appear in
the program text, so inserting one barrier in the program can disable many
dashed edges in the state transition graph. We find out the minimal number
of dashed edges to be removed so that the violating black states become
unreachable; we then find out the memory barriers to be inserted in the
program text for removing these dashed edges. Now we describe our strat-
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Initial state

Violating states

Figure 2: State transition graph under a relaxed memory model; only white
states can be reached under Sequential Consistency. A cut is shown separat-
ing the initial state from “violating” states.

b1, b2,  …, bk, ..., bm

complete b1 complete b2 complete bk complete bm

b1, b2,  …, bk-1,bk+1 ..., bm

s

t

Figure 3: Transitions from a state, a dashed edge indicates the transition
requires an out-of-order completion of bytecodes

egy for computing the minimal number of dashed edges to be removed. We
compute the minimum cut C = {e1, e2, ..., en} where e1, . . . , en are dashed
edges in the state transition graph such that there is no directed path from
the initial state to any violating black state (denoting violation of the in-
variant ϕ being verified) without passing through an edge in C. We find the
minimal set of dashed edges by employing the well-known Ford-Fulkerson
maxflow-mincut algorithm [11]. To find the minimal number of dashed edges
in the state transition graph as the mincut, we can set the capacity of each
dashed edge to 1 and each solid edge to infinity.

How can we locate the barrier insertion point in the program such that
a given dashed edge in the state transition graph is removed? Recall that a
dashed edge in the state transition graph denotes a state transition which
is caused by out-of-order completion of a bytecode. In Figure 3 state s has
m incomplete bytecodes 〈b1, b2, . . . , bk, . . . , bm〉 (given in program order).
The transition that completes bytecode b1 does not require an out-of-order
completion of bytecodes while the transitions that complete bk with 2 ≤ k ≤
m do. The removal of edge from state s to state t (corresponding to the
completion of bytecode bk, see Figure 3) is identified with inserting a barrier
before bytecode bk.
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Modified Mincut Formulation Note that the minimal set of dashed
edges in the state transition graph may not always produce the minimal
number of barriers in the program text. At the same time, inserting minimal
number of barriers in the program text may not be desirable in the first
place since they do not indicate the actual number of barriers encountered
during program execution.1 However if we want to minimize the number of
barriers inserted into the program, we can do so by simply modifying the
capacities of the dashed edges in the state transition graph. We partition
the dashed edges in the state transition graph into disjoint partitions s.t.
edges e, e′ belong to the same partition iff disabling of both e and e′ can be
achieved by inserting a single barrier in the program. We can then assign
capacities to the edges in such a way that the sum of capacities of the
edges in each partition is equal — thereby giving equal importance to each
possible program point where a barrier could be inserted. The maxflow-
mincut algorithm is now run with these modified capacities (of the dashed
edges); the solid edges still carry a weight of infinity to prevent them from
appearing in the min cut.

Complexity The Maxflow-mincut algorithm has time complexity of O(m∗
f) where m is the number of edges in the state transition graph and f is the
value of the maximum flow. The quantity f depends on how the capacities
of the state transition graph edges are assigned. In all our experiments, f
was less than 150 for all our test programs (using basic or modified mincut
formulation).

Experiments After exploring all reachable states under the .NET mem-
ory model, our checker can insert barriers via a maxflow-mincut algorithm
(we used the “Modified Mincut Formulation” presented in Section 7). The
time to run the maxflow algorithm is small as shown in column Mflow of
Table 3. The results of the barrier insertion step are shown in the # barriers
column of Table 3. This column shows the total number of barriers inserted
by our tool into the program so that any program execution trace which
(a) violates the invariant being verified and (b) is disallowed by Sequential
Consistency, — is not observed even when the program is run under the
relaxed .NET memory model. Among the 10 benchmarks, only 6 of them
produce behaviors not found in Sequential Consistency. Our checker has
successfully put a small number of barriers each to disallow the execution
to visit such states.

A note about Doubled Checked Locking Interestingly, the reader
may notice that our checker inserts only one barrier for the Double Checked

1A single barrier inside a loop which is iterated many times can introduce higher
performance overheads than several barriers outside the loop.

28



Pgm. Time to run Maxflow (secs) # barriers inserted
peterson 0.04 3
tbarrier 0.05 3
dc 0.03 1
rw-vol 0.23 4
rowo 0.05 2
po 1.48 6

Table 5: Experiments on disabling observable behaviors not reachable under
sequential consistency

class Helper{
private Helper helper = null;
public Helper GetHelper() {
MemoryBarrier(); // Barrier (1)
if (helper == null){

synchronized(this){
if (helper == null){

tmp = new Helper();
MemoryBarrier(); // Barrier(2)
helper = tmp;

}
}

}
return helper;
}
// Other methods of Helper class
}

Figure 4: Schematic Code for Double Checked Locking
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Locking pattern (same as the solution in [22], [3] and [2]) while the solution
using ”explicit memory barriers” given in [10] suggests putting two barriers.
Both solutions are correct, because they work for different memory models.
We show the schematic code for Double Checked Locking pattern in Figure 4.
Execution of this code without the memory barriers under the C# memory
model, allows a reader to read a helper object whose fields have not yet been
fully initialized; this behavior is prevented by the two memory barriers.

We note that all solutions put barrier (2) in Figure 4 to disallow the
reordering of the constructor’s writes to helper’s data and the writes to
helper pointer. Such a reordering will result in main memory having helper
pointing to uninitialized data. This reordering of writes are common and
allowed in most memory model, so barrier (2) are required.

However, only [10] puts barrier(1) in Figure 4. The purpose of this
barrier is to ensure that the read of helper’s data structure (in the func-
tion that calls GetHelper() is not reordered with the read of the pointer
helper). How can we read the data before we read its address ? It seems
unreasonable, but in some systems with local cache memory for each proces-
sors, the cache controller may decide to update its local copy of the data at
the address helper is going to point to from main memory, while the data
is uninitialized. After that it updates its local copy of helper, now is not
null. So the thread will see uninitialized data although the main memory is
written in order. The effect of this can be seen from the abstract view point
as reordering two data-dependent reads.

For systems that respect data dependency while reordering such as .NET
memory model compliant implementations, the compiler needs to insert bar-
riers to disable such behaviors, which are not even allowed by the .NET
memory model. The programmer’s responsibility should be to indicate that
the compiler needs to put a barrier (2) to disable the reorderings allowed by
.NET memory model which lead to undesirable program behaviors (in this
case reading an uninitialized helper object).

8 Discussion

In this paper, we have presented an invariant checker which works on the
bytecode representation of multi-threaded C# programs. The main novel-
ties of our work are (a) we can expose non sequentially consistent execution
traces of a program which are allowed by the .NET memory model, and (b)
after inspecting the counter-example traces violating a given invariant, we
can automatically insert barriers to disallow such executions. Furthermore,
to ensure that our checker can scale up to realistic programs, we also ex-
tended partial order reduction strategies for model checking multi-threaded
software to the situation where re-ordering of operations in a thread is al-
lowed. Our memory model sensitive checker (including its source code) and
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all the test programs can be freely downloaded from http://www.comp.nus.
edu.sg/∼release/mmchecker
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