
Engineering Multi-Tenant Software-as-a-Service Systems
 Bikram Sengupta

IBM Research
Bangalore, India

bsengupt@in.ibm.com

 Abhik Roychoudhury
School of Computing
National Univ. of Singapore

abhik@comp.nus.edu.sg

ABSTRACT
Increasingly, Software-as-a-Service (SaaS) is becoming a
dominant mechanism for the consumption of software by end
users. From a vendor’s perspective, the benefits of SaaS arise
from leveraging economies of scale, by serving a large number of
customers (“tenants”) through a shared instance of a centrally
hosted software service. Consequently, a SaaS provider would, in
general, try to drive commonality amongst the requirements of
different tenants, and at best, offer a fixed set of customization
options. However, many tenants would also come with custom
requirements, which may be a pre-requisite for them to adopt the
SaaS system. These requirements should then be addressed by
evolving the SaaS system in a controlled manner, while still
supporting the needs of existing tenants. This need to balance
tenant variability and commonality, and to optimize on
development and testing effort, can make the evolution of multi-
tenant SaaS systems an interesting engineering challenge; this has
strong economic undertones as well, given the “pay-per-use”
subscription model of SaaS, and the cost of incremental
development and maintenance to cater to new tenant needs. In this
paper, we outline a set of research issues in the design, testing and
maintenance of multi-tenant SaaS systems, and highlight some of
the interesting optimization questions that arise in the process.
Presenting specific technical solutions is beyond the scope of this
paper – instead, our goal is to help shape a research agenda for
multi-tenant SaaS that can provide stimulus for further
investigation into this area by the software and service
engineering research community, and can help advance
methodological guidance and tool support for SaaS vendors.

Categories and Subject Descriptors
D.2 [Software Engineering], D.2.2 [Design Tools and
Techniques], D.2.5 [Testing and Debugging], D.2.7 [Distribution,
Maintenance and Enhancement], D.2.9 [Management]

General Terms
Management, Measurement, Design, Economics, Verification.

Keywords

Software-as-a-Service, cloud computing, multi-tenancy, testing,
semantics, refinement

1. INTRODUCTION
In recent years, the trend towards “Everything-as-a-Service”
(XaaS) as envisioned in Utility Computing’s pay-per-use model,
has been rapidly gaining ground in the Information and
Communication Technology (ICT) world. Companies are
increasingly adopting this new paradigm where they do not wish
to commit resources for engineering computing infra-structure.
Instead, they acquire these resources as and when they need them
as services. Cloud computing, which has emerged as the run-time
platform for realizing this vision, may be visualized as a stack of
possible service types, ranging from infrastructure-as-a-service
(IaaS) at the very base, to platform-as-a-service (PaaS)S, to
finally, Software-as-a-Service or SaaS – the main focus of this
paper.
Informally, SaaS may be described as software deployed as a
hosted service and accessed over the internet without the need for
users to deploy and maintain additional on-premise IT
infrastructure. From a SaaS vendor’s perspective, the benefits of
SaaS arise from leveraging economies of scale, by serving a large
number of customers (“multiple tenants”) through a shared,
centrally-hosted software service. This translates to lower
subscription fees for individual tenants, thereby encouraging
entirely new market segments to utilize the benefits of software
services – for example, Small and Medium Enterprises (SMEs)
who have traditionally been unable to afford steep software
license costs, are able to factor in SaaS subscriptions as part of
their operational expenses, and thereby give their business the
benefit of IT services. For these reasons, SaaS has seen very
significant growth over the last few years, and the market outlook
for the future continues to be bright. According to a recent IDC
report [23], the SaaS market reached $13.1B in revenue in 2009,
while the on-premise market shrunk by $7B. The SaaS market is
forecasted to reach $40.5B by 2014, representing a compound
annual growth rate (CAGR) of 25.3%. By 2014, about 34% of all
new business software purchases will be consumed via SaaS [23].
Other industry analysts also share this optimism around Cloud
Computing/SaaS e.g. Gartner estimates that over the course of the
next 5 years, enterprises will cumulatively spend $112B on SaaS,
Paas and IaaS [24].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0591-4/11/05... $10.00.

The business benefits of SaaS notwithstanding, supporting true
multi-tenancy in a SaaS system can be very challenging. By true
multi-tenancy, we mean a SaaS instance that not only supports the
common needs of several tenants, but also the custom
requirements of individual tenants to the extent possible. In the
traditional mode of on-premise software delivery, or even in the

Application Service Provider (ASP) model, each tenant would
have a dedicated instance of the base application customized to its
needs. However, when several tenants have to share the same
application instance in a multi-tenant SaaS, how to handle
variations in tenant requirements becomes an interesting question.
Clearly, supporting such variations increases the overhead on the
SaaS vendor. Also, allowing too much variability can defeat the
very purpose of sharing, and make system maintenance very
expensive. On the other hand, allowing too little variability may
discourage tenants from subscribing to a SaaS in the first place -
tenants would be unwilling to compromise too much in terms of
changing their business processes to adapt to what the SaaS
vendor has to offer. This will be particularly true for many small
and medium-sized vendors, who would be less capable to dictate
the terms of business engagement with their customers. In fact,
industry surveys [25] indicate that the inability to customize SaaS
applications to suit their needs is the most significant challenge
that customers face with the SaaS offerings they use. In the
coming years, this has the danger of slowing down the growth of
SaaS beyond those domains where there is little or no need for
tenant-specific variations. Such domains may be few in spite of
the general move towards industry standards.
We believe that for the SaaS paradigm to truly meet its potential,
vendors will need to move away from building rigid “one-size-
fits-all” systems, or those that offer a fixed set of available
customization options from which tenants must select. Instead,
vendors will have to design SaaS systems in a way that allows the
applications to evolve with time to cater to the custom
requirements of newer tenants looking to onboard the system.
While doing so, vendors should not, of course, lose sight of the
end-goal of a shared SaaS – that the commonality amongst
tenants remain sufficiently high for a single application instance
to be justifiable and viable. Thus multi-tenant SaaS development
must involve maintaining this balance between tenant
commonality and variability on an ongoing basis, leveraging the
benefits of commonality wherever possible, and suitably adapting
the design/development/testing/on-boarding process to address
the requirements of variability. At its very core, SaaS is a
economic model for software consumption, hence much of these
activities would have to be grounded on the basis of financial
reasoning that can benefit the vendor as well as the tenants.
In this paper, we seek to outline a multi-tenant SaaS engineering
approach that is motivated by this line of thinking. In particular,
we consider the topics of: designing multi-tenant SaaS systems in
a way that facilitates reasoning about tenant commonality and
variability (Section 4); testing such systems efficiently to avoid
redundancies due to shared behaviour while still exercising all
points of difference (Section 5); and re-factoring SaaS systems to
ease maintenance (Section 6). Elaborating on these issues, we
naturally find a set of optimization questions rooted in the SaaS
economic model, which can guide decision-making – for
example, which set of tenants to onboard, or which subset of
services to retire, so that the vendor profitability is maximized, or
impact on tenants is minimized. The overall SaaS engineering
approach that we outline may be realized through design and
analysis toolkits that vendors may use to methodically design,
validate, refine and evolve multi-tenant SaaS systems. However,
going into specific realization aspects is beyond the scope of this
paper – we focus, instead, on the research issues involved and

outline possible solution approaches with the hope that this will
provide an agenda for further investigation.

2. Related Work
While there is a lot of interest in SaaS in general, we believe that
the challenges that arise due to multi-tenancy have not been
adequately explored from a software engineering perspective.
Much of the existing research on multi-tenant SaaS have focused
on shared data architecture and security management [5, 7, 1, 15],
and middleware extensions to address the well-founded concerns
due to data/security/isolation. The work of [8] develops a multi-
tenant placement model which decides the best server where a
new tenant should be accommodated. The placement mainly
considers the hardware resources including CPU and storage
usage. In principle, a new tenant will be placed on the server with
minimum remaining residual resource left that meets the resource
requirement of the new tenant. There have also been studies on
service performance issues in multi-tenant SaaS [9].

In contrast, there has been relatively little research so far on the
impact tenant variability may have on the functionality and
evolution of a SaaS system over its lifecycle. This is not
surprising given that SaaS is a relatively recent phenomenon, and
hence the initial focus is bound to be on issues that are related
directly to its feasibility (such as security or performance).
However, the fact that a SaaS system needs to functionally cater
to multiple tenants is now increasingly understood, leading to
research on how to model variability in a SaaS, and how to make
a SaaS system more customizable. Models and techniques
successfully employed in software product line engineering [14]
have been applied in multi-tenant systems to manage
configuration and customization of service variants. In particular,
[11] extends variability modeling [2], which provides information
for a tenant to customize the SaaS application and guides the SaaS
provider for service deployment. The work of [3] discusses some
potential challenges in implementation and maintenance of multi-
tenant systems. It presents an architectural approach which tries to
separate the multi-tenant configuration and underlying
implementation as much as possible, by adopting the 3-tier
architecture (authentication, configuration, and database) in the
traditional single-tenant web application. Along the same lines,
experiences in modifying industrial-scale single-tenant software
systems to multi-tenant software have been reported in [4]. This
involves extending user-authentication mechanisms, introducing
tenant-specific software configuration and adding an application
layer to extract tenant-specific views from the shared database. A
recent paper [13] also studies tenant specific customizations in a
single software instance, multiple tenant setup.

In the software product lines community, feature diagrams have
been used to capture the similarities and differences between
products in a software product family (e.g. see [33] and the
references therein). Testing of software product lines described as
feature diagrams has been studied in [34], where the goal of test
generation is given as the presence/absence of selected features.
In comparison, for multi-tenant SaaS systems, we feel it is
important to have a holistic view of the commonality/differences
across tenants so that it be exploited to sharing of parts of the test
suite across tenants.

Motivation for this Paper
By and large, the emphasis of the above cited work has been on
how SaaS architects may model customization/configuration
options through variation points, and make them available to
tenants who wish to on-board the SaaS system, so that each tenant
may individually decide which set of customization options
offered by the vendor to select. However, while a vendor may
offer a fixed set of customization options based on its
understanding of the domain, we expect that a SaaS – like all
other software in the past – will need to evolve based on
newer/differentiated capabilities demanded by the users –
specially since the user base, spanning across multiple tenants,
will be large and diverse. Business imperatives will demand this
evolution. One may argue that tenant-specific changes (beyond
vendor-offered customizations) go against the very objective of
sharing, and that such demands, when they have to be met, should
be handled through separate customized instances for individual
tenants. However, there is an entire spectrum to be traversed
between fully common, shared behavior, to completely different,
customized behavior, and we strongly feel that the moot question
is not whether tenant-specific changes should be considered, but
to what extent they may be accommodated within a single
instance, while still retaining the benefits of sharing.

From the vendor’s perspective, the evolution of a SaaS system
due to functional variability amongst tenants raises many
interesting questions: how different is a new service variant being
requested from the ones that we currently offer? Is it a refinement,
or an elaboration of what we have, or will it require significant
new development? What impact will it have on the homogeneity
of the overall system if we accommodate it? Is the return-on-
investment justified? How quickly can we test the changes? At
what point does the maintenance overhead of tenant-specific
changes start outweighing the benefits due to shared behavior? A
service variant we were supporting seems to be having
diminishing utility – how do we minimize the impact of retiring
it?....and many more.

The goal of this paper is to help chart an agenda from the existing
work on vendor-driven customizability via variability modeling,
to a more tenant-driven evolution of a SaaS system, and the
engineering challenges (exemplified by the questions above) that
the vendor has to address to accommodate this evolution. In the
rest of the paper, we attempt to elaborate on this agenda.

3. Overview
To motivate the multi-tenant SaaS engineering approach that we
outline in subsequent sections, let us consider the following
scenario – two major stock exchanges make an agreement to
offer joint online trading services for a range of stock transactions
(this is a realistic scenario as we have seen from recent news on
the Singapore and Australian Stock Exchange [30]). Let us
suppose, this has to be made operational very soon to exploit a
favorable economic climate.

• Several existing services offered by both the stock
exchanges have functional similarities, along with some
variations. These services need to be identified and
grouped together/merged in the joint trading system to
be developed.

• Requirements for several new business services have
been elicited with a high number of variants to meet the
needs of different financial institutions and grades of
investors. There is a need to judiciously invest in new
development, so that it generates most value for the
ecosystem (stock exchange, customers), while giving
priority to the services in most common need.

• As development commences, testing scenarios seem to
escalate when considering how each possible tenant is
likely to exercise the system. Given the short
development cycle, it is critical to reduce testing
overhead whenever possible, while still retaining a
degree of confidence about the coverage of tenant
behavior.

• Post development and testing, the joint trading services
are offered and they become very successful. New
tenants continue to come on-board and the service and
variant portfolio is opportunistically expanded to cater
to their needs. At one point, maintenance overhead
becomes a bottleneck – somehow the system needs to
be re-factored to reduce tenant variability and keep
things tractable.

These are all realistic scenarios that are likely to occur when a
multi-tenant SaaS system – one that tries to maximize tenant
commonality while accepting some of their variabilities - is
developed and deployed. These scenarios suggest the following
topics would be relevant for engineering multi-tenant SaaS:

• A (Semantic) Model for SaaS Systems: This will involve
modeling the SaaS services and variations, and
representing tenant requirements so that they may be
mapped to the SaaS system. The model should support
semantic reasoning, so that similarities and differences
between services and tenant requirements may be
analyzed to fine-tune the service model, estimate
development costs for tenant requirements and guide
tenant on-boarding.

• SaaS Testing: Tenants will share many common
features, but may also need capabilities that apply only
to a subset of other tenants. There is a need to devise
efficient test representation and test case generation
techniques, so that the testing activity can focus on
exercising variations in tenant behavior, and avoid
redundancies in testing the common behavior shared
across a set of tenants.

• Re-Factoring SaaS Systems: A multi-tenant SaaS
system may be initiated from customized single tenant
instances, whose commonalities need to be merged and
variation points accounted for. It will continue to evolve
as it accommodates the requirements of new tenants on-
boarding the system. Eventually, it may again need to
be re-factored – certain service variants may not have a
high utility and the vendor may want to retire those
while minimally impacting subscribing tenants, while
the variability amongst certain sets of tenants may
justify separate SaaS instances for them.

While the focus of the above discussions has been on functional
similarities (or variabilities) between tenants and its implications

on the SaaS development cycle, there may also be differences
between non-functional requirements (NFRs) of tenants. NFRs
may be captured in the Service Level Agreements (SLAs)
between the tenants and the SaaS provider, and they will
constitute an important element of a multi-tenant SaaS analysis
and engineering framework. However, given the orthogonal
nature of functional and non-functional requirements and how
they may be realized, we restrict ourselves to the functional space
in this paper. The issue of NFRs have been well-studied for
SOA/web-services [e.g. 28,29], and functional differences
between multiple tenants (which we focus on) do not necessarily
create newchallenges in SaaS performance analysis/optimization.

4. A Model for Multi-Tenant SaaS
A multi-tenant SaaS system has to be carefully designed to handle
the variability that can arise due to the differing needs of tenants.
At an abstract level, a SaaS system may be considered as a
collection of services, where each service in turn, consists of a
collection of operations that can be invoked by clients. The
functionality desired by different tenants out of a service or
operation may differ, thereby necessitating support for variants of
these entities. As the existing literature shows [11], concepts from
product-line engineering may be adopted to define variation
points to which different variants may be linked, and the
variability model may also be used to guide SaaS customization.
Moreover, the packaging and deployment of the SaaS may be
guided through a set of multi-tenancy patterns that help
distinguish between components that are shared between all
tenants or are specific to some tenants [12]. Technically, these
constructs provide the basic foundation for supporting variability
within a multi-tenant SaaS application architecture.
However, to help multi-tenant SaaS systems evolve in a
controlled manner, what is needed is not only a way to record
different variants, but also to be able to analyze their degree of
variability (or conversely, similarity). For example, to onboard a
new tenant, its requirements from the SaaS system needs to be
mapped onto the set of available services and operations, so that
the vendor can determine the gaps that need to be filled through
new variants. If a new variant is very similar to an existing service
or operation, then the development effort will be relatively small,
and the homogeneity of the system will not be impacted too
much. On the other hand, if the tenant requires a very
different/new type of service or operation, then it may imply
significant development overhead, which has to be reviewed not
only in light of the potential financial benefits, but also the
heterogeneity it introduces and its long-term maintenance
implications. In addition to updating a SaaS system to onboard a
new tenant, the vendor may also wish to re-factor the system
periodically to improve its maintainability (we discuss this in
Section 6) – this would also need an analysis of similarities
between different services/variants, so that the right decisions
may be taken with respect to changes that have to be made to the
underlying design.
For these reasons, it would be helpful to enrich the existing
variation-oriented modeling of multi-tenant SaaS systems with
constructs that enable representation of service semantics. This
may be done, for example, using a Design by Contract approach
[31], where the semantics of a design entity like a service or
operation is captured through the use of pre-conditions,
effects/post-conditions, invariants etc. In the SOA world, such a

representation has already been explored by the semantic web
community to facilitate service discovery, matching or
composition, leading to formalisms like OWL-S [32]. We believe
that a similar approach can also be taken to establish the semantic
underpinnings of a multi-tenant SaaS solution. On top of this, one
may define different notions of refinement to understand
relationships between services/variants and the ease with which a
new variant may be created from existing ones. For example, a
variant that only needs weakening of an existing pre-condition
may be easier to incorporate than one that introduces a significant
new post-condition. Similarly, the addition of a variant of an
existing service operation may cause less impact than the
definition of a new operation, which is turn, may be deemed to
have less overhead than having to define an entirely new service
for a tenant. Such an approach would help the vendor estimate the
cost of onboarding a new tenant, both in terms of the associated
development effort, as well as the degree of heterogeneity that is
introduces into the model. The vendor may further define
thresholds for this heterogeneity (or conversely, homogeneity or
commonality) at different design levels to control and scope the
evolution of a multi-tenant SaaS system.
Given such a semantic model for SaaS, the onboarding of tenants
poses interesting optimization problems. The requirements of a
tenant may be represented in terms of services and operations, and
we may expect these requirements to be a mix of mandatory
(must-have) and optional (good-to-have), which provides a basis
for negotiation with the SaaS vendor. Given a tenant’s
requirements profile, the vendor would like to identify the optimal
subset of requirements it should support, so that its net profit is
maximized while leading to the best commonality in the resultant
system. The vendor’s profit would be the difference between the
expected revenue from the services/operations based on the
tenant’s anticipated usage profile, and the cost of additional
development, which in turn will depend on the degree to which
existing services/operations may be re-used e.g. through
refinement. The resultant commonality of the system would
reflect the extent to which the services/operations of the updated
system are shared between tenants, and the degree of similarity
between the variants of a service/operation. Given a set of such
tenants to be considered for the next cycle of evolution of the
SaaS system, the vendor would be interested to identify the subset
of tenants and requirements to support, so that the above
profit/commonality criteria are optimized.
A variation-oriented semantic model for multi-tenant SaaS can
thus provide a sound basis for a controlled evolution of the
system. Apart from tenant onboarding, it can also help in the
testing and re-factoring of such systems, as we discuss next.

5. Testing Multi-Tenant SaaS systems
There are (at least) two interesting questions to consider in the
area of testing multi-tenant SaaS systems that evolve to
accommodate tenant variability: First, when a new tenant is
onboarded, how do we test that existing tenants are not impacted
by the changes introduced? Second, how do we efficiently test
that the SaaS system meets the needs of the different tenants that
have been onboarded?
In the approach outlined in the preceding section, any new
functional capability required by a tenant that is being onboarded,
is handled cleanly by defining a new service/operation or its

variant. We do not update any existing operation used by current
tenants. This ensures that the changes made for the new tenant are
isolated, and do not impact the functioning of the existing tenants.
The first question is thus not relevant to our approach, although it
will be a core concern for methods that try to overload existing
operations to behave differently for different tenants. We do not
recommend this since it is likely to result in code that is very
difficult to maintain.
The second question, however, is very relevant. Given the large
degree of commonality that is likely to exist amongst tenants,
significant testing resources may be consumed if every tenant has
to be fully tested across all applicable scenarios. Rather, we may
wish to test only the changes introduced by a tenant. One may
argue, of course, that each tenant is different in that it would have
its own data set. However, even if tenants are to be
comprehensively tested individually, a testing strategy should be
devised that exploits similarities amongst tenants to let testers step
through the scenarios in a systematic manner. Below, we
elaborate on the issues related to multi-tenant SaaS testing, based
on the semantic model suggested in the preceding section. We
assume a test case to be represented as a sequence of service
operation invocations (or it may be relaxed into a partial order).
The first issue we consider is test case generation, particularly test
cases which do not exist in the current test-suite, but which should
be tested once the new tenant(s) are on-boarded. This problem is
similar in flavor to the test-suite augmentation problem – where
tests are generated to stress program changes, namely executing
the changes and propagating the effect of the changes to the
program output. The general problem of test-suite augmentation
may be addressed via two steps (for example, see [16]). In the
first step, a control dependency analysis is done to find a test
input to reach/execute the change. Then, in the second step, we
modify the path of the change reaching test input to ensure that
the program outputs are different with or without the change. One
key issue here is to avoid infeasible paths, and for this reason
symbolic execution (and path condition calculation) is essential.
For multi-tenant SaaS systems, the test-suite augmentation
problem will be visualized at a higher level, with the changes
defined at operation level. Consequently the individual steps of
the analysis (for finding the new tests) will also need to be
changed. For reaching the change, we may want to exploit pre-
conditions of the operations, instead of performing a fine-grained
control dependency analysis. Finally, for propagating the effect of
the executed changes, we can analyze the operation post-
conditions (along with suitable control flow restrictions) to find a
suitable test (in the form of a partial order of operation
invocations). Since pre- and post-condition analysis will be
central to this method, we envision that symbolic execution will
play an important role in the proposed methods. The approach
will extend contract-based testing of web services [26, 27].
The second issue relevant to testing multi-tenant SaaS systems is
devising a testing strategy that exploits the similarity amongst
tenants and structures the test suite accordingly. For this purpose
we propose the notion of a Test-tree. The root node of a test-tree
captures the set of test cases which need to be tested for all the
tenants. Each intermediate node of the tree will capture a set of
test cases which need to be tested for a subset of tenants. Thus, a
partitioning of the tenant set is given by the root-to-leaf paths in
the test-tree. To further illustrate the notion of test-tree, we may
consider a schematic example.

 200 tests

100 tests 100 tests

 Tenants {t4, t5}

10 tests 20 tests

Tenant {t1} Tenants {t2, t3}

Fig. 1: A Test Tree for Multi-Tenant SaaS

In this example, we have five tenants {t1, t2, t3, t4, t5}. For
comprehensive testing, tenant t1’s behavior needs to be tested
against (200 +100 +10) = 310 test cases. Of these, 10 test cases
are unique to t1, hence the SaaS system must be tested on these
prior to onboarding of t1. Out of the remaining, 100 test cases are
shared with t2 and t3, and 200 test case are shared with all other
tenants, so depending on the degree to which these test cases have
already been exercised on existing tenants, testers may decide
whether to test for a specific case or not. Furthermore, the root-to-
leaf paths in the test-tree induce a partitioning of the tenant set –
namely {{t1}, {t2, t3}, {t4, t5}}.
We feel that the notion of a test-tree is a powerful one, for
efficient and systematic testing of multi-tenant SaaS systems. In a
broad sense, constructing the test-tree also amounts to a
specification of the behavior of tenants in a multi-tenant SaaS
system – outlining the similarities and differences across the
tenants’ usage of the SaaS system.
Given such a notion of a test-tree for a multi-tenant SaaS system,
we need to study how the tree is modified as new tenants are on-
boarded. In this respect, we can be guided by some of the works
on software change-impact analysis. Mature tools like Chianti
[17] exist for change impact analysis. Given two program
versions, these tools identify the atomic changes (across the two
versions) and then find out the tests whose execution is affected
by the changes. Such tools are very useful for program
understanding, debugging and testing – but from a general
software engineering context. For multi-tenant SaaS systems, the
atomic changes can be defined more coarsely, possibly in terms of
new operations or variants thereof. We can then adapt the works
on change impact analysis to find which tests from the existing
test suite may be affected, and test-tree transformations have to be
defined accordingly.

6. Re-Factoring Multi-Tenant SaaS Systems
There are situations where a vendor may wish to refine a SaaS
design, either to improve its maintainability, or to provide better
support for multi-tenancy. In particular, we envision the need for
three re-factoring techniques that we term merging, splitting and
pruning. The goal of merging is to help bootstrap a multi-tenant
SaaS design from existing single-tenant ones. Splitting may be
used to generate smaller SaaS systems to reduce variability and
improve maintenance. Pruning may be used to retire service

entities that are of low utility, in a controlled manner to manage
impact. We introduce them in the following.

Merging: The merging technique will be useful in moving legacy
service systems to the cloud. Imagine a vendor of a SaaS system
or an on-premise software product with many instances that have
been individually customized and deployed for different
customers. The vendor may now want to offer this software on the
cloud, and have a single instance shared across the customers, to
leverage the benefits of multi-tenancy. From a design perspective,
this means that the commonalities and differences across the
various customized instances need to be identified and accounted
for within a common design – this is where merging comes in.
The technique assumes that the individual instances have a SOA-
based design in terms of services and operations, and that the
semantics of these entities (pre-conditions/effects) is known, or
may be discovered by mining the legacy code. Given this,
merging will analyze the specification of the different instances to
detect similarities in services/operations. Different grades of
similarity (from strict to lenient notions) may be used to come up
with a merged design that meaningfully groups together similar
entities under variation points. The literature on model
differencing/merging [17, 18, 19] and semantic web matching
[20, 21] will be relevant here.

Splitting: This is the dual of the merging operation. There may be
a number reasons why a service provider may want to split a large
multi-tenant SaaS system into smaller multi-tenant systems (each
system consisting of a subset of services and operation variants
present in the original system). For example, it may be due to ease
of maintenance. As more and more tenants onboard a SaaS, the
service/operation/variant set may keep on increasing. As a result,
the software may get bloated, and a direct business consequence
of this for the provider would be higher maintenance costs.
Secondly, a group of tenants may exhibit similar usage
requirements. In such cases, it may make sense to support them
out of a separate (smaller) SaaS instance, and maybe charge a
higher price for those combinations of services and operations.
However, splitting a large multi-tenant SaaS system into multiple
smaller ones supporting subsets of tenants, may also lead to some
features being replicated across the different instances, and this
may lead to new running costs. There is thus a trade-off to be
considered. A relevant optimization problem is, given a multi-
tenant SaaS system S, divide its tenant set T into K (>=2) non-
overlapping sub-sets generating K multi-tenant systems (each
system containing all the services/operations/variants needed by
its tenants), in a way that leads to maximization of the profit for
the SaaS vendor and also leads to the best commonality in the
resulting systems.

Pruning: Pruning refers to changes made to a SaaS design by
retiring entities (services, operations) that the vendor perceives to
be of low utility. This may be based on financial motives. For
example, the utility value for a service operation (or a specific
variant) may be computed as the ratio of revenue generated from
this operation and its running costs – where the revenue is
computed over all tenants who have subscribed to the operation,
while running costs refer to the cost the provider has to bear to
maintain the operation in question (such as cost of associated
infra-structure, third party services and so on). We can similarly
lift the notion of utility to the level of a service by averaging over
all the service operations. When the utility of a service, operation
or variant falls below a threshold, the SaaS vendor may decide to

retire i.e. withdraw those entities, and thereby save on the running
costs. We term this as pruning the SaaS design.
However, retiring a service or operation will impact those tenants
who have subscribed to it. If an entire service is retired, the
subscribing tenants will lose the associated functionality, and if
this represents one of their mandatory requirements, they are
likely to leave the vendor, causing revenue loss to the latter. A
more controlled way of pruning the SaaS system may be by
retiring selected operation variants of low utility, with the plan of
offering other variants of these operations (as substitutes) to the
subscribing tenants. Our assumption here is that as long as the
vendor is able to preserve a tenant’s control flow through the
SaaS at the level of the operations invoked, it may still be
acceptable to the tenant if certain operation variants are replaced
by other suitable variants. Of course, tenants will also need to
know the cost implications of this transfer – for example, if the
new variants are much more expensive than existing ones - hence
the vendor’s goal would be to offer those alternative to a tenant
that do not result in excessive additional cost. On the other hand,
if the provider cannot preserve a tenant’s control flow in terms of
the operations it needs to invoke, then the tenant may leave the
provider. Given this context, the pruning problem may be
formulated in terms of determining the subset Sk of low-utility
operation variants that may be removed from the SaaS system,
such that the number of tenants who may leave is <L, the average
transfer costs of remaining tenants is <Q, and the provider’s profit
is >P, where L, Q and P are suitable thresholds for the respective
measures that may be defined by the user/vendor.

7. Summary
Multi-tenancy offers a very attractive proposition to vendors and
customers alike, to leverage the economies of scale by sharing a
common application instance across many tenants. There is a
growing need however, to make multi-tenant SaaS more flexible
so that some of the custom requirements of individual tenants can
be met even within the shared application instance. Existing
approaches try to address this by considering how a vendor may
offer a (fixed) set of customization options to tenants, which they
can choose from while onboarding. In this paper, we have argued
for a more tenant-driven evolution of a SaaS, where a vendor can
accommodate changes to a SaaS to meet tenant needs, within
reasonable limits. We have then discussed a number of software
engineering issues that are relevant to such an evolution, and
some of the optimization problems that arise. Specifically, we
have considered semantic modeling of multi-tenant SaaS systems,
onboarding of tenants with custom needs, efficient testing for
multiple tenants with a mix of common/custom behavior, and re-
factoring techniques to increase the maintainability and economic
value of multi-tenant SaaS systems.
We are currently working on formalizing many of the concepts
introduced in this paper. This will lay the foundation for a multi-
tenant SaaS toolkit with capability patterns for semantic
modeling, tenant onboarding, testing and re-factoring, that vendor
teams may use to develop, evolve and maintain multi-tenant
systems.

Acknowledgments
This work was partially supported by NUS grant “R252-000-416-
112”, and a grant from Singapore MoE, “MOE2010-T2-2-073”.

8. REFERENCES
[1] S. Aulbach, T. Grust, D. Jacobs, A. Kemper and J. Rittinger.

Multi-tenant Databases for Software as a Service: Schema-
Mapping Techniques. In SIGMOD, pp 1195-1206, 2008.

[2] J. Bayer, S. Gerard, O. Haugen et al. Consolidated Product
Line Variability Modeling. Software Product Lines, pp 195-
241.

[3] C. Bezemer and A. Zaidman. Multi-Tenant SaaS
Applications: Maintenance Dream or Nightmare? In
Proceedings of the 4th Internaitonal Joint ERCIM/IWPSE
Symposium on Software Evolution (IWPSE-EVOL), 2010

[4] C. Bezemer, A. Zaidman, B. Platzbeecker et al. Enabling
Multi-tenancy: An Industrial Experience Report. In ICSM,
2010.

[5] F. Chong, G. Carraro, and R. Wolter. Multi-Tenant Data
Architecture. MSDN Library, Microsoft Corporation, 2006.

[6] K. Czarnecki, M. Antkiewicz and C. Kim. Multi-level
Customization in Application Engineering. Communications
of the ACM, 49(12): 65, 2006.

[7] C. Guo et al. A Framework for Native Multi-Tenancy
Application Development and Management. 9th IEEE Intl.
Conf. on E-Commerce Technology and 4th IEEE Intl.
Conference on Enterprise Computing, E-Commerce and E-
Services (CEC-EEE), 2007.

[8] T. Kwok and A. Mohindra. Resource Calculations with
Constraints and Placement of Tenants and Instances for
Multi-Tenant SaaS Applications. In International Conference
on Service Oriented Computing (ICSOC), 2008.

[9] X. Li, T. Liu, Y. Li and Y. Chen. SPIN: Service Performance
Isolation Infrastructure in Multi-Tenancy Environment. In
Internatonal Conference on Service-Oriented Computing
(ICSOC), pp 649-663, 2008.

[10] R. Mietzner and F. Leymann. Generation of BPEL
Customization Processes for SaaS applications from
Variability Descriptors. In IEEE International Conference on
Services Computing, volume 2, pp 359-366, IEEE Computer
Society, 2008.

[11] R. Mietzner, A. Metzger, F. Leymann and K. Pohl.
Variability Modeling to Support Customization and
Deployment on Multi-Tenant-Aware Software as a Service
Applications. In ICSE Workshop on Principles of
Engineering Service Oriented Systems (PESOS), 2009.

[12] R. Mietzner, F. Leymann and M. P. Papazoglou. Defining
Composite Configurable SaaS Application Packages Using
SCA, Variability Descriptors and Multi-Tenancy Patterns.
3rd Intl. Conference on Internet and Web Applications and
Services, pp 156-161, 2008.

[13] Nitu. Configurability in SaaS (software as a service)
Applications. In Proceedings of the 2nd India Software
Engineering Conference (ISEC), pp 19-26, 2009.

[14] K. Pohl, G. Bockle and F. Van Der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York Inc, 2005.

[15] C. Weissman and S. Bobrowski. The Design of the
Force.com Multi-Tenant Internet Application Development
Platform. In SIGMOD, pp 889-896, 2009.

[16] D. Qi, A. Roychoudhury and Z. Liang. Test Generation to
Expose Changes in Evolving Programs. In ASE, 2010.

[17] X. Ren, F. Shah, F. Tip, B. Ryder O. Chesley. Chianti: A
Tool for Change Impact Analysis of Java Programs. In
OOPSLA 2004, pp 432-448

[18] C. Treude, S. Berlik, S. Wenzel and U. Kelter. Difference
Computation of Large Models. In ESEC/FSE 2007.

[19] T. Mens. A State-of-the-Art Survey on Software Merging.
IEEE Transactions on Software Engineering, 28(5), 2002

[20] G. Brunet, M. Chechik, S. Esterbrook et al. A Manifesto for
Model Merging. In Proceedings of GAMMA, May 2006

[21] M. Paloucci, T. Kawamura, T.R.Payne and K. Sycara.
Semantic Matching of Web Service Capabilities. In
Proceedings of IWSC, June 2002

[22] E. Stroulia and Y. Wang. Structural and Semantic Matching
for Assessing Web Service Similarity. Int’l Journal of
Cooperative Information Systems, 14(4), pp 407-438, 2005.

[23] Worldwide Software as a Service 2010-2014 Forecast:
Software Will Never Be The Same. IDC Report
Doc#223628, June 2010.

[24] Forecast: Public Cloud Services, Worldwide and Regions,
Industry Sectors, 2009-2014. Gartner, June 2010.

[25] J.M.Kaplan. How SaaS is Overcoming Common Customer
Objections. Cutter Consortium: Sourcing and Vendor
Relationships, Advisory Service, Executive Update 8(9),
2008.

[26] G. Dai, X. Bai, Y. Wang, F. Dai. Contract-Based Testing for
Web Services. In Proceedings of COMPSAC, 2007.

[27] R. Heckel. M. Lohmann. Towards Contract-based Testing of
Web Services. Electronic Notes in Theoretical Computer
Science, Vol. 116, 2005

[28] J. Grundy, J. Hoskin, L.Li, N. Liu. Performance Engineering
of Service Compositions. Int’l Workshop on Service
Oriented Software Engineering, 2006

[29] A. Bertolino, G. De Angelis, A. Di Marco et al. A
Framework for Analyzing and Testing the Performance of
Software Services. Communications in Computer and
Information Science, 17(6), 2009.

[30] http://www.itnews.com.au/News/241833,regulator-clears-
asx-singapore-stock-exchange-merger.aspx

[31] B. Meyer. Applying Design By Contract.Computer, No. 25,
Vol. 10, 1992

[32] http://www.w3.org/Submission/OWL-S
[33] D. Benavides, S. Segura and A. Ruiz-Cortes Automated
Analysis of Feature Models 20 Years Later, Information Systems,
Elsevier 35(6), 2010.
[34] G. Perroiun et. al. Automated and Scalable T-wise Test Case
Generation Strategies for Software Product Lines, In ICST 2010.

