
Symbolic Message Sequence Charts

Abhik Roychoudhury
School of Computing

National Univ. of Singapore

abhik@comp.nus.edu.sg

Ankit Goel
School of Computing

National Univ. of Singapore

ankit@comp.nus.edu.sg

Bikram Sengupta
IBM India Research Lab

New Delhi, India
bsengupt@in.ibm.com

ABSTRACT

Message Sequence Charts (MSCs) are a widely used visual
formalism for scenario-based specifications of distributed re-
active systems. In its conventional usage, an MSC captures
an interaction snippet between concrete objects in the sys-
tem. This leads to voluminous specifications when the sys-
tem contains several objects that are behaviorally similar. In
this paper, we propose a lightweight syntactic and semantic
extension of MSCs, called Symbolic MSCs or SMSCs, where
an MSC lifeline can denote some/all objects from a collec-
tion. Our extensions give us substantially more modeling
power. Moreover, we present a symbolic execution seman-
tics for (structured collections of) our extended MSCs. This
allows us to validate MSC-based system models capturing
interactions between large, or even unbounded, number of
objects. Since our extensions are only concerned with MSC
lifelines, we believe that they can be integrated into existing
standards such as UML 2.0.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications

General Terms

Design, Languages, Verification

Keywords

Message Sequence Charts, Unified Modeling Language (UML)

1. INTRODUCTION
Message Sequence Charts (MSCs) are widely used by re-

quirements engineers in the early stages of reactive system
design. Conventionally, MSCs are used in the system re-
quirements document to describe scenarios — possible ways
in which the objects constituting a distributed reactive sys-
tem may communicate among each other as well as with
the environment. Due to their widespread usage in require-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

M1

read(addr)

P M2 M3

read(addr)

read(addr)

reply(data)

BC

request

grant

Figure 1: An MSC showing read request from a pro-
cessor to various memory devices via a bus. The bus
controller (BC) controls access to the bus.

ments engineering, MSCs have been integrated into the Uni-
fied Modeling Language (UML). MSCs may be composed to
yield complete behavioral descriptions. Such compositions
may be captured as a High Level Message Sequence Chart
or HMSC. The complete MSC language appears in a recom-
mendation of the ITU [1]. The syntax and process theory
based operational semantics of MSCs appear in [2].

The benefits of MSCs notwithstanding, it has been ob-
served that while describing requirements of systems con-
taining many objects, MSC specifications tend to grow too
large for human comprehension [2, 3]. We find this prob-
lem to be particularly acute when the system contains sev-
eral objects which conform to a common behavioral protocol
when interacting with other objects. Such objects may be
considered as instances of a common process class. In the
absence of suitable abstraction mechanisms, similar interac-
tions involving different objects from the same class have to
be repeated to convey all possible scenarios that may occur,
thereby leading to voluminous MSC specifications.

Let us consider an example to illustrate this point. Con-
sider a master-slave protocol interaction, where several mas-
ter processes are competing to get service from the slave
processes. An arbiter controls access to the slaves. Further-
more, whenever any master needs service and the arbiter
grants access to the slaves, a specific slave will be allocated
depending on the kind of service needed. A concrete real-
ization of such an interaction can be observed in bus access
protocols. The master processes are the processors hooked
to the bus. The slave processes are memory devices from
which the processors are trying to read or write. The ar-
biter is the bus controller which decides, according to some
scheduling policy, the processor to be granted bus access.
Usually when a processor needs to access a memory address
for reading/writing data, it broadcasts the appropriate ad-
dress and control signals over the bus to various memory

devices. Then after decoding the address, one of the devices
will respond to the processor’s read/write request.

Figure 1 shows an MSC capturing the above-mentioned
interaction between a processor and memory units. Clearly,
if there are n processors hooked to the bus, we will have n

such MSCs — all structurally similar! Furthermore, even
within each MSC, there is lot of structural similarity. In
fact, since MSCs capture point-to-point communication, the
broadcast of address by a processor to all memory units is
not captured exactly in Figure 1. Instead, the processor
sends a read request separately to each of the memory units.
In the MSC shown in Figure 1, the read request is for an
address which is from the address space of memory unit M2.
Since there are two other memory devices, we would then
need to repeat the same interaction to convey the cases when
the read request is in the address space of M1 or M3.

Clearly, as we increase the number of memory devices and
processors in the system, such an approach will not scale
up. Individual MSCs will become large, containing many
lifelines, and similar MSCs representing essentially the same
interaction will have to be repeated. Moreover, since a life-
line may appear in several MSCs, modifying the specification
(for example by adding or removing memory devices) may
be error-prone and will involve considerable effort. Finally,
validation of such specifications will become inefficient as
the number of memory devices and processors is increased.

Technical Contributions. The goal of this paper is to pro-
pose simple yet powerful extensions to the MSC language
to support efficient specification and validation of systems
involving classes of behaviorally similar objects. Our exten-
sions are based on the meaning of a lifeline in an MSC. The
MSC standard (now integrated into UML 2.0) suggests that
a lifeline denotes a concrete object. As the above example
indicates, this may lead to voluminous behavioral descrip-
tions that scale poorly. In our extension, we first relax the
meaning of a lifeline to consider three possibilities (i) a con-
crete object (ii) any k objects from a class for a given pos-
itive constant k (existential abstraction), or (iii) all objects
from a class (universal abstraction). Moreover, guards may
be used to further restrict the object(s) that may engage in
the events depicted on the lifeline. Thus, if we have a uni-
versally abstracted MSC lifeline drawn from process class
p with guard gp, it will be played by all object(s) of class
p which satisfy gp. These extensions yield a concise MSC
notation called Symbolic Message Sequence Chart (SMSC).

In this paper, we present the syntax, concrete semantics,
and abstract semantics of SMSCs. The abstract semantics
allows for efficient symbolic execution of SMSCs showing in-
teractions among process classes with large numbers of ob-
jects. It also serves as a formal execution semantics which
can be used to reason about interactions between an un-
bounded number of objects. We have employed SMSCs to
model a real-life controller- the CTAS weather controller [4]
from NASA, which is part of a control system for manag-
ing high volume air traffic. Experimental results obtained
from the CTAS controller show the utility of our approach
in modeling/analyzing real-life control systems with many
(behaviorally similar) objects.

2. SYNTAX
The basic building block of our system model is a Symbolic

Message Sequence Chart or SMSC. Like an MSC, a SMSC

M

read(addr)

P

M. true

reply(data)
1 M. inRange(addr)=true< v’=data >

BC

request

grant

Figure 2: A Symbolic MSC

depicts one possible exchange of messages between a set of
objects. However, while a lifeline in an MSC corresponds to
one concrete object (henceforth called a concrete lifeline), a
lifeline in a SMSC may be either concrete or symbolic.

2.1 Visual Syntax
Graphically, we represent SMSCs as in Figure 2. This

SMSC depicts processor-memory interaction, corresponding
to the MSC discussed earlier in Figure 1. One important
difference between these representations is that the three
concrete memory lifelines M1, M2 and M3 appearing in Fig-
ure 1, have been merged into a single symbolic lifeline in
Figure 2, representing the class of memory devices in the
system. Visually, this is depicted in a SMSC by enclosing

the symbolic lifeline name by a rectangular box e.g. M
in Figure 2. During simulation, a symbolic lifeline may be
bound to an arbitrary number of objects. Otherwise, if a life-
line is concrete (i.e., process class contains a single object)
its name will appear as it is, e.g. the lifeline corresponding
to the bus controller BC in Figure 2.

Within a SMSC lifeline representing a class of objects, a
selected subset of objects may engage in events appearing
along the lifeline. This selection is performed based on the
following criteria associated with each event — (i) valuation
of variables of the object, (ii) execution history of the object,
and (iii) an abstraction mode that specifies whether all ob-
jects (universal mode ∀) or, any k objects (existential mode
∃k) satisfying criteria (i), (ii) may perform the event.

We use the shorthand ∃k to denote the existential abstrac-
tion of lifelines. This is to emphasize that exactly k objects
will play such a lifeline. Clearly k ≥ 1. For the examples
in this paper, we have only used ∃1 (i.e. selecting one ob-
ject) whenever we used existential abstraction. Henceforth
we always assume ∃1 since the extension of our semantics
to the general case is trivial. We mention these extensions
via footnotes when we present our semantics.

In Figure 2, initially, the concrete processor lifeline P

sends ‘read(addr)’ message to all the memory devices in the
system. This is indicated by the universal abstraction with
guard true for the receive event of message ‘read(addr)’ by
symbolic lifeline M . Subsequently, the memory device in
whose address space the read address lies, replies to proces-
sor with the required data. Thus, only one memory device
replies. This is shown by the existential abstraction ∃1 with
guard inRange(addr) = true for the send event of message
‘reply(data)’ by symbolic lifeline M . Note that this single
scenario succinctly represents the possibility of any device
M1, M2 or M3 responding to a processor (refer to Figure
1 to see the interactions between concrete objects), thereby
avoiding the need for separate scenarios for each case. Thus
SMSCs go far beyond notational shorthands for message

broadcast between scenario lifelines [5]. Furthermore, in-
teraction of the memory devices with different processors
can also be represented in the same SMSC simply by mak-
ing the processor lifeline symbolic as well (i.e., the lifeline
marked P in Figure 2 also becomes symbolic and denotes
any processor object). While using SMSCs, it is often the
case that every event which appears on a lifeline has the
same guard and abstraction mode. In such cases, for ease
of specification, the object selection criteria may be written
only once, immediately above the lifeline name, with the in-
tended interpretation that the criteria applies to every event
shown on the lifeline.

Finally, since variable valuation plays an important role in
selecting objects in a symbolic lifeline, SMSCs allow changes
in variable valuation to be specified as event postconditions
on the lifeline. For example, in the SMSC shown in Figure 2,
when P receives the requested data from one of the memory
devices, it sets its variable v = data. This is shown as v′ =
data in Figure 2 since for any variable x we show its updated
value by its primed version x′.

2.2 Abstract Syntax
The complete MSC language includes several types of

events: message sends and receives, local actions, lost and
found messages, instance creation and termination and timer
events. For SMSCs in this paper, we will only consider mes-
sage exchange (sends and receives) between lifelines and lo-
cal actions on individual lifelines. A message m exchanged
between two lifelines (representing two concrete objects) p

and q in a conventional MSC gives rise to two events: an
out(p, q, m) event denoting the message send event performed
by p, and an in(p, q, m) event that denotes the corresponding
receive performed by q. A local action l performed by p is
represented by the event action(p, l). We use AMSC to de-
note the MSC alphabet consisting of message sends, receives
and local actions, for a given set of MSCs. Ap denotes the
set of events in AMSC that may be performed by objects in
class p.

The notions of lifeline abstraction and event guards in
SMSCs necessitate changes in the event syntax as defined
above. To explain these, we introduce some auxiliary no-
tation. Let P denote the set of all process classes1 with p,
q ranging over P . Let GV

p represent the set of all possible
propositional formulae built from boolean predicates regard-
ing the values of the variables owned by p. For example, if
p has an integer variable v, then the element gV

p ∈ GV
p ,

where gV
p =(v > 5), represents those objects of p which

have a value greater than 5 for v. Similarly, let GH
p rep-

resent the set of all possible regular expression based exe-
cution histories of objects belonging to p. For example, if
gH

p =(h = A⋆
p.(out(p, q, m) | out(p, q, n)).A⋆

p), where h de-
notes a variable representing the execution history of an ob-
ject, then gH

p ∈ GH
p , and it denotes those objects of p whose

execution history includes the sending of message m or n

to object(s) of q. Here Ap represents the set of events that
process class p can participate in.

Next, we define an object selector of process class p

to be an expression of the form [mode]p.[gp]. The square
brackets denote optional parts, where mode is required only
if process class p contains multiple objects (i.e. corresponds

1A process class represents a set of objects following the
same behavioral protocol.

to a symbolic lifeline); otherwise, p denotes a single concrete
object. Further, mode represents the abstraction mode and
may be either ∃1 for existential (∃k in the general case)
or ∀ for universal interpretations. Also, gp represents a
guard which may either be true or consist of a variable
valuation constraint gV

p ∈ GV
p and/or an execution history

constraint gH
p ∈ GH

p . For example, os1=∀p.(v1 = 0∧h =
A⋆

p.out(p, q, m).A⋆
p) is an object selector for class p that may

be used to specify those objects of p whose v1 variable is set
to 0, and whose execution history (denoted by h) involves
sending of message m to q. In case gp = true, it indicates
that there is no restriction on the variable valuation or the
execution history of object(s) to be chosen to play the sym-
bolic lifeline. We use OSp to denote the set of all object
selectors for p ∈ P , and OSP denotes the set of all object
selectors. We now define the sets of message send events
Aout, receive events Ain, and local action events Aact, that
are needed for defining the set ASMSC of atomic actions in
SMSCs.

Definition 1. Let P denote the set of all process classes
with p, q ∈ P. Let M and L denote the set of all message
names and local action names, respectively. Then the sets
Aout, Ain, Aact and ASMSC are defined as follows:

Aout = {out(osi, osj , m) | osi, osj ∈ OSP , m ∈ M}

Ain = {in(osi, osj , m) | osi, osj ∈ OSP , m ∈ M}

Aact = {action(osi, l) | osi ∈ OSP , l ∈ L}

ASMSC = Aout ∪ Ain ∪ Aact

We use ASMSC
p to denote the set of all SMSC events that

may be performed by objects of class p.

The main difference between MSC events and SMSC events
is that in the latter, we use object selectors instead of lifeline
names. However, for defining the history based guard of
an event, we can simply use the normal MSC events e.g.
h = A⋆

p.out(p, q, m).A⋆
p may be used inside a SMSC event

to select object(s) of class p which have previously sent m

to some object(s) of class q. Also, for simplicity, we have
not included message parameters in the above definition,
but our approach may be easily extended to richer message
structures. We now formally define a SMSC.

Definition 2 (SMSC). A SMSC sm can be viewed as
a partially ordered set sm = (L, EL,≤), where L is the set
of lifelines in sm, EL =

⋃

l∈L
El where El ⊆ ASMSC is

the set of events lifeline l takes part in sm; ≤ is the partial
ordering relation over the occurrences of events in EL, such
that ≤= (≤L ∪ ≤sm)⋆ is the transitive closure of ≤L and
≤sm, where

(a) ≤L=
⋃

l∈L
≤l, ≤l is the linear ordering of events in

El, which are ordered top-down along the lifeline l, and
(b) ≤sm is an ordering on message send/receive events in

EL. If es = out(osi, osj , m) and the corresponding receive
event is er = in(osi, osj , m), we have es ≤sm er.

In our system model, SMSCs may be composed together
to yield High-level SMSCs (or HSMSCs) in the same way
that MSCs may be arranged in High-level MSCs (HMSCs).
A HSMSC is essentially a directed graph whose each node
is either a SMSC or (hierarchically) a HSMSC. Formally, a
HSMSC is a tuple H = (N, B, vI , vT , l, E) where (i) N is a fi-
nite set of nodes (ii) B is a finite set of boxes (or supernodes)

Connect

SndInitWthr

RcvInitWthr

Update

UsedWthr

RcvWthr

UsednitWthr

NotUsednitWthr

NotRcvInitWthr

NotRcvWthr

NotPostRevrtWthr

NotUsedWthr

No2

No3

No1

PostRevrtWthr

SndNewWthr

Figure 3: HSMSC for the CTAS case study. The
Connect, UsedWthr and NotUsedWthr SMSCs are
shown in Figure 4, 5.

representing (already defined) HSMSCs (iii) vI ∈ N ∪ B is
the initial node or box (iv) vT ∈ N ∪B is the terminal node
or box (v) l is a labeling function that maps each node in
N to a SMSC and each box in B to another HSMSC (vi)
E ⊆ (N∪B)×(N∪B) is the set of edges that describe control
flow. For each process class p ∈ P , let Vp be its associated set
of variables with function vinit

p giving the initial assignment
of values to the objects of p. For convenience we assume
that all the objects of class p assign the same initial value to
any variable u ∈ Vp.2 We use S = 〈H,

⋃

p∈P{Vp, vinit
p }〉

to represent the complete system specification, where
H = (N, B, vI , vT , l, E) is a HSMSC describing the inter-
actions among objects from process classes in P .

Expression Template. In order to make specifications more
readable, we identify a commonly occurring regular expres-
sion template that we have encountered in our modeling.
Consider a process class p ∈ P and e1 ∈ Ap. For regular ex-
pressions of the form h1 = A⋆

p.e1 we write it as h1 = last(e1).

3. CTAS CASE STUDY
We now discuss a well known example to illustrate system

modeling using SMSCs. The weather update controller [4] is
an important component of the Center TRACON Automa-
tion System (CTAS) automation tools developed by NASA
to manage high volume of arrival air traffic at large airports.
It consists of a central communications manager (CM), a
weather control panel (WCP), and several weather-aware
clients. The weather-aware clients consist of components
such as aircraft trajectory synthesizer, route analyzer etc.
which require latest weather information for their function-
ing. Since the number of clients in the system can be large,
the power of lifeline abstraction in SMSCs becomes useful.

Complete behavioral description of the CTAS example as
a HSMSC (sans hierarchy) is shown in Figure 3. Various
nodes of this HSMSC are labeled with the SMSC names.
In the CTAS requirements document [6], the requirements
are given from the viewpoint of the CM. All the clients
are initially disconnected from the controller (CM) and the
execution sequence -2.6.2, 2.8.3, 2.8.5, 2.8.8- taken from
the requirements document, forms the scenario in which a
client successfully gets connected to CM. This behavior cor-
responds to the execution of the left loop (marked using
bold lines) in Figure 3, such that the four SMSCs along this

2If the initial states of objects in a class are different, we can
simply execute additional actions from our initial state.

Client CM WCP

connect

<status’=1>
setStatus_1

disable
< status’=1,v’=0 >

∃1 Client. status=0 ∧ h = (ε | last(e1)) CM.status=0

e1 = in(CM,Client,close)

e2 = out(Client,CM,connect)

∃1 Client. status=0 ∧ h = last(e2)

< enbld’=0 >

WCP.enbld=1

Figure 4: Connect SMSC from CTAS.

marked path correspond to the above four requirements. For
example, SMSC Connect (shown in Figure 4) represents the
requirement 2.6.2 shown below.

Requirement 2.6.2: The CM should perform the following ac-

tions when a weather-aware client attempts to establish a socket

connection to CM– (a) set the weather-aware client’s weather
status to ‘pre-initializing’3, (b) set the weather-cycle status
to ‘pre-initializing’, (c)disable the weather control panel...

The Client lifeline in Connect appears as a symbolic life-
line with its name appearing in a rectangular box. The two
events along the Client lifeline: sending message connect to
CM and receiving message setStatus 1 from CM, both have
existential abstraction. This is because only one client can
get connected at a time to CM. Also, they both have propo-
sitional guard status = 0, showing client status which gives
its current interaction stage with CM. However, the history
based guards for the two events are different. For sending
message connect to CM, the regular expression guard for
Client is h = (ǫ | last(e1)), where e1 = in(CM, Client, close)
as shown below in Figure 4. This guard imposes the con-
straint that either a fresh Client object (having no execution
history, and is therefore disconnected), or a Client object
which has last been disconnected from CM (due to the re-
ceipt of close message) can send the ‘connect’ request to the
CM. For the subsequent event of receiving setStatus 1 mes-
sage from the CM, the history based guard is h = last(e2),
where e2 = out(Client, CM, connect), which allows only the
object(s) which have recently sent ‘connect’ message to CM
to execute this event. Note that in specifying the regular
expression guards, we have used the template expression
last(e) described earlier in Section 2.2.

Further, all the connected clients can be updated with the
latest weather information by WCP via CM. This behavior
corresponds to the execution of the right loop in Figure 3
(marked using bold lines) 4. In case any client either fails to
use the original data (in case it has failed to receive the new
data), or update itself (having received the new weather in-
formation), all the connected clients get disconnected. These
latter scenarios correspond to other execution paths in the
CTAS HSMSC.

The two SMSCs shown in Figure 5 show the successful and
unsuccessful completion respectively of the weather update
cycle for the connected clients. Again in both these SMSCs,

3We use integers to represent different status values. For
example, in SMSC Connect status=1 represents the ‘pre-
initializing’ status.
4We do not give the corresponding requirements from the
requirements document due to lack of space.

Client CM WCP

done
enable

CM_GROUND_WIND_

SETTING

PGUI_ALTIMETER_

SETTING

yes
CM.status=6

<status’=0>

Client.status=6

< status’=0 >

< enbld’=1 >

WCP.enbld=0

SMSC UsedWthr

Client CM WCP

enable

yes

no

close

CM.status=6

< status’=0 >
Client.status=6 v=0

< status’=0, v’=0 >

1 Client.status=6 v=1

Client.status=6
< enbld’=1 >

WCP.enbld=0

SMSC NotUsedWthr

Figure 5: CTAS SMSCs showing successful and unsuccessful completion of weather update.

the Client lifeline is symbolic. Further in SMSC UsedWthr,
since all events along the Client lifeline have same guarding
expression ∀Client.status = 6, it appears only once at the
top of the lifeline, which is equivalent to specifying it for
each event. The execution sequence in UsedWthr takes place
when all connected clients have responded yes to using the
new weather update information, and hence the universal
abstraction for the Client lifeline.

The scenario shown in NotUsedWthr SMSC in Figure 5
takes place when one of the clients is unable to use the new
weather information, and hence responds with message no
to CM. This causes CM to send the message close to all the
connected clients, thereby all of them getting disconnected
from CM. Note that in NotUsedWthr SMSC, the first event
(sending of message no) of Client has existential abstraction,
whereas the subsequent events have universal abstraction.
Thus, the Client lifeline in the NotUsedWthr SMSC shows
the use of mixed abstraction modes within a SMSC lifeline.

4. PROCESS THEORY
The semantics of the ITU MSC language is defined using

a process theory [2]. This theory has a signature Σ that
consists of a set of constants and a set of operators. Con-
stants consist of (i) the empty process ǫ (ii) deadlock δ, and
(iii) atomic actions from a set Act. Operators comprise the
unary operators for iteration ⋆ and unbounded repetition ∞,
and the binary operators for delayed choice ∓, delayed par-
allel composition ‖, weak sequential composition ◦, as well
as the generalized versions (‖S and ◦S) of ‖ and ◦, which ac-
count for ordering of actions coming from different lifelines
e.g. message sends and receives in MSCs. The set of closed
Σ terms is denoted by CT (Σ) (see [2] for details).

4.1 Configurations and Concrete Semantics
To seamlessly integrate our proposed extensions with the

ITU framework, we adopt the above theory, but constrain
the execution of process terms in this theory by associating
a configuration element C. As we will see later, we need
a notion of configuration to determine at any given point
during execution, which object(s) from a given process class
can perform a particular action.

In a concrete execution semantics, a configuration
captures the“local states”of all objects of all process classes.
The question is, in a scenario-based modeling language like
SMSC, how do we capture the local state of an object.
Clearly, we need (a) the object’s control flow (which SMSC it
is currently executing and which events in the current SMSC

have been executed), (b) the variable valuations of the ob-
ject and (c) a bounded representation of the (unbounded)
history of events which allows us to test the satisfaction of
history-based regular expression guards in the specification.
Here we note that the control flow of objects will be captured
by terms in our process theory. The variable valuations will
be explicitly captured. Finally, the history information for
an object o can be captured by representing the regular ex-
pression guards as minimal DFAs and then maintaining the
states in these DFAs in which object o lies. Maintaining
such information for each individual object for each process
class will give a notion of concrete configurations, and the
transition between these concrete configurations (using the
semantic rules presented below) provides a straightforward
concrete execution semantics. However, we will later de-
velop abstract configurations to enable (i) efficient simulation
of systems with finite number of objects, and (ii) reasoning
about systems with infinitely many objects. For this reason,
at this stage, we do not impose any concrete structure on
configuration C.

We develop the process theory independent of whether
configuration C (which appears in the rules of the process
theory) is concrete or abstract. We only require C to sup-
port two methods (i) a supports method, supports(a), which
is true iff C permits an action a and (ii) a migration method,
migrates to(a), which returns the set of possible configura-
tions that C migrates to through the execution of a. We use
C to denote the set of all configurations.

4.2 Semantic Rules and Bisimulation
The MSC process theory has an operational semantics

defined via deduction rules of the form
H

Concl
, where H

is a set of premises and Concl is the conclusion. For ITU
MSCs, the semantics for constants consists of two rules (i)

ǫ ↓
, which implies that the empty process may terminate

successfully and immediately; there are no other rules for ǫ

as it is unable to perform any action, (ii)
a

a
−→ ǫ

, which

expresses that a process represented by the atomic action a

can perform a and thereby evolve into the empty process ǫ.
The rules for constants in our theory appear in Table 1.

While the empty process may terminate immediately, the
execution of an atomic action a is supported by the associ-
ated configuration C, leading to a new configuration C′.

Beyond this simple extension, the rest of our technical de-
velopment is along the lines of the formal MSC theory. For
example, our deduction rules for the delayed choice opera-

Table 1: Operational Semantics for Constants

Const1.
ǫ ↓

Const2.
C.supports(a) == true, C′ ∈ C.migrates to(a)

C : a
a

−→ C′ : ǫ

Table 2: Operational Semantics for Delayed Choice ∓

DC1.
x ↓

x ∓ y ↓
DC2.

y ↓

x ∓ y ↓
DC3.

C : x
a

−→ C′ : x′, C : y 6
a

−→

C : x ∓ y
a

−→ C′ : x′

DC4.
C : y

a
−→ C′ : y′, C : x 6

a
−→

C : x ∓ y
a

−→ C′ : y′
DC5.

C : x
a

−→ C′ : x′, C : y
a

−→ C′ : y′

C : x ∓ y
a

−→ C′ : x′ ∓ y′

tor ∓ are shown in Table 2. Thus x ∓ y can terminate if
either x (DC1) or y (DC2) is able to terminate. Except for
the addition of the configuration element for the execution
semantics rules, the rules are similar in spirit to the MSC
rules for ∓. If C : x can execute a and C : y cannot (DC3),
then on execution of a, the choice is resolved in favor of x.
DC4 shows the complementary case when C : y executes a,
and C : x cannot. Finally, if both C : x and C : y are able
to execute a, then the execution of a does not resolve the
choice, but rather, delays it (DC5). Semantic rules for the
other operators may be defined similarly (see [2]).

To account for configurations, we also extend the bisim-
ilarity based term equality definition in the MSC standard

[2]. This definition uses a permission relation
a
→֒ on terms;

intuitively, x
a
→֒ x′ states that an action a is allowed to

precede the execution of actions of x even if this action
is composed after x by means of sequential composition.
The reason for allowing this bypass is that the notion of
sequential composition is weak and allows instances to pro-
ceed asynchronously. The execution of a, however, disables
all alternatives in x that do not allow the bypass, and as
a result, x evolves to term x′. The deduction rules for →֒
are presented in [2]. We do not reproduce the details here,
but use →֒ for completeness of our modified term equality
definition below.

Definition 3 (Bisimulation). Let C be the set of all
possible configurations. A binary relation BC ⊆ CT (Σ) ×
CT (Σ) is called a bisimulation relation iff for all a ∈ Act

and s, t ∈ CT (Σ) with sBCt, the following conditions hold

∀s′∈CT (Σ),C,C′∈C

(C : s
a

−→ C
′ : s

′ ⇒ ∃t′∈CT (Σ)(C : t
a

−→ C
′ : t

′ ∧ s
′
B

C
t
′))

∀t′∈CT (Σ),C,C′∈C

(C : t
a

−→ C
′ : t

′ ⇒ ∃s′∈CT (Σ)(C : s
a

−→ C
′ : s

′ ∧ s
′
B

C
t
′))

∀s′∈CT (Σ)(s
a
→֒ s

′ ⇒ ∃t′∈CT (Σ)(t
a
→֒ t

′ ∧ s
′
B

C
t
′))

∀t′∈CT (Σ)(t
a
→֒ t

′ ⇒ ∃s′∈CT (Σ)(s
a
→֒ s

′ ∧ s
′
B

C
t
′))

s ↓ ⇐⇒ t ↓

Two closed terms p, q ∈ CT (Σ) are bisimilar in C, denoted by
p ↔C q, iff there exists a bisimulation relation BC such that

pBCq. Note that even though we carry state information in
the form of configuration C in above definition, our notion
of bisimilarity is stateless, which is the most robust notion
of equality for state-bearing processes [7]. We can establish
the following for our bisimulation relation.

Theorem 1. ↔C has the following properties.

(i) ↔C is an equivalence relation.

(ii) ↔C is a congruence with respect to the function sym-
bols from the signature Σ.

5. ABSTRACT EXECUTION SEMANTICS
We develop an operational semantics for SMSCs using the

process theory outlined so far. First, the set of atomic ac-
tions Act in the process theory is defined as ASMSC, the set
of SMSC events as defined in Section 2. In Section 5.1 we
explain the translation of SMSC specifications to terms in
our process theory. Then, Section 5.2 presents our notion of
configuration and a symbolic execution semantics based on
these configurations.

5.1 Translating SMSCs to process terms
In general, a SMSC may consist of an arbitrary (but finite)

number of events. Semantics is provided for a SMSC body
by sequentially composing the semantics of the first event
definition with the semantics of the remaining part of the
SMSC body. The generalized weak sequential composition
operator is used to impose necessary ordering requirements
across lifelines. For example, let us consider the UsedWthr
SMSC in Figure 5. The first event in the SMSC is the
sending of message yes to CM by all clients with status=6;
this is represented by the event e1=out(∀Client.(status =
6), CM.(status = 6), yes). The corresponding receive by
CM is represented by

e2 = in(∀Client.(status = 6), CM.(status = 6), yes)

The constraint that e2 has to follow e1 is represented by
the ordering requirement e1 7→ e2, as in the MSC lan-
guage. The composition of these two events may be given by
e1◦

{e1 7→e2}e2, using the generalized weak sequential operator
◦S , where S is a set of ordering requirements that constrain

execution. Subsequently, CM sends an enable message to
WCP , represented by the event

e3 = out(CM, WCP.(enbld = 0), enable)

Composing this after e1 and e2, we get e1 ◦{e1 7→e2} e2 ◦ e3.
Since e2 and e3 are both performed by CM , the sequen-
tial operator ensures their correct ordering, and additional
ordering requirements are not needed. Similarly, the subse-
quent events in the UsedWthr SMSC may be composed to
obtain the complete event-based behavioral description.

To map HSMSC graphs into event-based descriptions, we
follow an approach that is similar to the way a regular ex-
pression is obtained from an automaton. Successive applica-
tions of a rewrite rule [2] are used to convert the graph into
a normal form, ultimately yielding an expression consisting
of SMSCs composed via operators like ∓, ◦ etc. Replac-
ing each SMSC by its corresponding event-based description
will then give us the desired event-based representation of
the HSMSC graph.

5.2 Representing/Updating Configurations
As mentioned in Section 4, the execution of terms in our

theory is constrained by a configuration. When we developed
our process theory in Section 4, we did not assume a specific
definition of configurations, but required our configurations
to provide these two functions supports and migrates to.
In particular, these functions capture the transition between
system configurations thereby forming the core of our exe-
cution semantics. We develop a notion of abstract con-
figurations (Def. 6) and elaborate an abstract execution
semantics over these abstract configurations.

Since SMSC events carry guards, we maintain a configu-
ration to keep track of the state of objects during execution,
and verify that for each event there are sufficient objects
which satisfy its guard. However, maintaining the state of
each individual object during simulation can be computa-
tionally expensive, and lead to state explosion. To avoid
this, the objects of a class are grouped together into behav-
ioral partitions. We note that the ability of a p object to
perform a SMSC event depends on (i) its execution history
and (ii) valuation of its local variables. A behavioral parti-
tion for class p represents one possible state of a p object in
terms of its execution history and variable valuation.

Definition 4 (Behavioral Partition). Let Vp be a
set of variables belonging to class p. Let Rp denote a set
of regular expressions over events Ap (the set of events that
may be performed by objects of class p), with |Rp| = k. For
each Ri ∈ Rp, let Di be the minimal DFA recognizing Ri.
Then a behavioral partition behp(Vp, Rp) of class p defined
over Vp and Rp is a tuple 〈q1, q2, · · · , qk, v〉, where

q1 ∈ Q1, . . . , qk ∈ Qk, v ∈ V al(Vp).

Qi is the set of states of automaton Di and V al(Vp) is
the set of all possible valuations of variables Vp. We use
BEHp(Vp, Rp) to denote the set of all behavioral partitions
of class p defined over Vp and Rp.

Let us consider any object O of class p with execution his-
tory σ. We say that the object O belongs to behavioral
partition 〈q1, q2, · · · , qk, v〉 ∈ BEHp(Vp, Rp) iff (i) qj is the
state reached in the DFA Dj when it runs over σ for each
j ∈ {1, 2, · · · , k} and (ii) the valuation of O’s local vari-
ables in Vp is given by v. The total number of behavioral

partitions of a process class is bounded, provided the value
domains of all variables in Vp are also bounded. Also, this
number is independent of the number of objects in a class.

Next we introduce the notion of a signature; for each pro-
cess class p, a signature contains a set of variables belonging
to p and a set of regular expressions over Ap.

Definition 5 (Signature). For any class p, let Vp be
a set of variables belonging to p and Rp be a set of regular ex-
pressions over Ap. Then the set of tuples T={(Vp, Rp)}p∈P

is called a signature.

Given a signature T={(Vp, Rp)}p∈P , the set of all variables
in T is then given by Tv =

⋃

p∈P Vp. Similarly, the set of all

regular expressions in T is given by Tr=
⋃

p∈P Rp. For any

two signatures T = {(Vp, Rp)}p∈P and T ′ = {(V ′
p , R′

p)}p∈P ,
we define their union as a signature T ∪T ′ = {(Vp∪V ′

p , Rp∪
R′

p)}p∈P . Also, we say T ⊇ T ′ if for all p, Vp ⊇ V ′
p and

L(Rp) ⊇ L(R′
p) where for a regular expression R we use

L(R) to denote the language accepted (set of strings recog-
nized) by the regular expression and L(Rp) =

⋃

R∈Rp
L(R).

Intuitively, this means that T is defined over a larger state
space (variables and execution history) than T ′. We now
define the notion of an abstract configuration.

Definition 6 (Abstract Configuration). Let each
process class p contain Np objects, and T={(Vp, Rp)}p∈P

be a signature. An abstract configuration over T is defined
as cfg = {countp}p∈P where countp : BEHp(Vp, Rp) →
N ∪ {0} is a mapping s.t. Σb∈BEHp(Vp,Rp)countp(b) = Np.

The set of all configurations over signature T is CT .

Thus, a configuration records the the count of objects in each
behavioral partition of each process class. The idea is to dy-
namically group together objects during execution based on
their variable valuation and execution history. This is simi-
lar to abstraction schemes developed for grouping processes
in parameterized systems [8]. We note that our notion of
configurations and execution semantics permits unboundedly
many objects in a system specification. Thus, in the above
definition we could have Np = ω and apply our execution
semantics provided we assume the usual rules of arithmetic
ω + 1 = ω, ω − 1 = ω and so on. Indeed, in Section 6 we
present experiments detailing validation of SMSC systems
with unbounded number of objects.

We now explain when a SMSC configuration supports an
event a and the new configuration it migrates to on exe-
cution of a. These functions appear in rule Const2, Ta-
ble 1, and are required for defining the transition between
system configurations. We begin by defining a mapping
active : ASMSC → OSP that indicates which object selector
in an event descriptor “causes” the event to occur:

active(e) =

{

osi if e = out(osi, osj , m), action(osi, ℓ)
osj if e = in(osi, osj , m)

For any object selector os = [m]p.[gp], we use the following
function.

mode(os) =

{

m ∈ {∃k ,∀} if p is symbolic
concrete otherwise,

We also use a function simple : ASMSC → AMSC to con-
vert a SMSC event to an MSC event; simple(e) replaces
each object selector occurring in e by the corresponding
process class. For example, simple(out(∀p.v1 = 0, q, m))
= out(p, q, m).

supports function:. Intuitively, a configuration supports
an event defined on process class p if there is at least one p

object5 which satisfies the variable valuation and execution
history criteria on the event guard. Since we do not main-
tain the states of individual objects, this is determined by
verifying there is at least one behavioral partition of class
p which satisfies the event guard and has a non-zero count
of objects. We call such a behavioral partition a witness
partition, which we formally define below.

Definition 7. Let e ∈ ASMSC
p (i.e., active process class

in e is p) be a SMSC event and cfg ∈ CT be a configura-
tion defined on signature T={(Vq, Rq)}q∈P . Let ϑ and Λ be
the propositional and history based guards in event e. We
say that behavioral partition behp = 〈q1, q2, · · · , qk, v〉 is a
witness partition for event e at configuration cfg if

(a) ∃Ri ∈ Rp s.t. L(Ri) = L(Λ) (the set of strings ac-
cepted by the two expressions are same), Qi is the set of
states in the minimal DFA accepting Λ and qi ∈ Qi is an
accepting state of the minimal DFA.

(b) v ∈ V al(Vp) satisfies the propositional guard ϑ.
(c) countp(behp) ≥ 1, that is, there is at least one object

in the partition behp at the configuration cfg.

We use Witness(e, cfg) to represent the set of all behavioral
partitions that can act as a witness partition for e at cfg.
We are now in a position to define the supports function. Let
e be a SMSC event and cfg ∈ CT be a configuration. Then,
cfg.supports(e)=true iff there exists a behavioral partition
beh, such that beh is a witness partition for e at cfg.6

migrates to function:. We next describe the function
cfg.migrates to(e), which returns the set of possible desti-
nation configurations that result when e is executed at con-
figuration cfg. We first introduce the notion of a destination
partition — the partition to which an object moves from its
“witness partition” after executing an event. We denote the
destination partition of beh w.r.t. to e as dest(beh, e).

Definition 8. Let beh = 〈q1, · · · , qk, v〉 ∈ Witness(e, cfg)
for a configuration cfg and event e ∈ ASMSC. Let simple(e)7

= e′. We then define dest(beh, e) (the destination par-
tition of beh w.r.t to e) as a behavioral partition beh′ =
〈q′1, · · · , q′k, v′〉, where

(a) for all 1 ≤ i ≤ k, qi
e′

−→ q′i is a transition in DFA Di.
(b) v′ is the effect of executing e′ on v.

Let configuration cfg ∈ CT , e ∈ ASMSC
p , active(e) = os

and Witness(e, cfg)= B. Then cfg.migrates to function is
defined as follows. In the following count′p(b) denotes the
count of objects in behavioral partition b of process class p

after executing e at configuration cfg.

Case 1: mode(os) = ∀. Then cfg.migrates to(e) returns a
unique new configuration that is computed as follows. Let

5To be precise, we need at least one object for events with
modes ∃1 or ∀. If the mode is ∃k with k > 1, we need at
least k objects.
6This ensures that there is one witness partition with at
least one object satisfying the guards in cfg. If event e’s
mode is existential abstraction ∃k with k > 1, we need to
consider all possible witness partitions in cfg and choose a
total of k objects from them.
7Recall that simple(e) replaces the object selectors in event
e by the corresponding process class names.

DP = {d | ∃b ∈ B. d = dest(b, e)} the set of all destina-
tion partitions. Then ∀d ∈ DP , we first set count′p(d) =
countp(d) + Σb s.t. dest(b,e)=d countp(b). Then, for all b ∈ B
we deduct countp(b) from count′p(b) to reflect the migration
of these objects from b to dest(b, e).

Case 2: mode(os) = ∃k. For k = 1, 8 cfg.migrates to(e)
returns a set of possible new configurations as follows. Let
us choose any b ∈ B, and let dest(b, e) = d. Then we set
count′p(d) = countp(d) + 1 and count′p(b) = countp(b) − 1
to obtain a new configuration (where counts associated with
all other partitions remain unchanged). Repeating this for
each b ∈ B gives us the set of all possible new configurations.

Case 3: mode(os) = concrete. Since we are dealing with
only one object, we can employ Case 2 for ∃1.

Thus if mode(e) = ∀, all objects belonging to all witness
partitions for e at cfg, migrate to corresponding new desti-
nation partitions.

5.3 Example
We revisit the CTAS example described in Section 3 and

show the working of our abstract execution semantics.
In particular, we illustrate the execution of a message send

event e = out(∃1 Client.gV
1 ∧ gH

1 , CM, connect) in SMSC
Connect shown in Figure 4, at a given system configuration,
where gV

1 : status = 0 and gH
1 : h1 = (ǫ | last(e1)). Assume

that only the history based guards -h1 = (ǫ | last(e1)) and
h2 = last(e2)

9- shown in SMSC Connect appear in the sys-
tem description for Client process class. Process class CM
has got no history based guards. Further, Client class has
variables status and v, and CM has a single variable status.
It can be easily seen that the DFAs corresponding to regular
expressions h1 and h2 contain only two states. Let these be
{q0, q1} and {q′0, q

′
1} respectively, where q0 and q′1 are ac-

cepting states. q0 is the state of a Client object ready to
connect to the CM. This may either be a fresh Client object
(with no execution history), or a Client object that has last
received a close message from CM. q′1 is the state reached
by a client object that has sent a connect message to CM in
the immediate past.

Assuming 20 client objects in a given system specification
s.t. 15 of them are ready to connect to CM (i.e. are in state
q0), we consider the following configuration for Client class.

cfgClient(b1) = 15, cfgClient(b2) = 5
where b1 = 〈q0, q

′
0, 0, 0〉 b2 = 〈q1, q

′
0, 0, 0〉

The first two elements in a behavioral partition descrip-
tor above correspond to the respective states in the two
DFAs, while the next two numeric elements represent the
values (0 in each case) of variables status and v respec-
tively. By executing event e above, a disconnected client
sends a connection request to CM. For event e, active(e) =
∃1 Client.gV

1 ∧ gH
1 , i.e., e can be executed by any Client ob-

ject satisfying the guard gV
1 ∧ gH

1 . Following Definition 7,
we can determine Witness(e, cfg) = {b1}. Thus, there is
only one behavioral partition b1 that can serve as witness
partition for e. Any client object from b1 can now be chosen

8The case for ∃k with k > 1 is handled in a similar fashion—
except that there may be several witness partitions, and
more than one object may be chosen from each witness par-
tition provided the total number of objects is k.
9e1 and e2 appear at the bottom of MSC Connect in Fig-
ure 4. Expression last(e) was described at the end of Sec-
tion 2.2 under ‘Expression Template’.

to play event e. After the execution of e, the selected client
object will move to states q1 and q′1 in the two DFAs, and
the destination partition (following Definition 8) is given by
dest(b1, e) = 〈q1, q

′
1, 0, 0〉. The new configuration cfg′ for

Client class (following ‘Case 2’ of migrates to function de-
scribed earlier) is as follows.

cfg′
Client(b1) = 14, cfg′

Client(b2) = 5, cfg′
Client(b3) = 1

where b1 = 〈q0, q
′
0, 0, 0〉, b2 = 〈q1, q

′
0, 0, 0〉, b3 = 〈q1, q

′
1, 0, 0〉

Note that one Client object from behavioral partition b1 has
migrated to a new partition b3.

5.4 Properties of SMSC Semantics
A pertinent question that arises from the above discussion

is that given a SMSC specification S, what is the signature
T that we should use to define the configuration space CT

in which S may be simulated? Let us assume that for any
class p, Vp(S) represents the set of all variables that appear
on event variable guards or post-conditions on lifeline p in
S. Similarly, let Rp(S) denote the set of regular expressions
used on event history guards of lifeline p in S. We define
signature T (S), the signature derived from S, as T (S) =
{(Vp(S), Rp(S))}p∈P . Then T (S) represents a necessary and
sufficient signature to simulate S.

Now, given two SMSC specifications S1 and S2, under
what signatures T - or, configuration spaces CT - should
the bisimulation equivalence of S1 and S2 be tested? The
following theorems try to address this question.

Theorem 2. Let S1 and S2 be two SMSC systems and
let T (S1) 6= T (S2). Then ∀T ⊇ T (S1) ∪ T (S2) S1 6↔CT S2.

The result follows from the stateless nature of our bisimi-
larity and the fact that variable/history guards are used to
define object selectors, and hence are part of an event.

Theorem 3. Let S1 and S2 be two SMSC systems such
that T (S1) = T (S2) = T and S1 ↔CT S2. Then for any
signature T ′, S1 ↔CT ′ S2.

Thus, if S1 and S2 have the same signatures under which
they are bisimilar, they are bisimilar under any signature.

6. EXPERIMENTS
The operational semantics for SMSCs has been imple-

mented as Prolog rules in the XSB logic programming sys-
tem [9]. XSB supports tabled resolution for query evalua-
tion. This speeds up execution by avoiding redundant com-
putation. The operational semantics of SMSCs lend them-
selves naturally to Prolog rules leading to a straightforward
implementation. On the other hand, the underlying well-
engineered fixed point engine in XSB ensures that the eval-
uation of the rules is done efficiently as well. Both con-
crete and abstract execution semantics of SMSCs are imple-
mented in XSB and they share as much code as possible. We
now present the experimental results obtained for the ‘CTAS
weather controller’ example which was described earlier in
Section 3. All experiments were conducted on a Pentium-IV
3GHz machine with 1GB of main memory.

Modeling effort. First we briefly discuss the modeling ef-
fort required for the CTAS example from given requirements

document. The requirements [6] are given as a set of sce-
narios from the perspective of the controller (or CM - com-
munications manager), with precondition(s) given for the
occurrence of each scenario. We were able to directly trans-
late each scenario into corresponding SMSC. The high level
control flow (HSMSC) was easily obtained by following the
preconditions given for various scenarios. Some characteris-
tic features of the modeled example are shown below. Note
that CTAS HSMSC is flat, i.e. each of its node corresponds
to a SMSC.

HSMSC nodes = # SMSCs 17
Total # Events 103

Events with non-trivial reg. expr. guards 3
Events with non-trivial propositional guards 65

Simulation. The graphs in Figure 6(a) & (b) compare the
simulation time/memory for abstract vs concrete semantics
for the CTAS example. The use case used in simulation
first connects all the Client objects to the controller (CM)
and then performs the weather updates on all the connected
clients (refer to Section 3). Different runs correspond to dif-
ferent settings of the CTAS model with number of client ob-
jects being varied (shown on the x-axis of the graph). As we
can easily observe, for abstract simulation the time/memory
remains almost constant (≈ 1.9 sec/40 MB) even as the
number of objects is increased from 20 to 100, while it in-
creases at least linearly (3.5 → 48.7 sec/100 → 900 MB) for
concrete simulation. We recall that in abstract simulation,
various objects are grouped together into behavioral parti-
tions, unlike in concrete simulation where the states of all
objects have to be maintained / manipulated individually.

State Space Exploration. We explored all possible traces
up to a certain length, where each step in a trace is the ex-
ecution of a SMSC event. The results appear in Figure 6(c)
& (d), where the bound on the length of traces explored is
set to 20. We find that abstract exploration time/memory
is constant (≈ 4.8 sec/41 MB) across different settings of
CTAS, and increases linearly (19 → 139 sec/ 81 → 590 MB)
for the concrete exploration. Using the abstract execution
semantics, we found that the exploration time/memory re-
quired for the CTAS model with an unbounded number of
client objects is same as that for the CTAS model with only
20 client objects (4.8 sec/41 MB). Thus, using our abstract
execution semantics, the system designer can try out various
system settings (having sufficiently large or even unbounded
number of objects) without worrying about computation
costs. Furthermore, the designer can perform reachability
analysis for a system setting with unbounded number of ob-
jects to look for falsification of invariant properties in all
possible system settings with finitely many objects.

7. RELATED WORK
The MSC language [1] offers two constructs for dealing

with the problem of voluminous scenarios involving several
instances and events: gates and instance decomposition. The
first option allows a message to be split into two parts, with
the message send in one scenario, and the corresponding re-
ceive in another scenario, implicitly joined by a gate. The
second option allows an instance in one MSC to be decom-
posed into a collection of instances, whose behavior is de-
picted in another MSC. These are useful approaches for de-

CTAS simulation- 10,000 steps

0

10

20

30

40

50

60

20 40 60 80 100

Number of Clients

S
im
u
la
ti
o
n
 t
im
e
 (
s
e
c
) Abstract Sim

Concrete Sim

CTAS simulation- 10,000 steps

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100

Number of Clients

M
a
x
 S
ta
c
k
 +
 T
a
b
le
 s
iz
e
 (
M
B
)

Abstract Sim

Concrete Sim

Bounded depth (=20) exploration

0

20

40

60

80

100

120

140

160

20 40 60 80 100

Number of Clients

E
x
p
lo
ra
ti
o
n
 t
im
e
 (
s
e
c
) Abstract

Concrete

Bounded depth (=20) exploration

0

100

200

300

400

500

600

700

20 40 60 80 100

Number of Clients

M
a
x
 S
ta
c
k
 +
 T
a
b
le
 s
iz
e
 (
M
B
)

Abstract

Concrete

(a) (b) (c) (d)

Figure 6: (a) Abstract vs Concrete Simulation Times for Different Settings of CTAS (b) Peak Memory
Requirement for Abstract and Concrete Simulation, (c) Abstract vs Concrete State Space Exploration Times,
(d) Peak Memory Requirement for Abstract and Concrete State Space Exploration.

composing a large specification into tractable pieces; how-
ever, their focus is on structural changes to scenarios rather
than behavioral abstractions as in SMSCs, and thus such
approaches only partially address the MSC scalability prob-
lems discussed in Section 1. Note that in the conventional
usage of MSCs, conditions can appear in the MSC syntax.
However, there is no attempt to integrate the conditions into
the execution semantics of MSCs [2]. On the other hand
SMSC event guards not only refer to conditions on variables
of concrete objects, but also serve as an object selector from
a collection of objects during execution.

The work of [10] presents Interacting Process Classes (IPC),
where the behavior of a process class is specified by a labeled
transition system and unit interactions between processes
are described by MSCs. However, the IPC model does not
support universal abstraction of lifelines — only existential
abstraction is supported. Furthermore, the MSCs are exe-
cuted atomically in the IPC model, and there is no explicit
structuring of MSCs (it is inherent in the control flow of the
classes). This makes the IPC model somewhat state-based.

In recent years, a number of MSC variants have been pro-
posed (e.g. [11, 12, 13, 14]). Of these, only Live Sequence
Charts support symbolic specification, that is, a class of pro-
cesses can be grouped together into a single symbolic lifeline.
However, even LSCs do not support symbolic execution [15].
The symbolic lifelines are instantiated to concrete objects
during execution in the LSC Play Engine; this increases the
number of active copies of LSC universal charts to be main-
tained. If the chart contains only one symbolic lifeline, the
LSC execution semantics will maintain one active chart copy
per concrete object, where the number of concrete objects
may be huge. If the chart contains several symbolic lifelines
(e.g. a chart involving caller and callee phone objects in a
telecom system), the blow-up is worse.

Overall, the ideas of symbolic execution have not been
well supported by existing MSC-based system models. This
paper tries to cover the gap by directly integrating sym-
bolic specification/execution into MSCs/HMSCs, a popular
design aid for many years.

8. DISCUSSION
In this paper, we have proposed Symbolic Message Se-

quence Charts (SMSCs) as a lightweight syntactic and se-
mantic extension to conventional MSCs. SMSCs are partic-
ularly suitable for behavioral description of systems with
many behaviorally similar objects. We presented an ab-
stract execution semantics for SMSCs, in which objects are

dynamically grouped together and executed following a pro-
cess theory based operational semantics. Our approach was
validated through a detailed case study and experiments in-
volving a non-trivial weather controller specification.

There are several extensions of SMSCs which add sub-
stantial modeling power but involve minimal changes in the
execution semantics. One such extension will be to handle
requirements of the form “at least (or at most) 10 objects
will play a certain role”. We can handle it by exploiting the
delayed choice operator in our process algebra. In future,
we will investigate other requirement templates involving
similar processes and integrate them systematically into our
framework.

Acknowledgments

This work was partially supported by a Public Sector re-
search grant from A*STAR Singapore.

9. REFERENCES

[1] ITU-TS Recommendation Z.120, 1996. Message Sequence
Charts (MSC).

[2] M. A. Reniers. Message Sequence Chart: Syntax and
Semantics. PhD thesis, Technical University Eindhoven, 1999.

[3] H. Storrle. Semantics of interactions in UML 2.0. In Visual
Languages and Formal Methods (VLFM), 2003.

[4] Center-TRACON Automation System (CTAS) for air traffic
control. http://ctas.arc.nasa.gov/.

[5] I. Kruger, W. Prenninger, and R. Sander. Broadcast MSCs.
Formal Aspects of Computing, 16(3), 2004.

[6] CTAS requirements document.
http://scesm04.upb.de/case-study-2/requirements.pdf/.

[7] M. R. Mousavi, M. A. Reniers, and J. F. Groote. Congruence
for SOS with data. In LICS, 2004.

[8] A. Pnueli, J. Xu, and L. Zuck. Liveness with
(0,1,infinity)-counter abstraction. In CAV, 2002.

[9] XSB logic programming system. http://xsb.sourceforge.net/.

[10] A. Goel, S. Meng, A. Roychoudhury, and P. S. Thiagarajan.
Interacting process classes. In ICSE, 2006.

[11] B. Genest, M. Minea, A. Muscholl, and D. Peled. Specifying
and verifying partial order properties using template MSCs. In
FOSSACS, 2004.

[12] B. Sengupta and R. Cleaveland. Triggered message sequence
charts. In FSE, 2002.

[13] W. Damm and D. Harel. LSCs: Breathing life into message
sequence charts. Formal Methods in System Design, 2001.

[14] S. Uchitel, J. Kramer, and J. Magee. Negative scenarios for
implied scenario elicitation. In FSE, 2002.

[15] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine.
Springer-Verlag, 2003.

