
Formal Reasoning about Hardware and Software
Memory Models?

Abhik Roychoudhury

Department of of Computer Science, School of Computing,
S16 Level 5, 3 Science Drive 2,

National University of Singapore, Singapore 117543.
abhik@comp.nus.edu.sg

Abstract. The Java programming language allows multithreaded pro-
gramming, where threads can be run on multiprocessor or uniproces-
sor platforms. The allowed behaviors of any multithreaded Java pro-
gram on any implementation platform (multi- or uni-processor), are de-
scribed in terms of a memory consistency model called the Java Memory
Model (JMM). However, shared memory multiprocessors have a memory
model of their own. To reason about the behavior of multithreaded Java
programs on multiprocessors, we need a formal basis for understand-
ing both the hardware memory model (of the multiprocessor platform)
and the software memory model (the JMM). For this purpose, we have
implemented formal executable specifications of the JMM and certain
hardware memory models (such as TSO/PSO from SPARC). These ex-
ecutable specifications can be used for exhaustive search i.e. computing
all allowed behaviors of test programs under the JMM and the hard-
ware memory models. Consequently, we can compare the JMM with the
hardware memory models (in terms of allowed behaviors). We show that
such a comparison can help efficient and reliable multithreaded program-
ming on multiprocessors. Results from comparing the current JMM with
SPARC architecture memory models are presented.

1 Introduction

Memory consistency models have been used in shared-memory multiprocessors
for many years. Given a number of processes accessing a shared store, a memory
consistency model places restrictions on the order in which the processes can
access (read/write) the shared store. This effectively restricts the values that
can be returned on the read of a shared variable, and thereby provides a model
of execution to the programmer. The simplest model of memory consistency
was proposed by Lamport, and is called Sequential Consistency [11]. This model
allows operations across threads to be interleaved in any order. Operations within
each thread are however constrained to proceed in program order. For example,
in the following multithreaded program initially we have u = v = 0.
? This work was partially supported by National University of Singapore Research

Project R-252-000-095-112.

u:=1 x:=v
v:=1 y:=u

Then, a Sequentially Consistent execution of this program cannot return x = 1,
y=0. This is possible if the writes to u, v are re-ordered.

Sequential consistency serves as a very simple and intuitive model of exe-
cution to the programmer. However, it disallows most compiler and hardware
optimizations. For this reason, shared memory multiprocessors have employed
relaxed memory models [2]. Examples of relaxed memory models include To-
tal Store Order (TSO), Partial Store Order (PSO) and Relaxed Memory Order
(RMO) in Sun SPARC architectures [6]. These memory models allow certain re-
ordering of operations within a process/thread and allow more behaviors than Se-
quential Consistency e.g. x=1,y=0 in the above example is allowed under SPARC
PSO and RMO models. This complicates the programming model at the cost of
increased execution efficiency. Thus, people writing multithreaded programs for
a shared-memory multiprocessor platform view the hardware memory model as
an abstract description of the behaviors supported by the system.

Two recent developments have significantly increased the importance of mul-
tithreaded program usage on shared memory multiprocessors. First of all, the
widespread use of commercial Symmetric Multiprocessors (SMP) clusters [3] has
given shared memory parallelism new life. Secondly, multithreading has been in-
tegrated as a key feature of the popular Java programming language. Java sup-
ports multithreaded programming, where multiple threads can communicate via
read/write of shared objects. These threads can then run on a single processor
via a thread library, or on hardware multiprocessors.

Problem addressed Execution of multithreaded Java programs on shared
memory multiprocessors introduces a new problem. The semantics of multi-
threaded Java is given by a language level memory model, called the Java Mem-
ory model (henceforth called JMM) [9]. As in hardware memory models, the
JMM is a set of abstract rules dictating the allowed ordering of read/write of
shared variables. Any uniprocessor/multiprocessor implementation of Java mul-
tithreading must respect the JMM. The JMM is the first serious attempt to
introduce a memory model at the language/software level. In this paper, we
compare the behaviors allowed by the JMM with the behaviors allowed by hard-
ware memory consistency models.

Typically, memory models are given as a set of abstract rules. A compar-
ison of models M1 and M2 would proceed via human reasoning about which
re-orderings are allowed by M1 but disallowed by M2 (and vice-versa). This
approach is completely informal and extremely error-prone. In this paper, we
advocate the use of formal specification and checking techniques for this pur-
pose. In [16], we have developed a formal executable specification of the current
JMM, while specification for hardware memory models have been developed in
[8, 14]. In this paper, we use these formal specifications for comparing hardware
and software memory models. In particular, we craft test programs (using our
informal understanding of the memory models), and then use the formal spec-
ifications to automatically generate all possible observed behaviors of the test

programs under the two memory models. Thus, our method extends informal
reasoning with formal specification and verification techniques.

Motivation There are several reasons for studying such a comparison between
software and hardware memory models. If the hardware memory model is weaker
than the JMM (i.e allows more re-orderings than the JMM) then the Java Virtual
Machine needs to insert memory barriers in the hardware instruction sequence.
A memory barrier [5] prevents re-ordering of operations across the barrier and
can make the multiprocessor execution comply to the JMM. Inserting these
time-expensive memory barriers without understanding the JMM and hardware
memory models can introduce unacceptable performance overheads. If all re-
orderings allowed by the hardware memory model are also allowed by the JMM,
then the JVM need not insert any memory barriers.

Comparing the JMM with hardware memory models is also useful for rea-
soning about low-level unsynchronized Java programs. Often, low-level libraries
do not require a synchronization (i.e. lock acquisition) for every shared variable
access. Examples of such programs include popular multithreaded Java soft-
ware construction idioms e.g. the “Double-Checked Locking” idiom [17]. These
programs allow different sets of behaviors on different multiprocessor platforms
(with different memory models). We can formally reason about such low-level
code by studying the memory models.

Organization The rest of this paper is organized as follows. Section 2 recapit-
ulates salient features of the Java Memory Model (JMM). Section 3 introduces
the SPARC memory models, and our checker for these models. Section 4 outlines
our methodology for studying the relationship between hardware and software
memory models. Finally, section 5 describes the related work and conclusions.

2 A Checker for Java Memory Model

The Java programming language allows the user to write multithreaded pro-
grams. Java threads interact among themselves via shared variables. For any
shared variable v, each thread (a) possesses a local copy of v and (b) is allowed
to access the global master copy of v in main memory. The Java Memory Model
(JMM) essentially imposes constraints on the interaction of the threads with the
master copy of the variables and thus with each other. The model defines the
following actions for reading/writing the local/master copy of v in thread t.

– uset(v): Read from the local copy of v in t

– assignt(v): Write into the local copy of v in t

– readt(v): Initiate reading from master copy of v to local copy of v in t.
– loadt(v): Complete reading from master copy of v to local copy of v in t.
– storet(v): Initiate writing the local copy of v in t into master copy of v
– writet(v): Complete writing the local copy of v in t into master copy of v

Apart from the above actions, each thread t may perform lock/unlock on shared
variables, denoted lockt and unlockt respectively.

Among the eight actions mentioned above, a thread in a Java program invokes
only four of them: use, assign, lock, and unlock. Each thread invokes these
actions in its program order. The other four (load, store, read, and write) are
invoked arbitrarily by the multithreading implementation, subject to temporal
ordering constraints specified in the JMM. For example, let the program running
in a thread be assign u, 1; assign v, 2 (a sequence of two writes). Then, the
two assign statements are executed in program order. However, this does not
affect the master copy of the shared variables u, v. The master copy is updated
based on store/write actions. These are issued in any order which preserves
the temporal ordering constraints specified in the JMM. For example, the JMM
allows the following execution assign u,1; assign v,2; store v,2; write
v,2; store u,1; write u,1 where writes to u, v are completed out of order.

A major difficulty in reasoning about the JMM (as reported in [15]) lies in
these ordering constraints. They are given in an informal, rule-based, declarative
style. It is difficult to reason how multiple rules determine the applicability/non-
applicability of an action. Our formal operational specification (presented in [16])
avoids this difficulty by modeling each action as a guarded command. We present
a brief overview of this work below.

We model each action as a guarded command of the form G → B, where
the guard G is first evaluated; if G is true, then the body B is executed atomi-
cally. Our model is an asynchronous concurrent composition of n Java threads
Th1, . . . , Thn and a single main memory process MM. Communication among pro-
cesses takes place via shared data. Each process can perform a set of actions,
each of which is modeled by a guarded command. The asynchronous concurrent
composition of these processes is the union of the guarded commands of the
constituent processes. At any time step, the processes Thi and MM can execute
either a program action or a platform action. In particular, an action invoked by
the program running as thread Thi is called a program action. The actions usei,
assigni, locki, and unlocki are program actions. On the other hand, an action
which is performed by the underlying multithreading implementation is called
a platform action. The actions loadi, storei, readi, and writei are platform
actions. Typically, the purpose of executing platform actions is to enable those
program actions which are currently disabled.

Since our model is expressed in guarded-command notation, the Murϕ model
checker [7] is a candidate implementation vehicle1. However, we want to program
the traversal strategy of the search space of multithreaded executions (for effi-
cient checking and validation). This programming capability is very naturally
supported in a general purpose logic programming system where computation
proceeds by search. A prototype checker based on our executable memory model
has been built using XSB, a memo-table based logic programming system [18].
The checker could be used in two modes. Either we could search the entire search
space consisting of all allowed execution traces of program actions and platform

1 Murϕ supports a guarded-command based specification language

actions in the threads of a program; or we could input rules to prune the search
space based on some scheduling algorithm.

3 A Checker for SPARC Memory Models

In this section, we give a brief overview of memory models appearing in hard-
ware multiprocessors, in particular SPARC memory models. Based on formal
executable specification of these memory models [8, 14], we have developed an
invariant checker. This checker can be used to verify invariants or to generate
all possible behaviors of low-level SPARC code.

The SPARC multiprocessor architecture defines three different memory mod-
els: Total Store Order (TSO), Partial Store Order (PSO) and Relaxed Memory
Order (RMO) [6]. In terms of allowed behaviors TSO ⊆ PSO ⊆ RMO. That
is, for any program P , the set of possible behaviors of P under TSO (PSO) is
included in the set of possible behaviors of P under PSO (RMO). In describing
each of the memory models, we assume that the instructions in each processor
are issued in program order. However, these instructions may be completed out
of order. Thus, each of these memory models are weaker than Sequential Con-
sistency [11] where instructions must always be completed in the order in which
they are issued. In the subsequent discussions we denote ld to denote a memory
read instruction and st to denote a memory write instruction. Furthermore, note
that all the memory models allow only those re-orderings which do not violate
the data-flow dependencies in a processor e.g. the sequence st u; ld u can never
be completed out-of-order since this would change the value of u read by ld.

In the TSO memory model, the restrictions are as follows: (a) a ld operation
is ordered with respect to subsequent ld and st operations (b) a st operation
is ordered with respect to subsequent st operations. Thus this execution model
allows a sequence of instructions st u; ld v (a write to variable u, followed by
a read of variable v) to be completed out-of-order. The PSO memory model
relaxes the TSO model by removing the second restriction of TSO. Thus, two
write operations to different variables st u; st v may be executed out-of-order.
The RMO model relaxes PSO by removing both the restrictions of TSO.

An executable model of a shared memory multiprocessor system considers
each of the processors as well as the shared memory as a separate process.
The combined model is the asynchronous concurrent composition of these pro-
cesses. Given a parallel program P1 ‖ . . . ‖ Pk which is run on processors
Proc1, . . . , P rock, processor Proci executes the instructions in Pi in program
order. The effect of the memory model (delaying/re-ordering of certain instruc-
tions) is captured in the following manner. Any processor Proci maintains a
buffer of incomplete instructions called the Store buffer, denoted SBi. These are
non-blocking instructions, i.e. instructions which were issued but which have not
been completed. The shared memory process can then complete any instruction
in any store buffer SBi in a manner consistent with the memory model.

As a concrete example, let us consider the TSO memory model. It allows
writes (st instructions) to be delayed, but not re-ordered. Given a multiprocessor

program P1 ‖ . . . ‖ Pk, any processor Proci issues instructions of Pi in program
order as follows:

– a st instruction (write operation) is appended into the store buffer SBi,
– a ld u instruction (reading some variable u) executes as follows. If SBi

contains incomplete writes to u then the value of the last incomplete write
to u in SBi is returned. Otherwise, the value of u is read from the memory.

– all other instructions (corresponding to computation) proceed as usual.

Concurrently, the shared memory process is allowed to complete the first instruc-
tion of any of the k store buffers SB1 . . . SBk. This corresponds to the delaying
of writes as allowed in TSO. To model the re-ordering of writes as allowed in
PSO, the shared memory process can be allowed to complete a write instruction
in SBi which is not the first instruction in SBi.

Based on these executable specifications, we have implemented a checker for
the TSO and PSO memory models from SPARC. Given a multiprocessor pro-
gram, it can generate all observed behaviors under TSO/PSO by computing the
set of reachable states. Therefore, it can be used for model checking [4] of invari-
ant properties i.e. checking whether an invariant holds in all reachable states.
We have used the checker to automatically verify invariants in low-level SPARC
code such as verifying mutual exclusion in implementation of spin locks (a lock
where the check for whether lock is acquired is done by busy waiting), Dekker’s
algorithm etc. Many of these code fragments are available in the SPARC archi-
tecture manual [6]. However, at this point we move away from the description
of the JMM/SPARC checkers and concentrate on how to use these checkers for
comparing software/hardware memory models.

4 Relationship between Memory Models

In this section, we present our methodology for comparing the current JMM
with hardware memory models. As a concrete example, we consider the SPARC
memory models which were discussed in the last section. We show that such a
comparison is useful for (a) obtaining efficient multithreading implementation
on multiprocessors, and (b) reasoning about low-level unsynchronized multi-
threaded Java programs.

4.1 Avoiding Redundant Memory Barriers

We want to find out which hardware memory models are stronger than the
JMM. A JVM can then execute without introducing memory barriers [5] on all
such multiprocessor platforms. Recall that a memory barrier is a time-expensive
hardware instruction such that in any code if a memory barrier I appears be-
tween instructions I1 and I2, instruction I1 must complete before I2 begins.
To clarify the different components of a multiprocessor implementation of Java
multithreading, refer to Figure 1. The JVM implementer needs to ensure that re-
orderings caused by the multiprocessor platform do not violate the Java Memory
Model.

Compiler

Multithreaded Java Pgm.

Should

ByteCode

JVM

(May introduce barriers)

Hardware Instr.

Hardware Mem. Model

(Abstraction of mutiproc. platform)

respect JMM

Fig. 1. Multiprocessor Implementation of Java Multithreading

Our methodology for comparing hardware and software memory models con-
sists of the following steps:

1. Develop formal executable specifications of both the software and the hard-
ware memory models Ms and Mh.

2. Select one/several terminating test program(s) P to expose the re-orderings
allowed by the hardware memory model Mh. These test programs are ob-
tained by our informal understanding of which re-orderings allowed by Mh.

3. Use the executable specifications of (1) to perform exhaustive state space
exploration (as in model checking of invariants) of (a) P executed on Ms

and (b) P executed on Mh. This step performs automated formal reasoning.
4. Check the set of possible values of the data variables of P on termination in

the two cases. This allows us to compare the allowed behaviors of Mh and
Ms.

Comparing JMM with TSO As an illustrative example, let us compare the
current JMM with the SPARC TSO memory model. In the TSO model, re-
orderings of the following are not allowed: ld → ld/st, st → st. Only the
re-ordering of st→ ld is allowed. Thus, if st u appears before ld v in program
order, they may be completed out of order.

To capture the delayed completion of stores allowed by TSO, consider the
test program in Figure 2. It forms the heart of Dekker’s algorithm. Assuming
sequential consistency, we verify that the values of reg1 and reg2 at the end of
execution must satisfy reg1 = 1 ∨ reg2 = 1. This is because in any sequen-
tially consistent execution at least one of the loads will be executed last; this load
will return 1 (instead of 0). We then use our implementation of the executable
model of TSO to find all possible behaviors allowed by TSO. We find that under

Initially: u = v = 0

Thread 1 Thread 2

st u, 1 st v, 1

ld v, reg1 ld u, reg2

Seq. Consistency: reg1 = 1 ∨ reg2 = 1

TSO : reg1 = 0 or 1, reg2 = 0 or 1

Fig. 2. Test program showing delayed completion of writes

TSO there is one additional behavior: reg1 = reg2 = 0. This is possible only
because both the ld instructions may complete ahead of the st instructions.2

We now want to check whether the Java Memory Model (JMM) allows de-
layed completion of writes as in TSO. In particular, we want to perform ex-
haustive state space exploration of the test program in Figure 2 to find out all
possible values of reg1, reg2 allowed by JMM. To do so, we must express each of
the threads as a sequence of JMM actions (i.e. use, assign, lock, unlock). Note
that in the JMM, assign denotes the beginning of a write operation, whereas
use denotes the end of a read operation. On the other hand, in weak memory
models, ld/st denote the beginning of read/write operations; these operations
may complete out-of-order. Thus, we can map a st instruction to an assign
action (both denote beginning of a write). Also, we can map a ld instruction
to a use action provided the ld is blocking (which is the case in TSO and PSO
models). Consequently, the test program of Figure 2 is reduced to

assign u,1 assign v,1
use v use u

We use our JMM checker to find all possible values of u and v in the local copies
of the two threads. Our checker shows that the local copy of v in thread 1 as
well as the local copy of u in thread 2 can be 0 or 1 at the end of execution. This
shows that the JMM allows delayed completion of writes as in TSO.

In a similar fashion we have compared the JMM with other memory models
such as SPARC PSO. We find that JMM also allows the re-ordering of writes
which are allowed in PSO (and not in TSO). Since both delaying and re-ordering
of writes are allowed by JMM, therefore a JVM can execute on TSO/PSO mem-
ory models without inserting memory barriers. Such a conclusion cannot be
reached for the RMO memory model, for which memory barriers will be needed.

A crucial step in the above methodology is the selection of the terminating
test programs, which is done informally. However, we can formally check whether
a set of selected test programs is complete with respect to the re-orderings al-
lowed by a given hardware memory model Mh. In particular, for each of the
2 In fact, to ensure that Dekker’s algorithm works correctly on TSO, a memory barrier

instruction needs to be inserted. This is however orthogonal to the memory model
comparison we discuss here.

re-orderings allowed by Mh we construct a separate terminating test program.
Thus, for the PSO model which allows the re-orderings st → ld and st → st,
we will construct two separate test programs. To check whether a given test
program P exercises a given re-ordering r, we can simply use exhaustive state
space exploration. Each test program P comes with a set of observable variables
V whose values we will observe on termination. We then exhaustively check all
possible values of V when P is executed under (a) sequential consistency (b)
relaxation of sequential consistency with re-ordering r enabled.3 If the two sets
of possible values of V are different, then we can conclude that test program P
can be used to check the presence/absence of re-ordering r.

4.2 Reasoning about Unsynchronized programs

We have discussed how the formal executable specification of hardware/software
memory models can help avoid time-consuming barrier instructions in multi-
threaded program execution. We now discuss how it can be used to analyze
the behavior of low-level unsynchronized Java code. Typically, most Java pro-
grams are “properly synchronized”, that is, locks are acquired before any shared
variable access. Since synchronization (acquiring/releasing of locks) is an time-
consuming operation, low-level libraries sometimes avoid synchronization. In
these programs, the programmers avoid synchronization with the assumption of
sequential consistency i.e. they assume that the program will behave expectedly
if the underlying platform is sequentially consistent. Unfortunately, the current
JMM (as well as any future improvements) is (will be) weaker than Sequential
Consistency.4 Hence, it is necessary to incorporate an executable specification
of JMM into verification of unsynchronized Java programs [16].

Initially A = B = 0

Thread 1 Thread 2

A = 1; if (B == 1)

B = 1; C = A

Fig. 3. An example of Unsynchronized Code

Verifying unsynchronized code with respect to the JMM is not enough. Con-
sider the simple example in Figure 3 where A and B are shared variables. This
program is unsynchronized since shared variables A, B are read/written without
acquiring locks. The programmer will however expect the value of C to be 1 on
3 The underlying model allows a re-ordering r = a→ b if it generates more behaviors

by allowing an operation of type b to bypass an operation of type a.
4 This is because the JMM represents all possible program behaviors on all possible

platforms: uni- and multi-processor; see [1] for potential revisions to the current
JMM.

termination. This arises from the programmer’s expectation of Sequential Con-
sistency: each thread is expected to proceed in program order. By considering
the formal executable specification of the JMM we can conclude that C can be 0
or 1. This is because JMM allows the writes to A and B to be re-ordered. How-
ever, this merely means that the returned value of C may be 0 or 1 on certain
(not all) implementations. Uni-processor implementations guarantee Sequential
Consistency. To find out which multi-processor platforms allow C to be both 0 or
1 we need to consider the hardware memory model of the platform in question.

Methodology To reason about behaviors of an unsynchronized program P
we first use our JMM checker. This returns all possible behaviors of P in any
implementation of Java multithreading. If some of these behaviors are marked
by the programmer as “undesirable”, then we can find whether these undesirable
behaviors appear in the specific multiprocessor platform(s) we are interested in.
This is because all the behaviors allowed by the JMM may not be manifested
on all platforms. To find whether a specific “undesirable behavior” appears in
a given multiprocessor platform, we then use the checker for the corresponding
hardware memory model.

For example, for the program in figure 3, we first use our JMM checker to find
that the returned value of C can be 0 or 1. However, if we convert the program to
SPARC instructions and check whether C can be 0 in the TSO model, our TSO
checker returns “no”. This is because TSO allows writes to be delayed, not re-
ordered. By executing writes to A, B in program order we must return C = 1. We
then use our PSO checker to find whether C can be 0 in PSO implementations.
The PSO checker returns “yes” since PSO allows write re-ordering.

An Example We have used our JMM and TSO/PSO checkers to find al-
lowed behaviors of a widely-known multithreaded program fragment: the “Dou-
ble Checked Locking” idiom.5 This program fragment (shown in Figure 4) is
used for efficient lazy instantiation of a singleton class (a class with only one
instance) by multiple threads. Any thread which invokes getInstance executes
the code in Figure 4. If instance is null (i.e., an instance of Singleton class
has not yet been created), then the code forces synchronization and checks
whether instance is null again within the critical section. In between the first
instance == null check and the synchronization, another thread may invoke
getInstance, find that instance is null, and then create an instance of the
Singleton class. Hence we need the second instance == null check.

Our JMM checker finds all possible behaviors of two threads running the
Double Checked Locking program in less than a second. This set of allowed be-
haviors (which are generated by our JMM checker) includes an execution trace
in which a singleton object with garbage datafields is returned by a thread. This
amounts to an instantiation routine returning a partially instantiated object.
The question now is whether this undesirable behavior is manifested in all mul-
tiprocessor platforms. We verify the absence of this undesirable behavior in the
5 See [10, 17] for a discussion of its use, and [15, 16] for a detailed explanation

private static Singleton instance = null;

.... // the other fields

public static Singleton getInstance()

{

if (instance == null){

synchronized (Singleton.class) {

if (instance == null)

instance = new Singleton();

}

}

return instance;

}

Fig. 4. Double-Checked Locking

TSO model using our TSO checker in 0.01 seconds. On the other hand, our PSO
checker detects in 0.02 seconds that this undesirable behavior is allowed in the
PSO memory model. All experiments were conducted on a Pentium-4 1.3 GHz
workstation with 1 GB of memory.

5 Discussions

In this paper, we employed formal specification and verification techniques to
study the relationship between hardware and software memory models. Hard-
ware memory models describe the behaviors allowed by multiprocessor imple-
mentations, while software/language level memory models (such as the JMM)
describe behaviors allowed by multithreading implementations. Efficient and re-
liable execution of multithreaded programs on multiprocessors is the main moti-
vation of our study on memory models. We showed how a formal understanding
of the memory models can (a) avoid unnecessary memory barrier instruction
executions (leading to higher efficiency) and (b) allow reasoning about low-level
multithreaded code (leading to higher reliability). To the best of our knowledge,
such an comparison between hardware and software memory models has not been
studied formally. Performance/reliability issues in running Java on multiproces-
sor architectures have been informally discussed in [15]. We have used formal
executable specification of the hardware/software memory models to compare
their allowed behaviors. Our comparison employs state space exploration (as in
model checking) to compute all possible behaviors of programs on two different
memory models.

Note that in this paper we chose the current Java Memory Model (JMM)
as the software memory model and the SPARC TSO/PSO as hardware mem-
ory models. However our methodology for comparing the behaviors of soft-
ware/hardware memory models is not restricted to this choice. The JMM is
currently undergoing revision by an expert group [1] and formal/informal speci-
fications are being developed for the various candidates for the revised JMM [12,

13, 19]. Once the JMM revision is finalized, we plan to perform a full-fledged com-
parison of the revised JMM with various existing multiprocessor memory models
(SPARC TSO, SPARC PSO, DEC Alpha, IBM 370 etc) using the methodology
presented in this paper.

References

1. Java Specification Request (JSR) 133. Java Memory Model and Thread Specifica-
tion revision. In http://jcp.org/jsr/detail/133.jsp, 2001.

2. S.V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, December 1996.

3. A. Charlesworth. Starfire: Extending the SMP envelope. IEEE Micro, 1998.
4. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2), 1986.

5. D.E. Culler and J. Pal Singh. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, 1998.

6. D.L. Weaver and T. Germond, Prentice Hall Publishers. The SPARC Architecture
Manual : Version 9, 1994.

7. D. L. Dill. The Murϕ verification system. In Computer Aided Verification (CAV),
LNCS 1102, 1996.

8. D.L. Dill, S. Park, and A. Nowatzyk. Formal specification of abstract memory
models. In Symposium on Research on Integrated Systems. MIT Press, 1993.

9. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Chapter 17,
Addison Wesley, 1996.

10. A. Holub. Taming Java Threads. Berkeley CA, APress, 2000.
11. L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers, 28(9), 1979.
12. J. Maessen, Arvind, and X. Shen. Improving the Java Memory Model using CRF.

In ACM OOPSLA, 2000.
13. J. Manson and W. Pugh. Core semantics of multithreaded Java. In ACM Java

Grande Conference, 2001.
14. S. Park and D.L. Dill. An executable specification and verifier for relaxed memory

order. IEEE Transactions on Computers, 48(2), 1999.
15. W. Pugh. Fixing the Java Memory Model. In ACM Java Grande Conference,

1999.
16. A. Roychoudhury and T. Mitra. Specifying multithreaded Java semantics for pro-

gram verification. In ACM SIGSOFT International Conference on Software Engi-
neering (ICSE), 2002.

17. D. Schmidt and T. Harrison. Double-checked locking: An optimization pattern
for efficiently initializing and accessing thread-safe objects. In 3rd Annual Pattern
Languages of Program Design conference, 1996.

18. XSB. The XSB logic programming system v2.2, 2000. Available for downloading
from http://xsb.sourceforge.net/.

19. Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Formalizing the Java Memory
Model for multithreaded program correctness and optimization. Technical Report
UUCS-02-011, University of Utah, Department of Computer Science, 2002.

