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Abstract—Distributed systems often contain many behav-
iorally similar processes, which are conveniently grouped into
classes. In system modeling, it is common to specify such
systems by describing the class level behavior, instead of object
level behavior. While there have been techniques that mine
specifications of such distributed systems from their execution
traces, these methods only mine object-level specifications
involving concrete process objects. This leads to specifications
which are large, hard to comprehend, and sensitive to simple
changes in the system (such as the number of objects).

In this paper, we develop a class level specification min-
ing framework for distributed systems. A specification that
describes interaction snippets between various processes in
a distributed system forms a natural and intuitive way to
document their behavior. Our mining method groups together
such interactions between behaviorally similar processes, and
presents a mined specification involving “symbolic” Message
Sequence Charts. Our experiments indicate that our mined
symbolic specifications are significantly smaller than mined
concrete specifications, while at the same time achieving better
precision and recall.
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I. INTRODUCTION

Classes of behaviorally similar processes are common

in distributed systems, appearing in various application do-

mains such as automotive, avionics, telecommunication and

ground transportation. In particular, control systems in these

application domains are of a distributed nature involving

many behaviorally similar processes. Each of these processes

have its independent flow of control, thereby being pro-

grammed as an active object. However, many such objects

share similar behavior, and hence the system behavior can be

more easily understood by describing behavior at the level

of classes.

As an example, let us consider a telecommunication

system with many phones and switches. Depending on the

level of sophistication of the telecommunications software -

the phone and switch objects could exhibit many snippets of

behavior such as three way calling, call forwarding and call

waiting. However, the exact identities of the phone/switch

objects participating in such behavior are not important for

comprehending the overall system behavior. Instead, the

system behavior can be understood at the class level – the

behavior of the class of phones, and the class of switches.

Furthermore, due to the conventional usage of UML Se-

quence Diagrams or Message Sequence Charts (MSCs) [1]

for describing sample interaction snippets in a distributed

system and its wide usage in application domains such as

telecommunications, behavior of such distributed systems

with behaviorally similar processes can be conveniently

described as class level specifications involving Sequence

Diagrams [2], [3], [4].

In this paper, we tackle the problem of mining class-

level specifications for distributed systems with behaviorally

similar processes. The behavioral similarity of the processes

is exploited in our mining, to infer a succinct system speci-

fication that is easier to manage, maintain and comprehend

than specifications of concrete object behavior. We note

that building formal models of systems is hard and time

consuming. Furthermore, for legacy systems, such formal

models may be missing, or even outdated (since they may

not capture significant software updates that have taken

place since the model was constructed). Thus, since the

intended functionality of the program may never be formally

captured, we can try to capture it indirectly by running the

program and finding patterns in its execution traces. Such

dynamic specification mining utilizes data mining techniques

to observe patterns in the execution of software that can then

be interpreted as its specification. Specifications produced

from such techniques may be represented in various forms

ranging from program invariants [5] to state machines [6]

and temporal properties [7]. In this work, we propose the

mining of class-level system specifications involving Se-

quence Diagrams from distributed system execution traces.

Our mined specifications are called Symbolic Message Se-

quence Graphs, a graph of symbolic MSCs [8].

As an example, Figure 1(a) shows an MSC that describes

interactions between multiple devices having a shared bus

as is typical in a bus architecture like PCI (Peripheral

Component Interconnect). The bus master broadcasts the

address (addr) of the intended target device by placing

it in the bus and all connected devices decode it. Only

one of the devices responds by asserting a control signal

(ack). This MSC description is specific in that it addresses a

unique scenario in which there are exactly three connected

devices and when the intended target device is Target2. The

specification in Figure 1(b) stands for a generic interaction

between a Master device and the class of target devices

and therefore is a parameterized version of the original

specification. In this Symbolic Message Sequence Chart
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Figure 1. Concrete and Symbolic Message Sequence Charts describing
interactions in a computer bus

(SMSC) [8], message communication events are symbolic

actions that have annotations that specify the exact nature

of the interaction. The guard ∀true signifies that the mes-

sage “addr” is intended for all target devices. The guard

∃1ends(addr) makes it a requirement that exactly one of the

devices that have received “addr” will respond with “ack”.

The major technical difficulty in our mining process is to

infer the guards of the events involving several behaviorally

similar processes (or active objects) in a class. Such guards

can be seen as “object selectors” – they select a subset of

objects from the set of objects in a class of processes. Instead

of specifying such an object selector (as one would do in

distributed system modeling), we are automatically inferring

such object selectors from the system execution traces. We

mine for object selectors which are less general, easy to

comprehend and accurately match the positive and negative

observations as seen in the system execution traces.

In summary, we present a specification mining framework

for inferring class level system specifications. Our method

is particularly useful for distributed systems having many

behaviorally similar processes, since a succinct easy-to-

comprehend class-level system specification can be inferred

– as borne out by our case studies and experiments. Our

experiments show improvement in both precision and recall

(leading to a higher F1 score) in the mined class level (or

symbolic) specifications, as opposed to mined object level

(or concrete) specifications.

II. BACKGROUND

A. Concrete Events

Let us assume that the real system being analyzed has

a finite set of processes – P . We shall refer to these

processes as concrete processes of the system. We use the

term Concrete Event to refer to an atomic action executed

by any concrete process in the system. A concrete event is

either an internal action (〈p,m〉, sp) or an external action

(〈p⊕ q,m〉, sp) where,

• p ∈ P is the main concrete process to which this event

is associated.

• ⊕ ∈ {!, ?} is an action type: send (!) or receive (?).

• m is an action label,

• q ∈ P is a counterpart process.

• sp, the current state of process p,

In a message passing context, 〈p!q,m〉 can be used to

depict the event in which p sends message m to q and

〈q?p,m〉 for the event in which q receives message m from

p. The current state sp is captured using {. . . , (p.xj , vj), . . .}
⋃

{(hp, vh)}. Here, p.xj refers to a process variable and

vj refers to its corresponding value. The variable hp refers

to the local execution history or simply history of p when

it is at state sp. It is the sequence of actions executed

by p prior to reaching sp. For example, the sequence
(

(〈p,m1〉, s
1
p), (〈p!q,m2〉, s

2
p), (〈p?q,m3〉, s

3
p)
)

represents

an execution history of the concrete process p at state sp.

B. Process Classes

Our mining technique relies on a classification of pro-

cesses in the system being analyzed. Formally, process

classification is a surjective function Γ : P → P , from a

set of concrete processes to P which is a set of process

classes. For p̃ ∈ P , we shall use the notation Γ−1(p̃) to

refer to the set of concrete processes belonging to process

class p̃. We assume that our analysis has prior knowledge of

the classification of concrete processes. In practice, process

classification can be obtained from either the source code of

the respective processes or as input from user.

C. Symbolic Events

Class level specifications contain actions that are attached

to a process class without being specific about the concrete

processes that perform it. We refer to such class level actions

as symbolic events, and these are the subjects which we shall

infer.

A symbolic event is of the form (〈p̃ ⊕ q̃,m〉,Q.g)
((〈p̃,m〉,Q.g) for internal events). Here, p̃ ∈ P is the

process class to which the action is associated and q̃ ∈ P
its counterpart. A symbolic event signifies the abstraction of

a set of concrete events at one or more concrete processes

belonging to the same process class. The set of concrete

events share the same action label m and (external) action

type ⊕. The manner in which concrete processes may col-

lectively participate in a symbolic event is specified through

a quantified predicate Q.g that is referred to as its guard.

For a process class p̃, g : Sp̃ → {true, false} is a predicate

on Sp̃, the set of all states of a process in p̃.
Definition 2.1 (Process Selection): For a process class

p̃, a process selection is a predicate σ : Γ−1(p̃) →
{true, false} on the set of its concrete members.

Definition 2.2 (Process Class Context): The context of a

process class p̃ is a function θ : Γ−1(p̃) → Sp̃ that returns

the state of each concrete member of that class.

The quantifier Q in Q.g specifies the number of concrete

processes satisfying the predicate g that may participate

in the symbolic action. It takes the form of one of the

following: ∃, ∀, ∃k or ∀k. The interpretation of the guard,

denoted by Q.g(σ, θ), is as follows.

1) J∃.gK(σ, θ) ⇔ ∀p ∈ Γ−1(p̃) : σ(p) ⇒ g(θ(p))∧
|σ−1(true)| ≥ 1

2) J∀.gK(σ, θ) ⇔ ∀p ∈ Γ−1(p̃) : σ(p) ⇔ g(θ(p))



3) J∃k.gK(σ, θ) ⇔ ∀p ∈ Γ−1(p̃) : σ(p) ⇒ g(θ(p)) ∧
|σ−1(true)| = k

4) J∀k.gK(σ, θ) ⇔ ∀p ∈ Γ−1(p̃) : σ(p) ⇔ g(θ(p)) ∧
|σ−1(true)| = k

The number of processes selected by σ is given by

|σ−1(true)|. Intuitively, the guard ∃.g permits any combi-

nation of one or more processes in the class that satisfy g
to participate in the action. The guard ∃k.g allows combi-

nations of exactly k processes that satisfy g to participate.

The guard ∀.g requires the participation of all processes

satisfying g. Finally, ∀k.g, requires that exactly k processes

satisfy g and that all of them be involved in the action. In

this work, we opt for selecting processes for participation

in the action based on the histories of the processes. The

format of g thus characterizes the histories of the selected

processes. We defer the details to Section II-F.

D. Process Class Constraints

In addition to using symbolic actions, class level speci-

fications may assert how a process class should behave as

a whole. We identify two such process class constraints:

“all (g)” and “count(g) op k”, where op can be either ”=”

or ”≥”. These predicates over the set of contexts of a process

class p̃ are interpreted as follows as follows:

1) Jall (g)K(θ) ⇔ ∀p ∈ Γ−1(p̃) : g(θ(p))
2) Jcount(g) op kK(θ) ⇔ ∃P ′ ⊆Γ−1(p̃), ∀p∈Γ−1(p̃) :

(|P ′| op k ∧ g(θ(p)) ⇔ p ∈ P ′)

These constraints are further illuminated in Section II-F.

E. Symbolic Message Sequence Charts

Message Sequence Charts(MSCs)[1] are a visual formal-

ism used to specify interactions between components in

a system. The actions of each component or process are

depicted as events along a vertical line in chronological

order (top to bottom) that is referred to as its lifeline.

Communication between processes are shown using hori-

zontal arrows running between parallel lifelines that connect

external events in one lifeline to its counterpart in an other

lifeline. Symbolic Message Sequence Charts (SMSC’s) are

class level specifications that adopt basic MSC syntax, and

introduce the concept of process classes. In an SMSC, a

lifeline may either correspond to a concrete process or a

process class that contains symbolic events. Semantically,

an SMSC prescribes a partial order ≤ over the events from

across lifelines. This partial order is a combination of the

total ordering of events within each lifeline (denoted by ≤p̃)

and the ordering of send and receive counterparts (denoted

by ≤sm). Formally: ≤ ≡
(

(
⋃

p̃∈P ≤p̃)
⋃

≤sm

)⋆
.

A Symbolic Message Sequence Graphs (SMSG) is a high-

level SMSC, which represents a collection of SMSCs in

graph form. It is a directed graph with basic SMSCs as its

vertices. Every path in the SMSG prescribes a valid scenario,

which is specified by “concatenating” basic SMSCs located

at vertices along the path. A concatenation of two basic

MSCs M1 and M2 yields a bigger SMSC in which events

from each process class p̃ in M1 have to occur before the

occurrence of any event of the same process class p̃ in M2.

The nature of such concatenation is ‘asynchronous’ because

no ordering between events from across distinct process

classes is explicitly enforced as a result of concatenation.

Furthermore, a process class constraint can be attached

to an edge in an SMSG (referred to as edge constraint) to

assert the condition of (the state of) the process class for the

source SMSC to be concatenated to the target SMSC.

F. An Example of Class Level Specification

Figure 2 shows the SMSG specification of a simple bus

arbitration protocol. The protocol specifies how a collection

of target devices (process class TargetC) may be accessed by

a class of bus masters (MasterC) through a shared bus that is

arbitrated by a single bus arbiter: BA. The SMSG contains

five basic SMSCs: M1,M2 . . .M5. Guards in the SMSG

contain predicates of the form bet(X,Y ) or ends(X), where
X and Y range over action labels. Figure 2(b) shows how

these predicates correspond to regular expressions and can

be interpreted as constraints on the local execution history

h of concrete processes. The predicate ends(X) evaluates

to true for a process iff its history ends with the action X
and bet(X,Y ) evaluates to true when its history shows that

Y has not been executed after the last execution of X .

The SMSC M1 specifies the request phase of the protocol.

The MasterC class contains a single event labelled with the

guard ∃ ends (ǫ | rel). The guard ensures that either the mas-

ter device is making a request for the first time (i.e h = ǫ), or
it has released control over its previous request (it has sent

the rel message to the bus arbiter). The quantifier ∃ suggests

that one or more master devices may simultaneously make

such a request. As defined in the SMSC M2, the bus arbiter

grants control over the bus to any one requesting master

(∃1 ends (req)) at a time. The master that has been granted

control but is yet to relinquish it is subsequently referred

to using the guard ∀1bet(grant, rel). Once the master is

granted control it is expected to broadcast the address of

the intended target device over the bus. This broadcast is

specified using the guard ∀true at the TargetC lifeline. A

unique device to which the address belongs responds to this

broadcast from the master. The guard ∃1ends(addr) accepts
any selection in which exactly one of the processes that

received the address responds with message ack.

In SMSCs M3 and M4 the master communicates data

with the intended target device through the shared bus. In

SMSC M5 the master relinquishes control by sending the

rel message. An edge constraint EC on process class p̃
is depicted by labelling the edge with [EC ]p̃. The SMSC

M5 has two outgoing edges with process class constraints

that apply to the process class MasterC. One of them,

count(ends(req)) ≥ 1, refers to the scenario when there

are one or more master devices whose requests for bus have



(a) Mined Symbolic Message Sequence Graph:

(b) Regular Expressions:

ends(ǫ|rel): h ∈ L
(

(

Σ⋆〈MasterC !BA, rel〉
)⋆

)

ends(req): h ∈ L
(

Σ⋆〈MasterC ! BA, req〉
)

ends(addr): h ∈ L
(

Σ⋆〈TargetC ?MasterC, addr〉
)

bet(grant,rel):

h ∈ L
(

Σ⋆〈MasterC ?BA, grant〉
(

Σ− 〈MasterC !BA, rel〉
)⋆

)

bet(ack,addr):

h ∈ L
(

Σ⋆〈TargetC !MasterC, ack〉
(

Σ− 〈TargetC !MasterC, addr〉
)⋆

)

Explanation: Predicate ends(X) refers to the scenarios when the last event

to be executed is X; similarly, predicate bet(X, Y) refers to scenarios in

which the event Y has not occurred after the last execution of event X.

Figure 2. Class-level specification of centralized bus arbitration protocol

Figure 3. Overview of proposed mining procedure

not yet been granted. The other constraint, all(¬ends(req)),
refers to the complementary scenario when there is no pro-

cess still waiting to be granted control of the bus. Together,

these two constraints ensure that after M5, M2 is executed if

there are more requests to be processed and M1 is executed

only after all requests have been processed.

III. DISCOVERING CLASS-LEVEL SPECIFICATION

This section describes the proposed procedure (depicted

in Figure 3) to mine class-level specifications. The first step

involves incorporating class-level information into concrete

events of the trace. The transformed traces will be used

to mine an abstract model via a state-based model miner.

The transformed traces, together with the abstract model

are then used to generate an aggregate model. Lastly, guard

inference is performed for each event in the aggregate model

to generate the class level specification.

A. Transforming Traces

The trace transformation step prepares the traces for

eventual extraction of class-level information by performing

the following tasks:

1) It translates concrete process names to their correspond-

ing process class names.

2) It combines similar consecutive concrete events of the

same process class into a single concrete-class event.

3) For each concrete-class event thus created it records the

process selection (σ) and the state information of the

entire process class (θ).

Specifically, for each trace t consisting of concrete events

of the form (ep, sp) where ep = 〈p ⊕ q,m〉1, the trace

transformer produces an embellished trace t̃ consisting of

concrete-class events of the form (ẽ, θ, σ), such that:

1) e = 〈p̃(np̃) ⊕ q̃(nq̃),m〉, where p̃ = Γ(p), and q̃ = Γ(q)
and np̃, nq̃ ∈ {1, ⋆}. 2

2) σ identifies the process selection corresponding to this

class-level action. (Definition 2.1)

3) θ returns the context of p̃ prior to this class-level action.

(Definition 2.2)

For example, if there is a sequence of adjacent actions

(〈p1 ⊕ q,m〉, sp1), (〈p2⊕ q,m〉, sp2), . . . , (〈pl ⊕ q,m〉, spl),
such that p1, p2, . . . , pl ∈ Γ−1(p̃) are distinct concrete

processes and q ∈ Γ−1(q̃), these concrete events will

be transformed into the following concrete-class event:

(〈p̃(⋆) ⊕ q̃(1),m〉, θ, σ), where ∀p∈Γ−1(p̃) : θ(p) = sp (sp is

the state of p, just prior to execution of the concrete events

being combined) and σ−1(true) = {p1, . . . , pl}.

B. Mining Abstract State-based Model

The concrete-class trace set {t̃1, . . . , t̃k} is then used by

an off-the-shelf miner to produce a state-based model. Such

a model describes the system behavior in terms of abstract,

class-level events. In Section (IV-A) we discuss the specific

mining approach used to generate the desired abstract MSC

model.

Before presenting the traces to the state-based model

miner, we strip off both the process selection σ and con-

text information θ from the concrete-class events to form

simplified abstract events of the form 〈p̃(np̃) ⊕ q̃(nq̃),m〉.
The resulting model will contain states and/or transitions

attached with abstract events.

C. Generating Aggregate Model

Creation of a state-based model typically requires merging

similar concrete-class events occurring at different traces and

1We ignore the presence of internal action for ease of presentation.
2Here, p̃(1) indicates that only one concrete process participates in

this event and p̃(⋆) indicates the participation of more than one concrete
processes.



“folding” several concrete-class events occurring at different

time stamps within a trace into one. Consequently, an

action in the state-based model will correspond to multiple

concrete-class events in the traces. The generation of an

aggregate model first determines these correspondences. It

then aggregates the process selections (σj ) and process class

context (θj) from all these concrete-class events. Lastly,

it replaces the abstract events in the abstract model by

the aggregated information. Specifically, an abstract event

ẽ will be replaced by an aggregate event (ẽ, C) where

C = ∪i{(σi, θi)} and σi and θi are retrieved from the

corresponding concrete-class events. We refer to C as a

configuration of the process class p̃.
Most techniques that mine for state based models can

be easily adapted to record the mapping of abstract events

in the model to corresponding concrete-class events in

the trace that support it. Alternatively the correspondences

may be recovered by “executing” the state based model

according to the sequence of concrete-class events in the

trace and thereafter mapping each instance in the trace to

the corresponding abstract event executed by the model.

D. Inferring Symbolic Events

The last step of our discovery process is to derive sym-

bolic events, of the form (〈p̃⊕ q̃,m〉,Q.g), from the aggre-

gate events, of the form (〈p̃ ⊕ q̃,m〉, Cp̃), of the aggregate

model. We describe in this section how to infer the quantified

guard Q.g from the configuration Cp̃.
As we opt for guards that can characterize the history

patterns of the participating processes, our inference al-

gorithm aims to solve the following problem: “Find the

most appropriate regular expression re that characterizes the
history hp of each participating process p belonging to the

class p̃.” The corresponding quantified guard is of the form

Q.gre. For any concrete process p ∈ Γ−1(p̃), the predicate

obtained from re, denoted by gre(p), evaluates to true only

when hp ∈ L(re). The inference algorithm requires several

inputs: The configuration Cp̃; a library of regular expression

templates from which the candidate regular expressions are

constructed; and a threshold min sup defining the manda-

tory minimum number of histories required to support a

candidate regular expression.

Algorithm 1 describes how a regular-expression based

guard can be inferred from an aggregate event of class p̃.
In line 1 the function extractData is used to extract relevant

information from the configuration Cp̃. Specifically, given
that Cp̃ = {(σ1, θ1), (σ2, θ2), . . . (σl, θl)} and Γ−1(p̃) =

{p1, p2, . . . pn},
we have extractData(Cp̃) = (H+, H−, k), where

H
+ = {θi(pj)(hpj )|i ∈ {1, . . . , l} ∧ j ∈ {1, . . . , n} ∧ σi(pj)}

H
− = {θi(pj)(hpj )|i ∈ {1, . . . , l} ∧ j ∈ {1, . . . , n} ∧ ¬σi(pj)}

k =

{

r if ∃r ∀i∈{1,...,l}(r = |σ−1i (true)|),
−1 otherwise.

H+/H− refers to the set of execution histories of concrete

processes when they had participated/not-participated in the

action captured by the aggregate event. Moreover, k stores a

positive constant r only if for every (σ, θ) ∈ Cp̃, the number

of concrete processes which σ selects is r.
Line 2 in Algorithm 1 obtains R+ and R−, which are

the sets of regular expressions accepting all histories in H+

and H− respectively, by invoking the function getAccREs. If

there is no regular expression obtained in R+, the algorithm

will return ∃.true (line 14) as the default gaurd. This permits

any combination of concrete processes within the class to

participate.

Among the re’s in R+, we select the most suitable

re, based on certain ranking heuristics (line 5) that will

be discussed later. Lines 6 to 12 specify how the right

quantifier to this re is chosen. The final output is the

quantified expression Q.gre. We discuss the method used to

obtain accepting regular expressions as well as the ranking

heuristics below.

Algorithm 1 Guard Inference
Require: Configuration: Cp̃ for aggregate event at process class p̃; Threshold:

min sup

Ensure: Q.g - Inferred Guard

1: (H+, H−, k) ← extractData(Cp̃)
2: R+ ← getAccREs(H+, p̃)
3: R− ← getAccREs(H−, p̃)
4: if R+ 6= ∅ then

5: Select re ∈ R+ such that rank(re) is maximal.

6: if supp(re,H+) > min sup ∧ ∃
re′∈R− : L(re) = L(re′) then

7: if k > 0 then Q ← ∀k else Q ← ∀ end if

8: else

9: if k > 0 then Q ← ∃k else Q ← ∃ end if

10: end if

11: Let gre(p) represent the proposition hp ∈ L(re) for any p ∈ Γ−1(p)
12: return Q.gre
13: else

14: return ∃.true
15: end if

1) Finding Candidate Regular Expressions: For guard

inference we choose a finite set of regular expression tem-

plates. This set of templates may be modified as neither

the inference technique nor the proposed algorithm rely on

any feature of these templates. For all p ∈ Γ−1(p̃), let Σ
denote the alphabet from which execution histories for a

process class p̃ are formed. We select the following regular

expression templates, as they are found to be intuitive and

sufficiently expressive.

1) ǫ: The process is in its initial state

2) Σ∗A: The last action taken by the process is A.
3) Σ∗AB: The last two actions taken are A and B.

4) Σ∗A(Σ−B)∗: The action B has not occurred after the

last execution of action A.

By substituting all pairs of events e1, e2 ∈ Σ for variables

A and B in these templates we generate a library of basic

regular expressions referred to as RELibp̃.
The method, getAccREs(H, p̃) in Algorithm 2 returns a

set of regular expressions accepting all elements of H . Here,



every element of H has to be tested against each expression

in RELibp̃. In addition, we also consider more complex

regular expressions obtained by combining the basic ones.

Algorithm 2 is designed to efficiently find all the accepting

regular expressions through a single pass of each string h ∈
H . The approach used is adapted from the one used by

Yang et. al. to detect temporal rules based on some fixed

templates [9]. Here, we describe a method where the process

histories are tested for acceptance against an arbitrary library

of regular expressions. We represent each regular expression

by an automaton Ai (line 5). The current state of each Ai

is maintained in state[i]. We traverse through (in line 10)

each event ej in the history h and apply the corresponding

transition ej to the current state of all automata.

On reaching the end of string h, those regular expres-

sions that are at their accepting states are added to the

set Rh in line 23. The set of expressions is expanded to

the set R′h, which contains regular expressions formed by

combining one or more regular expressions (line 25). For

example for a pair re1, re2 ∈ RELibp̃, if re1 ∈ Rh but

re2 /∈ Rh, the function combineREs will include the regular

expressions re′, re′′ and re′′′ in the expanded set R′h, for
which L(re′) = L(re2), L(re

′′) = L(re1) ∪ L(re2) and

L(re′′′) = L(re1) ∩ L(re2).

Algorithm 2 getAccREs(H, p̃)
Require: p̃: Process class
Require: H: Set of execution histories of concrete processes from p̃

Require: RELibp̃ ← {re1, re2 . . . rei . . . ren}: Regular expression library

Ensure: R: Set of regular expressions accepting history h, ∀h ∈ H
1: Let Σ represent set of all events of the form 〈p̃⊕ , 〉
2: for all h ∈ H do

3: Let h = (e1, e2, . . . ej . . . em)
4: //Create automaton for each regular expression

5: Let Ai ← (Qi,Σ, δi, qi0, Qif ) s.t. L(Ai) = L(rei)
6: // state[i] stores current state of Ai (initialized to qi0)

7: state[i] ← qi0 (for i = 1 . . . n)
8: // modeList(e): set of regexes for which event e effects a state change

9: modList(e)← RELibp̃ (for all e ∈ Σ)

10: for j = 1 . . .m do

11: for all rei ∈ modList(ej) do

12: state[i] ← δi(state[i], ej)
13: for all e ∈ Σ do

14: if δi(state[i], e) 6= state[i] then
15: modList(e)← modList(e) ∪ {rei}
16: else

17: modList(e)← modList(e)− {rei}
18: end if

19: end for

20: end for

21: end for

22: //Form Rh, the set of basic regexes accepting h

23: Rh ← {rei|rei ∈ RELibp̃ ∧ state[i] ∈ Qif}
24: //Form R′

h, the set of basic and complex regular expressions accepting h
25: Let R′

h ← combineREs(Rh)
26: end for

27: R←
⋂

h∈H
R′

h

28: return R

2) Ranking Guard Conditions: Given a set of regular

expressions R+ we have to select the most appropriate re
that can be applied as a guard for the symbolic event. For

trace set T , let HT
p̃ denote the set of all execution histories

of class p̃ which the entire trace set T has witnessed. We

employ the following heuristics to rank the list of potential

guards.

1) Ranking based on rejection: If re1 and re2 accept all

positive samples, but re1 rejects more negative samples

than re2 then rankrej(re1) > rankrej(re2).
2) Ranking based on implication: If re1 and re2 are

candidate guards for an event belonging to process class

p̃, if ∀h∈HT
p̃
h ∈ L(re1) ⇒ h ∈ L(re2) then

rankimpl(re2) > rankimpl(re1). If for every execution

history h witnessed in the traces, if h is included in the

language of re1, then it is also included in the language

of re2 then re2 is preferred.

3) Ranking based on likelihood: If |L(re1) ∩ HT
p̃ | >

|L(re2) ∩HT
p̃ | then ranklkl(re1) > ranklkl(re2). Here

|L(re1) ∩ HT
p̃ | refers to the number of strings in HT

p̃

that are also part of language L(re1). If strings in HT
p̃ ,

the set of all execution histories witnessed in the trace,

are more likely to be accepted by guard re1 than by

guard re2 then re1 is preferred.

4) Ranking based on simplicity of guards: If re1 is

a guard formed directly from one of the templates

and re2 is a composite guard then, rankspl(re1) >
rankspl(re2).

With these heuristics we aim for an accurate regular ex-

pression that is also simple and easy to understand. By

considering traces that are beyond the current historical

data, the ranking criteria rankimpl and ranklkl encourage

the reuse of regular expressions across multiple events in

the mined specification. This in turn improves the overall

comprehensibility of class level behavior. We select the

highest overall ranking guard as the inferred guard (line

5 in Algorithm 1). From our empirical studies the best

results are obtained by finding overall ranking after applying

the ranking methods in the following precedence order:

rankrej > rankimpl > ranklkl > rankspl, where a ranking

criterion is used only to break a tie resulting from the

application of higher ranking criteria. The rankrej is given

highest preference as it selects the guard that has the

most distinguishing power (rejects most number of negative

samples) and therefore likely to impact precision of mining.

Apart from such automatic methods to discover guards, user

assistance may be sought at this point to determine ideal

guards from a shortlist. The user may also be able to assist

in narrowing down the alphabet used for obtaining the basic

regular expression library.

IV. MINING SMSGS

We employ the proposed class level specification mining

approach to mine SMSGs. The method described here is

based on our previous work on the MSGMiner framework

[10] to mine concrete models in the language of MSG. We

use MSGMiner to mine abstract behavior and combine it

with our novel method for inferring symbolic events.



A. Mining Abstract Behavior

MSGMiner converts each trace in the trace set into a

dependency graph whose vertices contain the events in the

trace. The dependency graph captures the partial order of

events from across processes. The chronological order of

events within each process is maintained by a minimal set of

directed edges. There is also a set of edges from send events

to their respective receive events. The edges in this depen-

dency graph is similar to the “happened before” relationship

defined by Lamport [11]. The trace transformation operation

discussed in Section III-A, is performed on the dependency

graphs (partially ordered set of events) instead of traces

(fully ordered sequence of events). When a group of concrete

events from different concrete processes can be combined

into a concrete-class event, the corresponding vertices are

merged and labelled with that concrete-class event.

The MSGMiner framework breaks down the dependency

graphs obtained from the set of traces into sequences of

smaller dependency graphs called basic MSCs. From these

sequences it mines for an MSG using a variant of the

sk-string algorithm [12]. We adopt the same approach to

construct an abstract MSG model by supressing concrete

information in the events. We also modify this process so

as to maintain associations from each event in the abstract

model to the set of trace locations that support it. Each

abstract event is converted to an aggregate event by attaching

a configuration formed by combining concrete information

at the associated trace locations.

B. Conversion to Symbolic MSG

Using the guard inference technique discussed in Section

III-D we infer a symbolic event from every aggregate event.

We also attach process class constraints at edges of the

output SMSG. An edge from a basic SMSC, say MA, to

another basic SMSC MB is labelled with a set of contexts

Θp̃ = {θ1, θ2, . . . θn} for each process class p̃. Here, Θp̃

is the set of contexts of p̃ from the trace set, in which, it

has just finished execution of events in MA and is about to

execute of events in MB .

We infer Gp̃, a set of process class constraints on p̃ at

edges of the SMSG by first initializing it to a set of potential

constraints of the form [all(gre)], [count(gre) ≥ k] and

[count(gre) = k] (defined in Section II-D) with each gre
from the set of regular expression templates (RELibp̃). The
value of k is initially chosen based on any one θ ∈ Θ. We

then iterate over remaining θi ∈ Θp̃ and discard or modify

the constraints in Gp̃ as necessary so that the final set of

constraints are satisfied by all elements of Θp̃.

Having identified a set of constraints G = ∪p̃∈PGp̃

at edges in an SMSG, we now discuss how it can be

further reduced to a smaller set of important constraints. If a

basic SMSC has l outgoing edges, having set of constraints

G1, G2 . . .Gl respectively, let Ĝ = G1 ∩ G2 ∩ . . .Gl

represent the set of conditions that are common to all edges.

As constraints in Ĝ are valid at every outgoing edge and not

critical to the choice of an edge, they are discarded from

G1, G2, . . . Gl. A set of constraints G can be further reduced

to contain only those constraints that are not implied by any

other constraint in G. In the mined SMSG, the conjunction

of all constraints in G is imposed at the respective edge.

To reduce the risk of over-fitting data, an edge constraint is

imposed only if it has been inferred from a set of contextsΘp̃

such that its size (|Θp̃|) is greater than a specified threshold.

We refer to this threshold as ec min sup and make it a

parameter to the mining technique.

V. EVALUATION

We evaluate our approach by mining specifications out of

traces collected from few different systems. Each specifica-

tion thus produced is compared to a correct specification of

the system. The proximity of the mined specification to the

correct one is quantified in terms of precision and recall.

We also calculate precision and recall of concrete MSGs

obtained from the technique expounded in [10].

A. Evaluation Method

Mining of finite-state-machine based techniques have typ-

ically been evaluated by comparing the language implied

by the mined specification against that of a manually con-

structed “correct” specification [13], [14]. The mined and

correct specifications can be viewed as both a generating

model (one that produces a list of all valid action sequences)

and an accepting model (answers if a given sequence is

valid). Precision is defined as the ratio of the number

of sequences generated from the mined specification and

accepted by the correct specification to the total number

of sequences generated by the mined specification. Recall

is the ratio of the number of sequences generated by the

correct specification and accepted by the mined specification

to the total number of sequences generated by the correct

specification. As behavioral models may generate infinitely

many sequences, and sequences of infinite length, only

a finite set of test sequences having bounded length are

generated in practice.

We compare the mined specifications (both concrete and

symbolic) against the correct specification of the system

expressed as an SMSG. In our previous work [10], we have

adapted the definition of precision and recall to the context

of (non-symbolic) MSGs. An MSG generates partially or-

dered sets (rather than totally ordered sequences) of events,

each expressed as an MSC, which are tested against the

accepting model. In order to test SMSCs (generated by an

SMSG) against the accepting model in a similar fashion,

we will have to quantify what portion of the behaviors

expressed by each SMSC is valid according to the accepting

model. The quantified guards in symbolic events may refer to

an unbounded number of configurations. We overcome this

challenge, by transforming each generated SMSC to a finite



number of concrete MSCs. This is done by producing all

concrete realizations of the SMSC with each process class

mapped to a finite set of concrete processes. In practice,

we use the input process classification (Γ) for this mapping

to ensure fair comparison with the mined concrete model

as the number of concrete processes and their labels are

consistent with what is present in the trace set. The concrete

realizations must also honor the edge constrains in the

SMSG. For example consider the set of SMSCs formed by

concatenation of basic SMSCs beginning with the following

path (M1, M2, M3, M5, M2, . . . ) from the SMSG in Figure

2. Any concrete MSC derived from these SMSCs, must

be able to satisfy the constraint on edge from M5 to M2,

i.e., the concrete realizations of this SMSC must involve

simultaneous requests from two or more master devices.

To test if a concrete MSC Mconc is accepted by an SMSG,

we search the SMSG for a path that forms an SMSC Msym,

such that Mconc is one of the valid concrete realizations of

Msym. We redefine precision and recall as follows.

precision = # of MSCs generated by MM and accepted by CM

Total # of MSCs generated by MM

recall = # of MSCs generated by CM and accepted by MM

Total # of MSCs generated by CM

Here CM refers to the SMSG specification that is correct

and MM the mined model is either the mined SMSG
(evaluating the proposed approach) or the mined concrete

MSG (evaluation of existing mining approach). We also

compute the F1 score (the harmonic mean of precision and

recall) that is typically used by the information retrieval

community to measure accuracy.

B. Case Studies

We consider the following distributed systems: (a) “Center

TRACON Automation System” [15] an air traffic control

system from NASA, (b) a system of server and VOiP clients

communicating based on the Session Initiation Protocol

(SIP) and (c) a system of Server and Clients that follow

the XMPP Instant messaging and Chat protocol.

1) CTAS: CTAS is an Air Traffic Control system from

NASA. The CTAS weather control logic specification [16]

was one of the case studies recommended at the 3rd

International Workshop on Scenarios and State Machines

(SCESM04). The specification describes how weather aware

client processes connect to a central Communications Man-

ager. As access to the CTAS system is limited, we procure

execution traces by implementing and executing a simulation

of this system in Java. Our implementation is based on a

formal specification of the system in Promela and high level

HMSC that was developed by a fellow researcher.

2) Session Initiation Protocol: SIP is a signalling proto-

col used to establish, manage and terminate VoIP calls and

multimedia sessions in general [17]. SIP clients interact with

servers that perform the necessary call routing and function

as gateways to the Public Switched Telephone Network

(PSTN). We attempt to specify how clients should interact

with their proxy server to achieve some of the basic call

features. For this, we set up a system having three SIP

clients connected to a single server. We use instrumented

versions of KPhone [18] – a SIP client implementation and

the Opensips server [19] both of which are available with

source code under a GPL license. A trace set is produced

by executing common use cases involving features such as

basic call setup, call screening and call forwarding.

3) XMPP: Extensible Message and Presence Protocol is

an open Instant Messaging standard originally developed by

the Jabber open source community. The core functionality of

the protocol is specified in rfcs 3920 and 3921. XMPP is the

protocol for exchange of instant chat messages and presence

information between various entities in a network that are

addressed by unique jabber ID. The clients communicate to

the server through structured XML messages. We discover

the client-server interaction from a system having multiple

jabber clients that are brokered by a single server. In the

specification, the server and client processes are the lifelines

and the message arrows represent transfer of XML messages.

The Openfire XMPP server [20] and Jeti [21]/Pidgin [22]

client implementations were instrumented and executed for

trace collection. For discovering the core specification, we

only record stanzas used for authentication or those having

a message or presence tag and ignore rest of the message

exchanges.

In addition to the core specification, XMPP Standards

Foundation (XSF) has standardized several additional chat

features. We attempt to mine behavioral specification for

the Multi User Chat (MUC) functionality [23]. For this

we collect traces by executing a separate set of use cases

involving features such as service discovery, multi-party

chat and creation and administration of chat rooms. Only

messages sent from or addressed to the MUC conference

service are recorded.

In our previous work on MSG mining [10], we considered

specific instances of these systems in which there is limited

behaviorally similarity between processes. This was done ei-

ther by having only one concrete process from each process

class or assigning a fixed role or duty to each process. We

ease such restrictions in the experiments described here.

C. Experimental Setup and Results

In each of these systems, multiple processes perform

asynchronous communication over TCP socket connections.

Timestamped traces were collected by inserting instrumenta-

tion code into the source code at points where messages are

written to or read from a socket. The traces were filtered

and the message names abstracted with the help of text

processing scripts. The mining was performed on a JVM

running on an Intel duo core CPU with 1GB of available

memory. The correct specification (that reflects allotted

process and message labels) was manually derived by the



Table I
ACCURACY OF MINED CONCRETE MSG AND SMSG

System
# events

in trace

set

Mined Concrete MSG Mined SMSG

Prec Rec F1

Score

# events

in MSG

Time (s) Prec Rec F1

Score

# events

in SMSG

Time (s)

SIP 3326 0.8 0.05 0.09 222 97.7 0.64 0.66 0.65 54 55.7

XMPP-Core 5522 1 0.19 0.32 288 94.6 1 0.66 0.79 46 44.3

XMPP-MUC 7938 0.61 0.36 0.45 186 131.7 0.67 0.63 0.65 82 83.6

CTAS 11814 0.25 0.43 0.31 752 466.15 0.88 0.9 0.89 134 338.5
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Figure 4. Plot showing impact of ec min sup on mining accuracy for
the XMPP core protocol

authors for quantitative analysis and comparison based on

available informal specifications.

Both symbolic and concrete methods employ a variant of

the sk-string algorithm to mine finite state machines. The

k parameter is set to 2 in both cases as is commonly used

in most applications of the algorithm. It was observed that

universally quantified guards can be accurately inferred even

with a low minimum support (min sup in Section III-D).

The threshold ec min sup was found to play a critical

role in determining whether the constraints on edges are

correctly effected. The precision of mining for the core

XMPP protocol example was found to be most sensitive

with respect to the minimum support threshold and Figure 4

shows the impact of change in ec min sup to the accuracy

measures. We use ec min sup = 40 and min sup = 5 for

evaluation in all systems.

Table I tabulates the results from the case studies. It

shows the precision, recall and F1 measure of the mined

concrete MSGs and the mined SMSGs for each of these

systems that were studied. The column, “# events in trace

set” indicates the total size of the trace set in each case.

The columns “# events in MSG/SMSG” reflect the size

of mined specifications in terms of the number of prim-

itive actions they contain. It is seen that mined symbolic

specifications have better accuracy when compared to the

mined concrete specifications. The concrete specification

mining approach gives poor recall as it does not consider

similarity between processes. Concrete MSGs reflect only

those process selections that were captured by the traces.

In reality, the traces only capture a small fraction of all the

possible configurations of the system. In certain cases, the

mined SMSG has better precision. This can be attributed to

the presence of guards and edge constraints by which the

set of actions a process is allowed to perform is determined

by its full execution history. The selected set of regular

expression templates were found to be sufficient to infer

meaningful guards and edge constraints.

D. Threats to Validity

A threat common to specification mining methods is the

trace collection mechanism which may not ensure compre-

hensiveness of input traces. Such a threat can be countered

by subjecting more input traces to mining. A threat to the

validity of our assessment is that the correct specifications

used for evaluation have been derived by hand based on

informal specifications. We have partially addressed this

threat by inspecting the set of behaviors specified by mined

concrete and symbolic models but rejected by the correct

model to ensure they are in fact incorrect behaviors.

VI. RELATED WORK

Several dynamic analysis approaches have been proposed

to infer state machine specifications for Application Pro-

gramming Interfaces (API) [24], [13], [25]. The inferred

specifications typically describe correct invocation patterns

of the API’s methods by observing execution traces of

“clients”, i.e. programs that make use of the APIs. Methods

that employ static analysis on client source code to syn-

thesize similar API specifications have also been proposed

[26], [27]. Static techniques do not require test suites or

the actual execution of instrumented programs. On the other

hand, dynamic analysis benefits from the ability to witness

actual execution paths.

In a distributed setting, each process can be viewed as

an API that is invoked, through message passing, by other

processes in the system. As these methods do not explicitly

handle interactions between multiple concurrent processes,

they have to be applied at a per-process level by first slicing

traces based on the association of events to processes. In our

mining (dynamic) approach, concrete processes are grouped

into classes and mined specifications describe collective

class behavior. In many techniques to mine API usage

patterns, after traces are sliced based on object identifiers,

object level actions are lifted to class level actions. We

note that the resulting specifications depict the behavior

of individual objects of a class and are distinct from the

class level symbolic specifications described in this paper.

Class level symbolic actions allow us to construct a global

behavioral model in the form of an SMSG. For distributed

systems, an MSC-based mined specification (capturing the



interaction snippets) is often easier to comprehend that an

automata specification — as argued in our past research [10].

The invariant detection method of Daikon [28] has been

combined with behavioral specification mining in [29],

[30]. Boolean invariants regarding object variables or pa-

rameters are attached to transitions between states or to

method calls to express guards. Our conception of guards

is fundamentally different as it is a quantified expression

that constrains the selection of processes from a process

class. Yang et. al. in [9] propose a scalable algorithm to

detect temporal rules in API usage by relying on predefined

regular expression templates. Our use of regular expressions

based templates is to identify quantified guards that can be

applied for process selections or edge conditions within a

behavioral specification. Gabel and Su in [31] improves the

performance for templates having three or more characters

using a BDD based symbolic mining technique. It should

be noted that the word “symbolic” applies to the mining

technique rather than the mined specification as in our case.

In [32], a library for automata learning is presented that

exploits domain specific properties of distributed systems.

Although behavioral similarity within process classes is used

to improve the learning technique and output specifications,

the output is a single concrete global state machine. Fur-

thermore, the learning technique employed requires active

experimentation during the specification inference process.

In contrast we use an offline technique to build class

level specifications that are smaller and therefore easier to

understand.

Damas et al. [33] provide a technique to generate labelled

transition system (LTS) for components in a system from

an input of correct and incorrect scenarios. The LTS defines

a set of internal states of the components and transitions

between these states. Whereas their approach constructs

an LTS for each concrete lifeline in the scenarios, we

treat groups of behaviorally similar processes as a single

component and specify actions using symbolic events. The

constraints at states of the synthesized LTS characterize

an internal state. In contrast, we use edge constraints and

guards to specify global class level constraints or interaction

properties. Unlike LTS, SMSGs provide both a scenario

based and a state based description of system behavior.

Efforts have been made in program visualization by con-

structing UML sequence diagrams from dynamic executions

[34], [35]. Such work constructs a sequence diagram from

dynamic traces but does not produce graph-based models

like MSG that include loops and branches. Rountev et. al.

[36] proposes a static analysis based approach to reverse

engineer UML sequence diagrams from source code. Life-

lines in the sequence diagrams represent runtime objects. In

contrast, our approach is based on the analysis of execution

traces and mined specifications portray class level actions

using symbolic events.

Lo et. al. in [37] mine for Live Sequence Charts (LSC)

that contain symbolic lifelines representing a class. However,

the mined LSCs have limited “symbolic power” – in rough

terms, existential quantification of objects within a class can

be mined, but universal quantification involving all objects

in a certain class satisfying a certain guard is not mined for.

Other dynamic techniques to infer invariants in distributed

systems have been proposed [38], [39]. The invariants are

conditions that characterize system load or relationships be-

tween variables from processes in the system. The invariants

identified in these approaches have to be satisfied at all states

of the system whereas invariants in our approach are used

to enhance the accuracy and readability of a state based

specification of the system.

Finally, property inferencing in a fixed logical language

have been studied earlier, as evidenced by the work on

Daikon [28]. Daikon, via dynamic analysis, attempts to

infer potential invariants — properties that may hold in a

certain control location of a program. In our work, we are

inferring guards or logical formulae which capture the set of

processes/objects (each with their own independent flow of

control) which execute a common action. Furthermore, our

inferred guards involve reasoning about execution histories,

as opposed to Daikon which infers state-based potential

invariants.

VII. CONCLUSION

In this paper, we have proposed a specification mining

framework to mine class level specifications for distributed

systems.

At a conceptual level, the main novelty of our work

is to move towards mining class level specifications as

opposed to object level specifications. This is particularly

important for distributed systems with many behaviorally

similar processes – as object-level specifications (with con-

crete processes/objects) are hard to comprehend. Since spec-

ification mining aims for behavior comprehension, arguably

this makes for a strong case to mine succinct class level

specifications.

At a technical level, our work provides a mechanism for

inferring rich guards which serve as object selectors, corre-

sponding to events. As shown in the paper, the guards allow

for history based constraints and can be extended to handle

state-based constraints. Universal/existential quantification

captures whether all or any one process satisfying the guard

executes the event in question. Our experiments demonstrate

that such a rich language of guards allows us to mine highly

accurate system specifications for distributed systems.
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