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ABSTRACT
Many reactive control systems consist of classes of interact-
ing objects where the objects belonging to a class exhibit
similar behaviors. Such interacting process classes appear
in telecommunication, transportation and avionics domains.
In this paper, we propose a modeling and simulation tech-
nique for interacting process classes. Our modeling style
uses standard notations to capture behavior. In particular,
the control flow of a process class is captured by a labeled
transition system, unit interactions between process objects
are described by Message Sequence Charts and the struc-
tural relations are captured via class diagrams. The key
feature of our approach is that our execution semantics leads
to a symbolic simulation technique. Our simulation strategy
is both time and memory efficient and we demonstrate this
on well-studied non-trivial examples of reactive systems.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.2 [Software Engineering]: Design Tools and Techniques—

State Diagrams

General Terms
Design, Languages, Verification

Keywords
Symbolic Execution, Active Objects, Message Sequence Charts,

Unified Modeling Language (UML)

1. INTRODUCTION
Model-driven design methods based on the Unified Mod-

eling Language (UML) are being advocated to push up the
abstraction level in the design of reactive systems [11, 14].
Such design methods are necessary for supporting compo-
nent reuse, early detection of errors and the co-design of
hardware and software components. A crucial ingredient for
the viability of such model-driven design methods is a sim-
ulation technique using which initial functional validation
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can be carried out. Here we propose a modeling language
based on UML-compatible notations to describe interacting
classes of active objects. The execution semantics of our
language leads to a scalable simulation technique.

Interacting process classes arise naturally in application
domains such as telecommunications and avionics. We ob-
serve that during the initial system design phase it may be
unnatural to fix the number of objects in each process class
of the system. In general, it is also difficult to set a small
cutoff number np on the number of objects for each process
p, such that this restricted system is guaranteed to exhibit
all the interesting behaviors of the intended system. This is
our motivation for developing a modeling framework, where
one can efficiently simulate and validate a system with a
large number of active objects, such as a telephone switch
network with thousands of phones, an air traffic controller
with hundreds of clients etc. If the execution semantics of
such systems maintains the local state of each object as sim-
ulation proceeds, this will lead to an impractical blow-up.
Instead, we dynamically group together objects by main-
taining sufficient -but bounded- information to ensure that
the grouped objects will exhibit similar future behaviors.

We use labeled transition systems to describe the behavior
of process classes. One notable feature of our model is that
the unit of interaction is chosen to be not just a synchroniza-
tion or send-receive event pairs. Instead, we use a Message
Sequence Chart (MSC) as the basic interaction unit. This is
guided by the observation that even primitive interactions
between process classes often involve bidirectional informa-
tion flow. Further, the roles played by the participants is a
key facet of an interaction and MSCs are ideally suited to
depict this information.

We also specify static and dynamic associations between
objects. We use class diagrams in a standard way to specify
such associations. Static associations are needed to spec-
ify constraints imposed by the structure of the system. For
instance, a node may be able to take part in a “transmit”
transaction only with its neighbors. Dynamic associations
on the other hand are needed to instantiate the proper com-
binations of objects to take part in a transaction. For in-
stance, when choosing a pair of phone objects to take part
in a “disconnect” transaction we must choose a pair which
is currently in the “connected” relation. This relation has
presumably arisen due to the fact that they took part last in
a “connect” transaction. The combination of these features
together with the imperative to develop a symbolic execu-
tion semantics is a challenging task. We present a solution
to this problem and describe a simulator based on our so-



lution. We also measure the time/memory efficiency of our
simulation mechanism on well-known non-trivial examples
of reactive control systems.

Outline. We develop our material in three steps. First we
present the core modeling language and its execution seman-
tics without involving associations (static/dynamic). We
then introduce object associations and correspondingly ex-
tend the semantics. Finally, we present experimental results
demonstrating capabilities of the simulator for our model.

2. RELATED WORK
Simulation of scenario-based specifications as well as syn-

thesis of executable models from such specifications is an
important research area. The synthesis task may consist of
realizing per-process transition systems from scenario-based
specifications (see [5, 23] for example). Alternatively, one
may develop executable specifications based on Message Se-
quence Charts (MSCs). Works in this direction include Live
Sequence Charts [2], Triggered Message Sequence Charts
[20] as well as our past work [18]. All these approaches deal
with concrete objects and their interactions.

Live Sequence Charts (LSCs)[2, 7] offer an MSC-based
inter-object modeling framework for reactive systems. How-
ever, LSCs completely suppress the control flow information
for each process class. More importantly, though the objects
of a process class can be specified symbolically, the LSC
execution mechanism (the play-engine as described in [7])
does not support symbolic execution of process classes. The
symbolic instances are instantiated to concrete objects dur-
ing simulation.1 The work on Triggered Message Sequence
Charts [20] allows for a per-process execution semantics (in
comparison to the play-engine of LSCs which gives a central-
ized execution semantics). Again, the execution semantics
deals with concrete object interactions.

There are a number of design methodologies based on the
UML notions of class and state diagrams as exemplified in
the tools Rhapsody and RoseRT. These tools also have lim-
ited code generation facilities. Again, no symbolic execution
semantics is provided and the interactions between the ob-
jects -not classes- have to be specified at a fairly low level
of granularity. The new standard UML 2.0 advocates the
use of “structured classes” where interaction relationships
between the sub-classes can be captured via entities such
as ports/interfaces; Our present framework does not cater
for structured classes but it can easily accommodate notions
such as ports/interfaces. Indeed, our execution mechanism
is easily applicable to a variety of related modeling styles.

Our technique for grouping together behaviorally similar
objects is different from existing works on behavioral subtyp-
ing which develop subclass relationships based on behaviors
of the objects in those classes. One of the early works in
this area is by Liskov and Wing [13] which focuses on pas-
sive objects – objects whose state change is only via method
invocation by other objects. Subsequently, behavioral sub-
typing of active objects have been studied in many works
(e.g. [6, 25]). These works mostly exploit well-known no-
tions of behavioral inclusion (such as trace containment) to
define notions of behavioral subtyping. Our aim however

1The approach taken in [24] alleviates this problem of LSCs
by maintaining constraints on process identities but falls
short of a fully symbolic execution.

is not to detect/establish subclass relationships. Rather, we
wish to dynamically group together objects of the same class
based on behavior exhibited so far for purposes of efficient
system execution or simulation.

Our method of grouping together active objects is related
to abstraction schemes developed for grouping processes in
parameterized systems (e.g., see [17]). In such systems,
there are usually many similar processes whose behavior can
be captured by a single finite state machine. It is then cus-
tomary to maintain the count of number of processes in each
state of the finite state machine; the names/identities of the
individual processes are not maintained. However, in our
setting inter-object associations across classes have to be
maintained — an issue that does not arise in parameterized
system validation.

The notion of “roles” played by processes in protocols have
appeared in other contexts (e.g. [19]). Object orientation
based on the actor-paradigm has been studied thoroughly
in [12]. We see this work as an orthogonal approach where
the computational rather than the control flow features are
encapsulated using classes and other object-oriented pro-
gramming notions (such as inheritance).

3. THE MODELING LANGUAGE
We model a reactive system as a network of interacting

process classes where processes with similar functionalities
are grouped together into a single class. We will often say
“objects” instead of processes and speak of “active” objects
when we wish to emphasize their behavioral aspects.

For each class, a labeled transition system will capture
the common sequences of the computational and communi-
cation actions that the objects belonging to the class can go
through. A communication action will name a transaction
and the role played by an object of the class in the trans-
action. Message Sequence Charts (sequence diagrams) will
be used to represent transactions. For our purposes, it will
be convenient to view a chart as a labeled poset of the form
Ch = (R, {Er}r∈R,≤, λ) where R is a set of roles (usually
called lifelines or instances of the chart), and Er is the set of
events that the role r takes part in during the execution of
Ch. The labeling function λ -with a suitable range of labels-
describes (a) the messages exchanged by the instances and
(b) the internal computational steps during the execution
of the chart Ch. Finally, ≤ is the partial ordering relation
over the occurrences of the events in {Er}r∈R. The formal
definition of a Message Sequence Chart (MSC) is the stan-
dard one and is given in [3]. As will become clear shortly,
the name we assign to a role will reflect its functionality and
the class of the object that can play this role. Within the
MSCs, the communication of messages can be synchronous
or asynchronous – this issue is orthogonal to our model. In
the operational semantics of our model, we assume that the
execution of each transaction is atomic.

We show an example Message Sequence Chart (MSC) in
Figure 1(a). It is taken from our modeling of Harel and
Gery’s Rail-car example presented in [2, 4]. For the mo-
ment, let us ignore the regular expression at the top por-
tion of this chart. In Figure 1(a), the roles are “CarSndReq”,
“CarHandlerRcvReq” and “CruiserStart”. This naming con-
vention is intended to indicate that the chart role “SndReq”
is played by an object drawn from the class “Car”, the chart
role “RcvReq” is played by an object belonging to the class
“CarHandler”, and so on.
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In what follows, we fix a set of process classes P with
p, q ranging over P. For each process class p, we let the
set of objects in class p to be a finite non-empty set but do
not require its cardinality to be specified; this is a funda-
mental feature of our modeling language. We also fix a set
of transactions Γ with γ ranging over Γ. A transaction
γ = (I : Ch) will consist of a guard I and a Message Se-
quence Chart Ch = (R, {Er}r∈R,≤, λ). For a transaction
γ = (I : Ch), the guard I will consist of a conjunction of
guards, one for each role of Ch. Each role r in R will be
a pair (p, ρ) where p is the name of a class -from which an
object playing this role is to be drawn- and ρ is the chart
role to be played by r (“sender”, “receiver” etc.) in the in-
teraction specified by Ch; as a notational shorthand we have
written role (p, ρ) as pρ at the bottom of each lifeline in the
transactions of Figure 1.

It will be convenient to assume that if (p1, ρ1) and (p2, ρ2)
are two distinct members of R (i.e., two distinct roles), then
ρ1 �= ρ2. We however do not demand p1 �= p2. Thus two
different roles in a transaction may be played by two objects
drawn from the same class.

In a transaction, the guard associated with the role (p, ρ)
will specify the conditions that must be satisfied by an ob-
ject Or belonging to the class p in order for it to be eligible to
play the role r = (p, ρ). These conditions will consist of two
components: i) a history property of the execution sequence
(of communication actions) that Or has so far gone through
ii) a propositional formula built from boolean predicates re-
garding the values of the (instantiated) variables owned by
Or. For instance, in the transaction “departReqA” (refer
to Figure 1(a)), a Car object wishing to play the role (Car,
SndReq) must have last played the role (Car, RcvDest) in the
transaction setDest or in the transaction selectDest. This is
captured by the regular expression guard

Act�
car .(setDestRcvDest |selectDestRcvDest)

shown at the top of the SndReq lifeline in Figure 1(a). Thus,
we will use regular expressions to specify the history com-
ponent of a guard. Also, note that in the transaction “de-
partReqA” (Figure 1(a)), the guard does not restrict the
local variable valuation of participating objects in any way.
On the other hand, in the transaction of Figure 1(b), the
variable “dest” owned by the car-object intending to play
the role (Car,SndStop) must satisfy “dest = 0”. Finally, for
some lifeline if no guard is mentioned (e.g. CruiserStart in
Fig.1(a)) then the corresponding guard is always enabled.

The transition system describing the common control flow
of all the objects belonging to the class p will be denoted as
TSp and it will be a structure of the form

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉.
We first explain the nature of the components Actp, Vp and
vinitp . The set of actions Actp are the set of roles that the
p-objects can play in the transactions in Γ. Accordingly, a
member of Actp will be a triple of the form (γ, p, ρ) with
γ ∈ Γ, γ = (I : Ch) and r = (p, ρ) ∈ R where R is the set
of roles of Ch. Since role r = (p, ρ), the action label (γ, p, ρ)
will be abbreviated as γr; when p is clear from the context
it can also be abbreviated as γρ. The computational steps
performed by an object will be described with the help of
the set of variables Vp associated with p. Each object O
in p of course will have its own copy of the variables in
Vp but for convenience of explanation we shall assume that
all the objects of class p assign the same initial value to
any variable u ∈ Vp. This initial assignment is captured
by the function vinitp while assuming appropriate value do-
mains for the variables in Vp. Since a computational step
can be viewed as a degenerate type of transaction having
just one role in its chart, we will not distinguish between
computational and communication steps in what follows.
Returning to TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉, Sp is
the set of local states, initp ∈ Sp is the initial state and
→p⊆ Sp ×Actp ×Sp is the transition relation. In summary,
our model can be defined as follows.

Definition 1 (The IPC Model). Given a set P of
process-classes, a set Γ of transactions and a set of action
labels Actp for p ∈ P involving transactions from Γ, a sys-
tem of Interacting Process Classes (IPC) is a collection of
P-indexed labeled transition systems {TSp}p∈P where

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉
is a finite state transition system as explained above.

We show an example of an IPC in Figure 2. It is a frag-
ment of our modeling of the Rail-car example [2, 4] consist-
ing of a cyclic rail network with fixed number of terminals
and several moving cars. Controlling the movement of the
cars between the terminals requires a complex description.
The classes shown in Figure 2 are Car, Cruiser, Terminal
and CarHandler. The Cruiser stands for the cruise con-
trol of a car (this can be captured as associations via Class
Diagrams as discussed in Section 5), while the CarHandler
manages interaction between an approaching/departing car
and the corresponding terminal. The interested reader can
access more details from the [3].

4. SYMBOLIC EXECUTION MECHANISM
In this section, we describe the execution semantics of our

IPC model. At the initial configuration, for each class p,
every p-object will be residing at the designated initial state
of TSp. The history of each such object will be the null
string and for each variable associated with p, each object
of p will initialize it to the same value. The system will
move from the current configuration by executing an enabled
transaction and as a result, move to a new configuration.
The transaction γ = (I : Ch) is enabled at the configuration
c if we can assign to each role r = (p, ρ) of Ch, a distinct
object Or belonging to p such that the following conditions
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Figure 2: Fragment of Labeled Transition Systems for various process classes of the Rail-car example

are satisfied. We will state these conditions informally and
illustrate them via the example shown in Figure 2.

• First, the object Or must reside at a state s in TSp

such that there is transition s
γr→ s′ in TSp. (This

object will move to s′ when γ executes at c).

• Next suppose the guard I in γ = (I : Ch) is of the form
{Ir}r∈R where R is the set of roles of Ch. Furthermore,
assume that Ir = (Λ,Ψ) where Λ is a regular expres-
sion over alphabet Actp and Ψ is a propositional for-
mula constructed from some boolean predicates over
the variables associated with p. Then σ, the current
history of Or (i.e., sequence of actions executed by
Or), must be in the language defined by the regular
expression Λ. Furthermore, the valuation of the vari-
ables of Or should satisfy the formula Ψ.

If both these conditions are satisfied for an object Or for
each role r, then the transaction γ can occur at c. This
will result in a new configuration c′ obtained by updating
current control locations, current history and the values of
the variables of the objects Or for each role r. In the example
shown in Figure 2, suppose c is a configuration at which

• Two Car objects Oc1 and Oc2 are residing in state
stopped and a third object, Oc3, is in state s2 of TSCar.
Further suppose they have the values 0, 1 and 2 respec-
tively for the variable dest.

• Three Cruiser objects, O1 . . . O3 are residing in state
started of TSCruiser such that the history of O1 and
O2 satisfy the regular expression

(ActCruiser )
�.alertStopRcvDisEg

while the history of O3 satisfies the regular expression

(ActCruiser )
�.departAckAStarted

• Six Terminal objects, Ot1 . . . Ot6 are residing in state
s1 of TSTerminal.

Suppose we want to execute transaction noMoreDest —
shown in Figure 1(b) — at configuration c. As for the role
(Car,SndStop), though Oc1 and Oc2 are in the appropriate
control state, only Oc1 can be chosen since it (and not Oc2)
satisfies the guard dest = 0. For the cruisers, we observe
that all the three Cruiser objects O1, O2, O3 are in the “ap-
propriate” control state at configuration c for the purpose
of executing noMoreDest. However, only O1 and O2 have
histories which satisfies the history part of the guard asso-
ciated with the role (Cruiser,RcvStop). Hence either one
of them (but not O3) can be chosen to play this role. For
the role (Terminal,Inc), both the history and propositional
guards are vacuous and hence we can choose any one of the
6 objects residing in the control state s1.

Assume that Oc1, O1 and Ot1 are chosen to execute trans-
action noMoreDest in configuration c. In the resulting con-
figuration c′, all objects other than Oc1, O1 and Ot1 will
have their control states and histories unchanged from c.
The objects Oc1, O1, Ot1 will reside in states idle, stopped,
s1 respectively. The history of Oc1, O1, Ot1 will be ob-
tained by appending noMoreDestSndStop , noMoreDestRcvStop

and noMoreDestInc to their respective histories at configu-
ration c. Object Ot1 also updates a local variable via an
internal event — refer to TerminalInc in Figure 1(b).

4.1 Behavioral Partitions
To achieve the goal of not maintaining the identities of

the objects during execution, the objects of a class will be
grouped together into behavioral partitions. We note that
the ability of a p-object to participate in a transaction de-
pends on its current state in TSp, its execution history and
valuation of its local variables. Given an IPC model as de-
fined in the previous section, for the class p we define Hp to
be the least set of DFAs given by: A is in Hp iff there exists
a transaction γ = (I : Ch) and a role r of Ch of the form
(p, ρ) such that the guard Ir of r is (Λ, Ψ) and A is the min-
imal DFA recognizing the language defined by the regular
expression Λ, the history part of the guard. The notion of
behavioral partitions can now be defined as follows.



Definition 2 (Behavioral Partition). Let {TSp =
〈Sp, Actp,→p, initp, Vp, vinitp〉}p∈P be an IPC. Let Hp =
{A1, . . . ,Ak} be the set of minimal DFAs defined for class
p as described in the preceding. Then a behavioral partition
behp of class p is a tuple (s, q1, . . . , qk, v), where

s ∈ Sp, q1 ∈ Q1, . . . , qk ∈ Qk, v ∈ V al(Vp).

Qi is the set of states of automaton Ai and V al(Vp) is the
set of all possible valuations of variables Vp. We use BEHp

to denote the set of all behavioral partitions of class p.

Now suppose c is a configuration and the object O belonging
to the class p has the history σ ∈ Act�

p at c and the valuation
of its variables is given by the function vO. We will say
that at c, the object O belongs to the behavioral partition
(s, q1, . . . , qk, v) in case O resides in s at c and qj is the state
reached in the DFA Aj when it runs over σ for each j in
{1, . . . , k}. Furthermore, the valuation of O’s local variables
is given by v. Thus, two p-objects O1 and O2 of process class
p are in the same behavioral partition (at a configuration) if
and only if the following conditions hold.

• O1 and O2 are currently in the same state of TSp,

• They have the same valuation of local variables, and

• Their current histories lead to the same state for all
the DFAs in Hp.

This implies that the computation trees of two objects in the
same behavioral partition at a configuration are isomorphic.
This is a strong type of behavioral equivalence to demand.
There are many weaker possibilities but we will not explore
them here.

MaximumNumber ofPartitions. We shall assume in what
follows that the value domains of all the variables are finite
sets. Thus, the number of behavioral partitions of a process
class is finite. In fact, the number of partitions of a process
class p is bounded by

|Sp| × |V al(Vp)| ×
Y

A∈Hp

|A|

where |Sp| is the number of states of TSp, |V al(Vp)| is the
number of all possible valuations of variables Vp, |A| is the
number of states of automaton A ∈ Hp. As described in the
preceding, Hp is the set of minimal DFAs accepting the reg-
ular expression guards of the various roles of different trans-
actions played by class p. Note that the maximum number of
behavioral partitions does not depend on the number of ob-
jects in a class. In practice, many regular expression guards
of transactions are vacuous leading to a small number of
partitions. For example, the Cruiser class of the Rail-Car
Example shown in Figure 2(b) can have at most 14 behav-
ioral partitions since — (i) TSCruiser has seven (7) states
(not all of them are shown in Figure 2(b)), (ii) the Cruiser
class has no local variables that is VCruiser = ∅ and (iii) only
one of the regular expression guards involving a Cruiser ob-
ject results in a DFA with two states2; all other regular
expression guards involving the Cruiser class are accepted
by a single state DFA. Thus, the number of behavioral par-
titions of the Cruiser class is at most 7 ∗ 2 = 14 while the

2This is the guard for the role CruiserRcvStop in transaction
noMoreDest, see Figure 1(b).

number of objects can be very large. In fact, in Section 7
we report experiments that the number of behavioral par-
titions encountered in actual simulation runs is often lower
than the upper bound on number of partitions (48 Cruiser
objects are divided into less than 6 partitions, see Table 1).

Example. Consider TSCruiser shown in Figure 2(b). Sup-
pose we simulate the specification with 24 Cruiser objects
(assume that other process-classes are also appropriately
populated with objects). In TSCruiser, only the transi-
tion noMoreDestRcvStop is guarded using a non-trivial regu-
lar expression Act�

Cruiser .alertStopRcvDisEng ; the correspond-
ing DFA, say A1 will have just two states as can be easily
verified. Initially all the 24 objects will be in the stopped
state of TSCruiser with null history and this will correspond
to the initial state, say, q1 of A1. All these objects are in
the same behavioral partition 〈stopped , q1 〉, where we have
suppressed the valuation component since there are no local
variables associated with this class in this example. Suppose
now a cruiser object, say O1, executes (in cooperation with
objects in other classes) the trace:

“departReqAStart , departAckAStarted , engageRcvEng ,
alertStopRcvDisEg”

O1 will now resides in the control state started. Also, since
alertStopRcvDisEg is executed at the end, O1’s history will
correspond to the non-initial state (call it q2) of the DFA A1.
Subsequently suppose another cruiser object, say O2, exe-
cutes the trace: “departReqAStart , departAckAStarted”. Then
O2 will also end up in the control state started. However,
unlike O1, the execution history of O2 will correspond to
q1, the initial state of A1. After the above executions we
have three behavioral partitions for cruiser objects — (i)
〈stopped , q1 〉 which has 22 objects which have remained idle,
(ii) 〈started , q2 〉 which has object O1 and (iii) 〈started , q1 〉
which has object O2. Objects in different behavioral parti-
tions have different sets of actions enabled, thereby leading
to different possible future evolutions. Now let object O1

execute the action noMoreDestRcvStop . This will result in
a merger of the first two behavioral partitions mentioned
above. In other words, O1 will be now indistinguishable
from the 22 objects which have remained idle throughout.
For all of these 23 objects, the action departReqAStart is now
enabled. This is the manner in which behavioral partitions
will be split and merged during simulation.

4.2 Simulation of Core Model
To explain how symbolic simulation takes place, we first

define the notion of an “abstract configuration”.

Definition 3 (Abstract Configuration). Let
{TSp}p∈P be an IPC specification such that each process
class p contains Np objects. An abstract configuration of the
IPC is defined as follows.

cfg = {(BEHp, countp)}p∈P

- BEHp is the set of all behavioral partitions of class p.

- countp : BEHp → N ∪ {0} is a mapping s.t.

Σb∈BEHpcountp(b) = Np

countp(b) is the number of objects in partition b.

The set of all configurations of an IPC S is denoted as CS .



We note that Np can be a given positive integer constant
or it can be ω (standing for unbounded number of objects).
If Np is ω, our operational semantics remains unchanged
provided we assume the usual rules of addition/subtraction
(i.e. ω+1 = ω, ω−1 = ω and so on). Hence for convenience
of explanation, we assume that Np is a given constant in the
rest of the paper.

Our symbolic simulation efficiently keeps track of the ob-
jects in various process classes by maintaining the current
abstract configuration; only the behavioral partitions with
non-zero counts are kept track of. The system moves from
one abstract configuration to another by executing a trans-
action. In what follows, for the sake of convenience we shall
often drop the “abstract” when talking about “abstract con-
figurations”. How can our simulator check whether a specific
transaction γ is enabled at the current configuration cfg? We
say that γ is enabled at cfg if for every lifeline of γ we can
assign a distinct object to take up that lifeline (i.e. we do
not want the same object to act as several lifelines in the
same execution of a transaction γ). Since we do not keep
track of object identities, we define the notion of witness
partition for a role, from which an object can be chosen.

Definition 4 (Witness partition). Let γ ∈ Γ be a
transaction and cfg ∈ CS be a configuration. For a role
r = (p, ρ) of γ where r has the guard (Λ,Ψ), we say that
a behavioral partition beh = (s, q1, . . . , qk, v) is a witness
partition, denoted as witness(r, γ, cfg), for r at cfg if

1. s
(γr)−→ s′ is a transition in TSp

2. For all 1 ≤ i ≤ k, if Ai is the DFA corresponding
to the regular expression of Λ, then qi is an accepting
state of Ai.

3. v ∈ V al(Vp) satisfies the propositional guard Ψ.

4. countp(b) �= 0, that is there is at least one object in
this partition in the configuration cfg.

An “enabled transaction” can now be defined as follows.

Definition 5 (Enabled Transaction). Let γ be a
transaction and cfg ∈ CS be a configuration. We say that
γ is enabled at cfg iff for each role r = (p, ρ) of γ , there
exists a witness partition witness(r, γ, cfg) such that

- If beh ∈ BEHp is assigned as witness partition of n
roles in γ, then countp(b) ≥ n. This ensures that one
object does not play multiple roles in a transaction.

The “destination partition” — the partition to which an
object moves from its “witness partition” after executing a
transaction — can be defined as follows. We denote the des-
tination partition of beh w.r.t. to transaction γ and role r
as beh′ = dest(beh, γ, r). Thus, an object in behavioral par-
tition beh moves to partition dest(beh, γ, r) by performing
role r in transaction γ, where r = (p, ρ) is a role in γ.

Definition 6 (Destination Partition). Let γ be an
enabled transaction at configuration cfg ∈ CS and
beh = (s, q1, . . . , qk, v) be the witness partition for the role
r = (p, ρ) of γ. Then we define dest(beh, γ, r) — the desti-
nation partition of beh w.r.t. transaction γ and role r — as
a behavioral partition beh′ = (s′, q′1, . . . , q

′
k, v′), where
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Figure 3: Class diagram for Rail-car example.

- s
(γr)−→ s′ is a transition in TSp.

- for all 1 ≤ i ≤ k, qi
(γr)−→ q′i is a transition in DFA Ai.

- v′ ∈ V al(Vp) is the effect of executing γr on v.

Finally, we describe the effect of executing an enabled
transaction at a given configuration. Let cfg be a configura-
tion and γ be an enabled transaction at cfg. Computing the
new configuration cfg’ as a result of executing transaction γ
in configuration cfg thus involves computing the destination
behavioral partition beh′ for each behavioral partition beh
of a process class at cfg and then computing the new count
of objects for each beh′.

5. ASSOCIATIONS
We now turn to extending our language with static and

dynamic associations. This will help us to model differ-
ent kinds of relationships (either structural or established
through communications) that can exist between objects.
The ability to track such relationships substantially increases
the modeling power. Our notion of static and dynamic as-
sociations is similar to the classification presented in [22].

Static Associations. A static association expresses a struc-
tural relationship between the classes. In a class-diagram the
static associations are captured using links, annotated with
fixed multiplicities at both the association ends. Static as-
sociations, as the name suggests, remain fixed and do not
change at runtime. We can refer to static associations in
transaction guards to impose the restriction that objects
chosen for a given pair of agents should be statically related.
The full class diagram for the Rail-car example with 24 cars
appears in Figure 3. For example, the following pairs of
classes: (PlatformManager, Terminal), (Terminal, Control-
Center), (Car, ControlCenter) and (Car, Cruiser) are stati-
cally associated in Figure 3. In particular, the link between
the Car class and the Cruiser class denotes the itsCruiser
association between a car and its cruiser.

Dynamic Associations. A dynamic association expresses
behavioral relationship between classes, which in our case
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would imply that the objects of two dynamically associated
classes can become related to each other through exchange
of messages (by executing transactions together) and then
at some stage leave that relation. In the class-diagram, dy-
namic associations are captured using links, annotated with
varying multiplicities.

We illustrate the use of dynamic associations using the
rail-car example. During execution, various rail-cars enter
and leave the terminals along their paths. When a car is
approaching a terminal, it sends arrival request to that ter-
minal by executing contactTerminal transaction and while
leaving the terminal, its departure is acknowledged by the
terminal by executing departAckA or departAckB transac-
tion. Hence, the guard of departAck(A/B) requires that the
participating Car and Terminal objects should have together
executed contactTerminal in the past. Since this condition
involves a relationship between the local histories of multi-
ple objects, we cannot capture it via regular expressions over
the individual local histories. Hence we make use of dynamic
relation itsTerminal between the Car and Terminal classes
as part of our specification.

Instead of giving details of the contactTerminal and depar-
tAck(A/B) transactions, we list here relevant roles of these
transactions.

• contactTerminal has roles (Car,SndReq) and (Termi-
nal,RcvReq),

• departAckA and departAckB have roles (Car,RcvAck)
and (Terminal,SndAck). Note that transactions depar-
tAck(A/B) also involve other roles which we choose to
ignore here for the purpose of our discussion.

If car object Oc and terminal object Ot play the roles
(Car,SndReq) and (Terminal,RcvReq) in contactTerminal,
then the effect of contactTerminal is to insert the pair
(Oc, Ot) into the itsTerminal relation (refer to Figure 4).
The departAck(A/B) transaction’s guard now includes the
check that the object corresponding to the role (Car,RcvAck)
and object corresponding to lifeline (Terminal,SndAck) be
related by the dynamic relation itsTerminal; so if objects Oc

and Ot are selected to play the (Car,RcvAck) and (Termi-
nal,SndAck) roles in departAck(A/B), the check will succeed.
Furthermore, the effect of departAck(A/B) transaction is to
remove the tuple (Oc, Ot) from itsTerminal relation.

For a dynamic relation, we describe the effect of each
transaction on the relation in terms of addition/deletion of
tuples of objects into the relation. Furthermore, the guard
of any transaction can contain a membership constraint on
one or more of the specified dynamic relations. For simula-
tion of concrete objects, it is clear how our extended model
should be executed. The question is how can we keep track
of associations in the symbolic execution semantics.

Simulating the extended model. For dynamic associa-
tions, the key question here is how we maintain relation-
ships between objects if we do not keep track of the object
identities. We do so by maintaining dynamic associations
between behavioral partitions. To illustrate the idea, con-
sider a binary relation D which is supposed to capture some
dynamic association between objects of the process class p.
In our symbolic execution, each element of D will be a pair
(b, b′) where b and b′ are behavioral partitions of class p. To
understand what (b, b′) ∈ D means, consider the concrete
simulation of the process class p. If after an execution π
(a sequence of transactions), two concrete objects O, O′ of
p get D-related ((O, O′) ∈ D) then the symbolic execution
along the same sequence of transactions π must produce
(b, b′) ∈ D where b (b′) is the behavioral partition in which
O (O′) resides after executing π. The same idea can be used
to manage dynamic relations of larger arities. The handling
of static associations is similar to that of dynamic associa-
tions. Again the guard of a transaction can refer to these
associations; so we need to take these associations into ac-
count while assigning the witness behavioral partitions for
each lifeline of a transaction. However when we check that
the witness partitions of two roles in a transaction are stat-
ically associated, we also allow for the possibility that these
partitions may consist of fresh objects which have not exe-
cuted any transaction so far. Clearly, this possibility does
not exist for dynamic associations.

Note that associations are maintained between behavioral
partitions, but associations are not used to define behavioral
partitions. Hence there is no blow-up in the number of be-
havioral partitions due to associations.

Example. As discussed earlier, the dynamic relation itsTer-
minal is maintained between the objects of class Car and
Terminal (as shown in Figure 4). This relationship is es-
tablished between a Car and a Terminal object while exe-
cuting contactTerminal and exists till the related pair ex-
ecutes either departAckA or departAckB. For illustration,
suppose one object each from class Car and class Termi-
nal plays the role (Car,SndReq) and (Terminal,RcvReq) re-
spectively in the transaction contactTerminal. Let bCar

(bTerm) be the behavioral partitions in to which the objects
of Car (Terminal) go by executing contactTerminalSndReq

(contactTerminalRcvReq ). So in our symbolic execution,

itsTerminal = {(bCar, bTerm)}.
Now when we execute departAck(A/B) transaction, we will
pick a pair from this relation as witness behavioral partitions
for the roles (Car,RcvAck) and (Terminal,SndAck). We have
not maintained information about which Terminal object in
bTerm is related to which Car of bCar. In our symbolic simu-
lation, when we pick bCar and bTerm as witness partitions of
two roles in transaction departAck(A/B), we are assuming
that the corresponding objects of bCar and bTerm which are
associated via itsTerminal are being picked.

6. HOW CONCRETE IS SYMBOLIC?
It turns out, that due to the presence of associations, there

can be symbolic executions which do not correspond to con-
crete executions. However every concrete execution can be
realized as a symbolic execution. In this sense, our symbolic
execution semantics is sound as stated next. The proof is
omitted and can be found in the technical report [3].
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Theorem 1. Suppose σ is a sequence of transactions that
can be executed by the IPC, S. Then σ can also be exhibited
in the symbolic execution of S.

It can also be shown that for IPC specifications not con-
taining associations, corresponding to a symbolic execution
run we can construct a concrete execution run. The proof
follows from a straightforward induction on the length of
symbolic execution run and can be found in [3].

To see that the converse of theorem 1 does not hold in
presence of associations, consider a fictitious system con-
sisting of 3 process classes: Cruiser, Car and BrakeControl,
such that each Cruiser and BrakeControl object is associated
with a Car object via static associations Asc1 and Asc2. In
other words, Asc1 (Asc2) captures the relationship between
a car and its-Cruiser (its-BrakeController). Fragments of
the transition systems for these components are shown in
Figure 5, along with the checks on the static associations by
various transactions. Assume that there are no variables de-
clared in these process classes and that all the action labels
shown in the example have trivial guards, that is they do
not impose any restriction on the execution history of the
object to play that lifeline (of course the object should be in
the appropriate control state). Suppose now, that we have
an initial configuration

c = {(〈sA1〉, 2), (〈sB1〉, 2), (〈sC1〉, 2)}.
Each process class Cruiser, Car and BrakeControl, contains
2 objects in their initial states sA1, sB1 and sC1 respectively.

It is easy to see that the symbolic execution semantics
allows the sequence of transactions t1, t2, t3. After a car
object and its cruiser execute t1, configuration reached is

c1 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB1〉, 1), (〈sB2〉, 1), (〈sC1〉, 2)}.
Since the car object executing t1 (call it Car1 for conve-
nience of explanation) is now in state sB2 it cannot execute
transaction t2 since it not enabled from sB2. Suppose now
t2 is executed by another car object (call it Car2 for conve-
nience of explanation). This produces the configuration

c2 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB2〉, 2), (〈sC1〉, 1), (〈sC2〉, 1)}.
In our symbolic simulation, the two car objects are not dis-
tinguishable at this point since they are both in state sB2.
One of these cars (actually Car1) has its cruiser in state

sA2 from where transaction t3 is enabled; another car (ac-
tually Car2) has its brake controller in state sC2 from where
t3 is executed. But since the distinction between Car1 and
Car2 is not made in symbolic simulation, transaction t3 (in-
volving all the classes — Car, Cruiser, BrakeControl) will be
executed in the symbolic simulation. In the concrete simula-
tion however t3 cannot be executed after transactions t1, t2
are executed. After executing transactions t1, t2 there can-
not be any concrete car object which has its cruiser (related
by association Asc1) as well its brake controller (related by
association Asc2) in the appropriate control states for exe-
cuting transaction t3. Though in this example we have only
considered static associations, similar incompleteness of our
symbolic execution can be shown with dynamic associations.

Checking a symbolic run. Since symbolic execution runs
may not correspond to concrete runs, we need a mechanism
to detect spurious symbolic executions. This is similar to
detecting spurious counter-example traces in abstraction-
refinement based software model checking (e.g. see [8]).
Fortunately, one can effectively check in our setting if a
symbolic execution run σ corresponds to a concrete run as
follows. For each process class p, let nump,σ be the total
number of roles played by an object of class p from its ini-
tial state in the transactions appearing in σ. This number
nump,σ can be calculated by counting the number of roles
(p, ρ) of a transaction γ appearing in transaction sequence
σ s.t. γρ is an outgoing transition from the initial state of
TSp (the transition system for process class p). We define
xp,σ = min(Np, nump,σ) if Np, the number of objects in p
is a given constant. Otherwise the number of objects of p
is not fixed and we set xp,σ = nump,σ. It is worth noting
that xp,σ serves as a cutoff on the number of objects of class
p only for the purpose of exhibiting the behavior σ and not
all the behaviors of the system. Clearly, σ is a concrete run
in the given system iff it is a concrete run in the finite state
system where each process class p has xp,σ objects.

We have implemented the above spuriousness check using
the Murphi model checker [15]. The reason for using Murphi
is that it has in-built support for symmetry reduction [10];
this can speed up model checking of process classes with
many similar processes. Such systems often exhibit struc-
tural symmetry which can be exploited to avoid construct-
ing/traversing the full state space. Indeed the spuriousness
check for all the test cases of all our examples was completed
in less than 0.1 second using Murphi. Also, when simulat-
ing an example system against meaningful use cases, the
execution run produced by our symbolic simulator was typ-
ically not spurious. In fact, there was only one false positive
among all the test cases we tried for all the examples.

7. EXPERIMENTS
We have implemented our symbolic execution method by

building a simulator in OCaml [16], a general purpose pro-
gramming language supporting functional, imperative and
object-oriented programming styles.

Modeled Examples. For our initial experiments, we mod-
eled a simple telephone switch drawn from [9]. It consists
of a network of switch objects with the network topology
showing the connection between different geographical lo-
calities. Switch objects in a locality are connected to phones



Process # Concrete # of partitions
Class Objects in Test Case

I II III
Car 48 12 10 11

CarHandler 48 3 8 8
Terminal 6 6 6 6
Platform 6 1 3 3
Mngr.
Exits 6 1 2 2
Mngr.

Entrance 12 2 1 2
Exit 12 1 2 2

Cruiser 48 1 3 5
Proximity 48 1 1 2

Sensor
cDestPanel 48 1 1 1
tDestPanel 6 1 1 1

Table 1: Maximum Number of Behavioral partitions
seen during symbolic simulation of RailCar example.

in that locality as well as to other switches as dictated by
the network topology. We modeled basic features such as
local/remote calling as well as advanced features like call-
waiting. Next we modeled the rail-car system whose behav-
ioral requirements have been specified using Statecharts in
[4] and using Live Sequence Charts in [2]. This is an au-
tomated rail-car system with several cars operating on two
parallel cyclic paths with several terminals. The cars run
clockwise on one of the cyclic paths and anti-clockwise direc-
tion on the other. This example is a substantial sized system
with a number of process classes: car, terminal, cruiser (for
maintaining speed of a rail-car), car-handler (a temporary
interface between a car and a terminal while a car is in that
terminal), etc. We have also modeled the requirement speci-
fication of two other systems - one drawn from the rail trans-
portation domain and another taken from air traffic control
(see http://scesm04.upb.de/case-studies.html for more
details of these examples). We now briefly describe these two
systems. The automated rail-shuttle system [21] consists of
various shuttles which bid for orders to transport passengers
between various stations on a railway-interconnection net-
work. The successful bidder needs to complete the order in a
given time, for which it gets the payment as specified in the
bid; the shuttle needs to pay the toll for the part of network
it travels. Also, in case a shuttle is bankrupt (due to pay-
ment of fines), it is retired. The weather update controller
[1] is a an important component of the Center TRACON
Automation System (CTAS), automation tools developed
by NASA to manage high volume of arrival air traffic at
large airports. The case study involves three classes of ob-
jects: weather-aware clients, weather control panel and the
controller or communications manager. The latest weather
update is presented by the weather control panel to vari-
ous connected clients, via the controller. This update may
succeed or fail in different ways; furthermore, clients get con-
nected/disconnected to the controller by following an elab-
orate protocol.

Behavioral Partitions. We used guided simulation on each
of our examples to test out the prominent use cases. The

Time Memory
Example Setting (sec) (MB)

C S C/S C S C/S

RailCar 24cars 3.9 2.1 1.9 173 83 2.1
48cars 7.0 2.2 3.2 353 84 4.2

Shuttle 30cars 0.7 0.4 1.6 33 18 1.8
60cars 1.2 0.4 2.7 69 18 3.8

Wthr 10Clients 0.6 0.5 1.2 21 18 1.2
Cntrl 20Clients 0.8 0.5 1.6 27 18 1.5

Simple 60phones 2.0 1.5 1.3 87 63 1.4
switch 120phones 4.1 1.5 2.7 189 64 3.0

C ≡ Concrete Exec., S ≡ Symbolic Exec.

Table 2: Timing/Memory Overheads of Concrete
Simulation and Symbolic Simulation

details of these experiments appear in the technical report
[3]; due to lack of space we only mention the results for
the Rail-car example [2]. We simulate the following test
cases for the Rail-car example– (a) cars moving from a busy
terminal to another busy terminal (i.e. a terminal where all
the platforms are occupied, so an incoming car has to wait),
while stopping at every terminal, (b) cars moving from a
busy terminal to less busy terminals while stopping at every
terminal, and (c) cars moving from one terminal to another
while not stopping at certain intermediate terminals. We
summarize the results of three test cases in Table 1. For
each test case, we report the number of concrete objects
for each process class as well as the maximum number of
behavioral partitions observed during simulation. We have
reported the results for only process classes with more than
one concrete object. For each test case, we let the simulation
run for 100 transactions – long enough to exhibit the test
case’s behavior. From Table 1, we can see that the number
of behavioral partitions is substantially less than the number
of concrete objects.

Timing and Memory Overheads. At the heart of our sym-
bolic simulation is the idea of a behavioral partition, which
groups together objects. Since one of our main aims is to
achieve a simulation strategy efficient in both time and mem-
ory, a possible concern is whether the management of behav-
ioral partitions introduces unacceptable timing and memory
overheads. We measured timing and memory usage of sev-
eral randomly generated simulation runs of length 1000(i.e.
containing 1000 transactions) in our examples and consid-
ered the maximum resource usage for each example. We
also compared our results with a concrete simulator (where
each concrete object’s state is maintained separately). For
meaningful comparison, the concrete simulator is also im-
plemented in OCaml and shares as much code as possible
with our symbolic simulator. Simulations were run on a
Pentium-IV 3 GHz machine with 1 GB of main memory.
The results are shown in Table 2. For each example we
show the time and memory usage for both the symbolic and
concrete simulation. Also, for a given example, we obtained
results for two different settings, where the second setting
was obtained by doubling the number of objects in one or
more of the classes, e.g. in the rail-car example with 24 and
48 cars respectively. We observe that for a given example



Rail Car Example

0

500

1000

1500

24 48 72 96 120
Number of Cars (and associated
components: car handler, cruiser 
etc.)

M
e
m

o
ry

 (
M

B
)

Symbolic
Simulation
Concrete
Simulation

Number of Cars (and associated components: CarHandler, Cruiser etc.)

M
e
m

o
ry

 (
M

B
)

Execution time comparison

0

5

10

15

20

25

24 48 72 96 120

T
im

e
(s

e
c
)

Memory usage comparison

0
200
400
600
800

1000
1200
1400
1600

24 48 72 96 120

M
e
m

o
ry

 (
M

B
)

Figure 6: Execution Time and Memory Usage for
different settings of the RailCar example.

and a given number of objects, the running time and mem-
ory usage for the concrete simulator are higher than that
for the symbolic simulator. Also for the same example but
with higher number of objects, in case of symbolic execu-
tion, the time/memory remain roughly the same, whereas
they increase substantially for the concrete case (as indi-
cated by the increase in ratio C/S for higher number of
objects in Table 2). Further, in the graphs shown in Figure
6, we compare the growth in timing and memory usage in
the railcar example, for both concrete and symbolic simu-
lations. Each successive setting is obtained by increasing
the number of cars and its associated components: “car-
handler”, “proximity-sensor”, “cruiser” and “dest-panel” by
24. Clearly our symbolic simulation allows the designer to
try out different settings of a model by varying the number
of objects without worrying about time/space overheads.

Simulator Features. Currently, our simulator supports the
following features to help error detection – (a) random sim-
ulation, (b) guided simulation for a use-case, and (c) testing
whether a given sequence of transactions is an allowed be-
havior. The simulator source code as well as the modeling
of all the examples reported in this paper can be obtained
from http://www.comp.nus.edu.sg/~ankitgoe/simulator

8. DISCUSSION
In this paper, we have studied a modeling formalism ac-

companied by a simulation technique for dealing with in-
teracting process classes; such systems arise in a number of
application domains such as telecommunications and trans-
portation. Our models are based on standard UML nota-
tions and our symbolic simulation strategy allows efficient
simulation of realistic designs with large number of objects.
The feasibility of our method has been demonstrated on re-
alistic examples.

In the present work, our state and class diagrams are
“flat”; we plan to extend this in future. We are also in-
tegrating timing features in our modeling framework that
would enable us to specify timing constraints such as: mes-
sage delays and upper/lower time bounds on a process to
engage in certain events. Finally, we plan to develop a ver-
ification framework centered on our symbolic execution se-
mantics that will exploit the abstraction-refinement based
approach to software model checking.
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