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Abstract—A multi-tenant software as a service (SaaS) system
has to meet the needs of several tenant organizations, which
connect to the system to utilize its services. To leverage
economies of scale through re-use, a SaaS vendor would, in
general, like to drive commonality amongst the requirements
across tenants. However, many tenants will also come with some
custom requirements that may be a pre-requisite for them to
adopt the SaaS system. These requirements then need to be
addressed by evolving the SaaS system in a controlled manner,
while still supporting the requirements of existing tenants. In
this paper, we focus on functional variability amongst tenants
in a multi-tenant SaaS and develop a framework to help evolve
such systems systematically. We adopt an intuitive formal
model of services that is easily amenable to tenant requirement
analysis and provides a robust way to support multiple tenant
onboarding, which is modeled as a bi-objective optimization
problem that attempts to maximize vendor profit and tenant
functional commonality. We perform a substantial case study
of a multi-tenant blog server to demonstrate the benefits of
our proposed approach.

I. INTRODUCTION

Businesses around the world are increasingly adopting the
paradigm of “Everything-as-a-Service” (XaaS). Based on
the pay-per-use model of Utility Computing, XaaS frees
up firms from having to commit expensive resources for
computing infrastructure. Instead the resources may be ac-
quired as and when needed as “services”. These services,
which may be in layers ranging from Infrastructure-as-a-
Service (IaaS) at the base, to Platform-as-a-Service (PaaS),
to Software-as-a-Service (SaaS), provide the foundation for
Cloud Computing and indicate a paradigm shift in the IT
world that will have far-reaching changes in how IT vendors
engage with their clients going forward. The changes have
both financial and technical dimensions, and will increas-
ingly see an interplay of the two - where engineering deci-
sions have to be founded much more strongly on economic
reasoning than before. In this paper, we study this interplay
in the context of Software-as a Service or SaaS [19].

Informally, SaaS is described as software deployed as a
hosted service by a vendor and accessed over the internet,
without the need for users to deploy and maintain on-premise
IT infrastructure. From a SaaS vendor’s perspective, the
new costs incurred through owning the SaaS infrastructure,

need to be offset by leveraging the economies of scale
that arise from being able to serve a high number of
customers (called “tenants”) from a shared, single instance
of a centrally-hosted software service. Such sharing through
“multi-tenancy” is feasible when the requirements of the in-
dividual tenants are similar - however, in the real world, there
will always be some tenant-specific variations in require-
ments, and how to handle this is a key technical challenge
in a multi-tenant SaaS. The usual approach has been to build
in a fixed set of customization options in the software, so
that each tenant may individually select an appropriate set of
options at the time of on-boarding. However, this is overly
restrictive and the inability to customize SaaS applications
to suit their needs is the most significant challenge that
customers face with the SaaS offerings they use [21].

In this paper, we present a multi-tenant SaaS engineering
approach that is motivated by the above line of reasoning.
Our approach is based on an intuitive formalization of multi-
tenant SaaS into a 3-level hierarchy of services, features and
feature variants, and a set of tenants that wish to subscribe
to existing features on offer (as shown in Figure 1), or that
place demands for new variants that need to be supported for
SaaS usage. Adopting the principles of Design-by-Contract,
we show how our model provides a simple yet elegant plat-
form for defining variants of a feature, for reasoning about
tenant commonality and variability, or for estimating the
costs of tenant onboarding through feature/service expansion
or augmentation. We then show how our model naturally
supports tenant onboarding as a bi-objective optimization
problem, that maximizes profit for the SaaS vendor, while
striving for the best commonality or functional cohesiveness
of the resulting SaaS system. Our approach is illustrated
through a substantial case study of an open-source Java
blog server called Apache Roller (almost 90,000 lines of
Java code). This system was originally designed as a single-
tenant system for on-premise usage, but we extended it
to support multiple tenants as per our model. We believe
that the approach we present in this paper can provide the
foundation for design and analysis toolkits that SaaS vendors
may use to methodically design, refine and evolve multi-
tenant SaaS systems, balancing the dual objectives of higher
profits and greater commonality.
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Figure 1. A SaaS system model.

II. A WORKING EXAMPLE

In this section, we present a working example based on the
Apache Roller [1] v4.0. Roller is an open source Java blog
server which supports rich blogging features. The original
Roller is a single-tenant system, and each individual weblog
site needs to install, deploy, and maintain the blog server on-
premises with its own infrastructure and manpower. We have
rewritten a part of the Roller into a multi-tenant SaaS system
to illustrate our proposed formalism. We have identified
and modeled the operations/functionalities in the original
Roller system as services and features in the SaaS system,
as outlined below.
• Blogger service. It contains features performed by an

individual weblog owner, e.g., change the blog theme,
edit/delete a blog entry, create entry category etc.

• Reader service. It contains features performed by the
weblog readers, e.g., search for or view a weblog entry,
write comments, subscribe to RSS feeds etc.

• Administration service. It is a group of administration
related features e.g. user registration, login, password
retrieval, permission management etc.

We abstract the functionality of each feature as a contract
between the tenants and the SaaS provider, wherein the
provider ensures some post-conditions if the tenant meets
certain pre-conditions. We present below the informal de-
scription of a few motivating features in an intuitive syntax
popular in the Design-by-Contract (DBC) [14] community.
We will formalize this in the next section.

Blogger services (S1)
Feature: editEntry (F1)/default variant(v0)

Require
Content must be plain text or HTML format
Content must be more than 100 characters

Ensure
Entry is successfully stored in the data base
Notifications are sent to feeds subscribers

Blogger services (S1)
Feature: deleteEntry (F2)/default variant(v0)

Require
Ensure

Entry is successfully deleted from the data base
Related comments, trackbacks, feeds are removed
Attachments are deleted from the file system

Note that a user must be the owner of the weblog/entry in
order to perform any of the features in blogger service. In our
model, we consider it as a service invariant to be preserved
across all executions and instantiations of the service, rather
than a precondition of individual features.

Reader service (S2)
Feature: viewEntry (F3)/default variant(v0)

Require
User must be logged in

Ensure
Entry and its comments are displayed
Show total number of comments

The above example feature contracts (with associated
implementations not shown) constitute the default offerings
(having 0 as subscript in the feature variant names) from the
basic SaaS system. We will use this example to illustrate the
different concepts in the remainder of the paper.

III. FORMAL MODEL

A. Services and Features

Formally, a SaaS component 〈S, T 〉 consists of a collection
of services S and a set of tenants T that interact with the
SaaS component to exercise the various SaaS features. Each
service S ∈ S can be defined as a tuple 〈FS ,ΨS〉, where:

• FS is a set of features,
• ΨS is a set of service invariants over the service system

state that should always be preserved.

Each feature F ∈ FS is a tuple 〈pre(F ),meth(F ),
post(F )〉, where pre(F ), post(F ) are the pre and post-
conditions of F , and meth(F ) is the method implementation
corresponding to F .

B. Feature Variants

Usually a SaaS vendor will offer one concrete implementa-
tion to start with for each feature (e.g., the default variants
listed in Section II). However, tenants may demand different
variants of this to suit their needs, while respecting the rel-
evant service and feature invariants. Some situations where
this may arise are as follows:



1) Relaxation / Restriction of Terms of Use: A new tenant
may not be agreeable to the existing pre-condition
of a service feature invocation and may demand a
relaxation that he can conform to. Conversely, in some
cases e.g. to strengthen security related issues, the
tenant may demand a stronger pre-condition.

2) Restriction / Augmentation of Feature Outcome: The
tenant may demand a less restricted variant of the post-
condition of the feature when it does not require its full
capabilities, or may wish to augment the capabilities
through a richer post-condition.

For the kinds of variation above, the SaaS vendor has two
clear choices, namely (a) Create a new feature (Augmenta-
tion), or (b) Support the new variant from the existing infras-
tructure with required modifications (variant set expansion).
We now develop a classification of the above scenarios based
on which the formal definition of a feature variant will be
presented. Since the functionality of a feature is encapsulated
within its contract in our model, the similarity between the
pre- and post- conditions of two features will determine the
ease with which one may be derived from the other.

Defn 1: [Stronger/Weaker condition:] Let C1 and C2
be two sets of conditions (quantifier-free first-order logic
formulas). We define str(C1, C2) to be the set of “stronger”
conditions in C1 w.r.t. the conditions in C2, i.e.,

str(C1, C2) = {c | c ∈ C1∧ 6 ∃c′ ∈ C2, c′ ⇒ c}

Similarly, the set of “weaker” conditions w.r.t. C2 is

wkr(C1, C2) = str(C2, C1)

In other words, a condition clause c ∈ str(C1, C2) is either
a new requirement in C1 that is not captured in C2, or more
restrictive than any condition in C2; while wkr(C1, C2)
contains the conditions in C2 that are either removed or
relaxed in C1.

Defn 2: [Distance:] Let s1 = 〈pre(s1),meth(s1),
post(s1)〉 be a new requested feature to be supported by
a SaaS system, and s2 = 〈 pre(s2), meth(s2), post(s2)〉
be an existing feature instance in the system. We define the
distance from s2 to s1 as
D(s1, s2) = α · |wkr(post(s1), post(s2))|+ β · |str(pre(s1), pre(s2))|

+ γ · |wkr(pre(s1), pre(s2))|+ δ · |str(post(s1), post(s2))|
(1)

where α, β, γ, and δ are the constant cost coefficients for a
given SaaS feature.

We use this notion of distance to capture the variability be-
tween two feature requests. In particular, a smaller D(s1, s2)
usually implies less implementation effort if the new request
s1 is to be derived from an existing implementation of s2.
It may be noted that the distance between two features is
asymmetric, i.e., D(s1, s2) 6= D(s2, s1). In order to enable
a fine-grained quantitative measurement, we associate a cost

coefficient with each weakening/strengthening of the pre and
post conditions as follows.

• [Weaken postcondition cost α:] In case the new
request s1 requires a weaker postcondition, the existing
implementation of s2 can still be used with relatively
little modification (to hide certain functionality).

• [Strengthen precondition cost β:] To support a
stronger precondition in the new service request s1,
the corresponding check needs to be performed be-
fore invoking an existing implementation of s2 (i.e.
meth(s2)). No change is required in the method body.

• [Weaken precondition cost γ:] If the new request
s1 has a weaker precondition, some assumptions or
assertions in the original implementation of s2 may
be violated. The developer will have to derive s1
from implementation of s2, by removing certain asser-
tions/assumptions and modifying the code accordingly.

• [Strengthen postcondition cost δ:] If the new request
s1 requires a stronger postcondition, the developer
needs to incorporate additional functionality in the
implementation of s2 to support this.

Intuitively, weakening a postcondition or strengthening a
precondition incurs less implementation cost since no mod-
ification of the existing method body is required. On the
other hand, strengthening a postcondition usually requires
much more implementation cost.

Defn 3: [Feature variant:] Let var(F ) contains set of
all existing variants of a feature F . A new service re-
quest s1 = 〈pre(s1), meth(s1), post(s1)〉 can be con-
sidered as a variant of an existing feature variant s2 =
〈pre(s2),meth(s2), post(s2)〉 ∈ var(F ) if

• s1 and s2 are bound by the same service invariants,
and

• D(s1, s2) = min{D(s1, v)|∀v ∈ var(F )∧ D(s1, v) ≤
TR}, where TR is the distance threshold defined by
the SaaS vendor that manages the degree of similarity
between feature variations.

We denote s2 = parent(s1), such that s2 is closest to
s1 among all existing feature variants. The fact that a
variant of a feature satisfies the same invariants, and is
within a threshold distance from its parent, helps maintain
the functional cohesiveness and soundness of our model.
Otherwise, if no such s2 exists in the system, the vendor
will have to create a new feature/service to hold the the new
request. This is called augmentation, which we will discuss
in Section IV.

C. Example Feature Variants

Assume a tenant runs a weblog site where entries can
be only viewed by authorized reader (as determined by the



entry owner or administrator), and all comments from the
entry owner should be highlighted. In our model, this new
request can be considered as a variant of the default offering
S2/F3/v0 as presented in Section II, with strengthening of
both the precondition and postcondition of v0.

Reader service (S2)
Feature: viewEntry (F3)/variant(v1)

Require
User must be logged in
User must be authorized to view this entry

Ensure
Entry and its comments are displayed
Show total number of comments
Entry owner’s comments are highlighted

The implementation of v1 (meth(v1)) can be derived from
meth(v0), by adding the functionality of authorization, as
well as the capability to identify and highlight entry owner’s
comments. According to DEFN 2, the distance D(v1, v0) =
β + δ approximately captures the implementation effort to
accommodate v1 from v0. Suppose another tenant has a
different perspective on the view entry feature as follows.

Reader service (S2)
Feature: viewEntry (F3)/variant(v2)

Require
User must be logged in

Ensure
Entry and its comments are displayed
Show total number of comments
Show total number of views of this entry
Entry owner’s comments are highlighted

This variant v2 can be accommodated from either the ex-
isting implementation of v0 or v1. In the first case, it requires
additional code to (i) record and display the total number
of entry views; and (ii) highlight entry owner’s comments.
Hence, D(v2, v0) = 2 × δ. On the other hand, deriving
v2 from v1 requires (i) simply skipping the authorization
check (weakening one of the precondition); and (ii) record
and display the total number of entry views (strengthening a
postcondition). Thus, we have D(v2, v1) = α+δ. Intuitively,
the SaaS provider may choose the second option to ease the
accommodation (assuming α < δ).

One may argue that is possible to source the different
facets (pre-, post-conditions) of a request from multiple
existing variants to further reduce, in principle, the im-
plementation cost. However, we feel this will in practice,

complicate development and require additional effort in
integration, besides impeding a sound, systematic evolution
of the SaaS system. This motivates our approach of deriving
a variant from a single existing feature closest to it.

IV. ONBOARDING TENANTS

A SaaS application has an initial set of service offerings S,
each described as a tuple 〈FS ,ΨS〉 as discussed earlier. A
tenant t can be characterized by a tuple 〈requires(t), V (t)〉
where requires(t) is the set of service features required by
tenant t and

V (t) : requires(t)→ R1

is a value estimate of the revenue that the tenant may add
to the existing SaaS system by subscribing to the services it
requires. In practical cases, as is intrinsic to SaaS systems,
the value function will be defined on a per feature basis and
in a pay-as-you-go manner depending on how and which
features are being used by the tenant. For simplicity of the
present work, we approximate the economic factor by the
value estimate which is assumed to capture the projected
revenue depending on the present and future usage patterns
of the tenant.

Depending on the requested service features in
requires(t) and existing SaaS system S, we have
the following cases to accommodate each request
s ∈ requires(t) :

• [Direct onboarding:] If s requires exactly the same
preconditions and postconditions as an existing variant
v of some feature F in the SaaS system, and they
are bounded by the same service/feature invariants, the
new request s can be directly supported, without any
additional change to the SaaS infrastructure.

• [Feature expansion:] If s is a variant of feature F in
S, s is added to F as feature expansion. The imple-
mentation of s can be derived from its closest existing
variant parent(s) based on the weakening/strengthen
of pre and post conditions as described in Section III-B.

• [Feature set augmentation:] There may exist a
service S in S such that s is bounded by the same
invariants ΨS with S. However, s may not be a variant
of any existing feature F ∈ S. In such a case, s can be
added into the SaaS system as a new feature of service
S with a new implementation, to onboard the tenant.

• [Service set augmentation :] If s is not bounded by
the same invariants with any existing service in S, then
the tenant requires a new service to be augmented.

In all the cases above, the question of on-boarding depends
on the SaaS vendor. We propose a decision model with
two dimensions, namely the onboarding profit and level of

1R is the set of real numbers



system commonality, to help SaaS vendors decide which
tenants to onboard. We introduce these dimensions next.

A. Cost Considerations

For each new tenant t to be onboarded, the net profit gained
by the SaaS provider can be calculated by deducting the
modification cost of the SaaS system from the revenue V (t).
In this section, we present a cost model to facilitate SaaS
vendors estimate the cost of onboarding a new tenant. For
now, we only consider the implementation cost incurred
by the vendor, to pay the developers who make necessary
modifications to onboard a new tenant t. Intuitively, the
more complex is the implementation/modification required
to onboard t, the higher is the cost imposed.

For each of the new requests s ∈ requires(t) and an
existing SaaS system, we associate a cost to accommodate
s depending on the amount of changes the existing infras-
tructure has to undergo to support s according to the four
possible scenarios described above.

• [Direct onboarding cost (DOC):] An existing im-
plementation can be directly used to support s. In this
case, the estimated development cost is assumed to be
a small constant setup cost.

• [Feature expansion cost (FEC):] In this case, s
can be derived from the implementation of parent(s)
(according to DEFN 3). The development cost of s is
proportional to the distance between s and parent(s):

FEC(s) = ρ×D(s, parent(s)) (2)

where ρ is a coefficient which captures the human-hour
basis salary cost per unit of change for the particular
SaaS system and vendor.

• [Feature set augmentation cost (FAC):] This is the
cost of developing and provisioning a new feature from
scratch, calculated as

FAC(s) = ρ×D(s, ε) (3)

where, ε is an empty/null feature, and ρ is as above.
• [Service set augmentation cost (SAC):] This is

the cost of developing and provisioning a new service
(initially empty), which we assume to be a constant.

The cost of onboarding a tenant is estimated as the cumu-
lative effort of the above costs for each new requirement,
depending on the exact nature of the tenant requirements
and the existing SaaS system. To summarize, given a new
tenant t = 〈requires(t), V (t)〉, the cost of onboarding t to
SaaS system 〈S, T 〉 can be calculated as

cost(t,S) =
∑

∀s∈requires(t)

DOC|FEC(s)|FAC(s)|SAC

(4)

B. Commonality Considerations

An important factor that characterizes the level of reuse of
a SaaS system is the notion of commonality of a service.
A SaaS vendor may be offering several features within a
service, with multiple variants in each feature. To offset
development costs, the SaaS vendor would want each feature
variant to be subscribed to by as many tenants as possible.
Commonality of a service measures the fraction of tenants
that subscribe to a feature variant on average.

Let Nf denote the total number of tenant subscriptions
to feature f (across all its variants). Let |var(f)| denote
the total number of variants of feature f . We now define
commonality as follows.

Defn 4: [Commonality:] The commonality CommS of a
SaaS service S consisting of a set of features FS and a set
of subscribing tenants TS (> 0) is given by:

COMMS =

∑
f∈FS

Nf

|TS | ∗
∑
f∈FS

|var(f)|

Intuitively, the more the number of existing variants a tenant
subscribes to, the higher the commonality the SaaS system
will have. In general, as new tenants onboard, the SaaS ven-
dor would like to ensure that the commonality of a service
remains above a threshold, which we call the commonality
threshold (denoted as COMM ). This captures the overall
degree of functional commonality that the system vendor
desires to maintain across tenants.

C. Profit and Commonality Considerations

Based on our cost model and the commonality measure,
the SaaS provider may choose to onboard a tenant t if (i)
there is increment in the net profit (i.e., V (t)− cost(t,S) ≥
0); and/or (ii) the resulting system has a new common-
ality value that remains above the commonality threshold
(COMM ) determined by the SaaS vendor.

In a general case, there might be multiple tenants waiting
to onboard. The SaaS vendor will periodically review all
tenant requests, and devise a development and onboarding
plan. Having a group of tenants to select from gives the
vendor greater opportunities to identify commonalities in the
requests and optimize development - a feature request that
may not appear to offer good financial returns when viewed
from the perspective of a single tenant, may seem like a
sound investment when several new tenants are looking to
subscribe to it (or variants close to it). At the same time, on-
boarding tenants purely from the profit perspective without
regards to commonality may lead to excessive variants that
make the system difficult to maintain. This duality gives rise
to an optimization problem for onboarding tenants.



Given a SaaS system 〈S, T 〉 and a new set of tenants
T̂ waiting to be onboarded, let Γ(T̂ ) denote the net profit
obtained by onboarding T̂ , resulting in a new system
〈S ′, T

⋃
T̂ 〉, and let C be a vector denoting the commonality

of the services in S ′. Γ(T̂ ) is calculated as follows:∑
t∈T̂

V (t)− cost(T̂ ,S′) (5)

where cost(T̂ ,S) lifts the definition in Equation 4 to a
set of tenants, and may be computed after taking into
account similarities in the requests of new tenants, such
that development costs for new features and variants can
be optimized. For example, if more than one new tenant
require a particular service feature that cannot be derived
from the existing system, we consider FAC for one of the
tenants, and only DOC for the rest. Similarly, if a feature
request from a new tenant can be derived more easily out
of a request from another new tenant than from the existing
system, FEC is reduced.

Defn 5: [Profit-Commonality Maximizing tenant sub-
set: ] Given a set of potential tenants Tp = t1 . . . tk, each
characterized as a tuple 〈requires(ti), V (ti)〉 and an ex-
isting SaaS system 〈S, T 〉, the onboarding problem involves
selecting the tenant subset T̂ ⊆ Tp that maximizes profit
Γ(T̂ ) and leads to the best commonality of the resulting
SaaS system.

The net profit and commonality can be calculated as previ-
ously for each possible subset T̂ . The multi-objective nature
of the above optimization problem suggests that a solution
candidate is described by a vector quantity. If a vector quan-
tity for solution candidates is used, improvement in these
solutions should occur only when some objective (either the
net profit or commonality) improves without degradation
in the remaining objectives. If this is not possible, then
the current solution is said to be optimal in the Pareto
optimal sense or nondominated. The set of all Pareto optimal
solutions is known as the Pareto optimal set or Pareto front.

V. CASE STUDY

In this section, we present a set of experiments on
the Apache Roller system as described in Section II. The
original Roller weblog consists of 569 Java/xml source
files and close to 90000 lines of code (LOC). In our case
study, we have modified around 180 sources files to evaluate
our proposed multi-tenant SaaS management approach. In
particular, we use the Reader Service to evaluate our tenant
selection model. The service initially contains 9 distinct
features (with one default variant for each feature). For
each feature we identified, we list a predetermined set of
all possible pre and post conditions that can be chosen for
it. A tenant who wants to subscribe to a feature can select a
subset from the listed pre and post conditions. As a result, by

choosing different combinations among them, we are able to
build a diversity of variants of each feature. According to our
predefined list of pre and post conditions for each feature,
we have total 56 possible variants defined for these features
in Reader Service. We assume that each tenant t randomly
subscribes to at least 5 features in the service, and requests
a single variant of each feature it subscribes to.

A. Tenant Selection

We show how our proposed approach can provide prac-
tical guidance to the SaaS designer in an onboarding deci-
sion. We consider a scenario where 20 randomly generated
potential tenants (|T̂ | = 20) request onboarding to a system
with 10 existing tenants. As discussed in Section IV, the
problem is to identify a subset of tenants T̂ ′ ⊆ T̂ , such that
the resulting new system is Pareto optimal w.r.t the profit and
commonality. In this experiment, we adopt a subscription-
based pricing model. We assume the estimated revenue of
onboarding a tenant t is proportional to the number of
features t subscripts, i.e.,

V (t) = RPS ∗ |requires(t)|

where RPS is a constant factor indicates the revenue for
each feature subscription, which is assumed to be 150 in
this experiment.

In our experiments, we set the values for each of the
following cost parameters based on our hands-on experience
when converting the Roller into a multi-tenant SaaS system.
In particular, we measure the average LOC to modify for
each activity, as well as the difficulty to locate and make the
modification (e.g., the Cyclomatic Complexity and file mod-
ified). We consider only the implementation cost required to
support a new tenant. However, other cost structure (e.g.,
hardware, maintenance, etc.) can be easily adopted in our
model. For example, the hardware/infrastructure costs should
be added in Equation 5, which are related to the hardware
capacity expansion for a group of onboarding tenants. In our
experiments,

• DOC, the direct onboarding cost, is set to 40.
• We set the coefficients α, β, γ, and δ in DEFN 2 to be

3, 5, 8, and 10, respectively.
• The coefficient ρ in Equation 2 is set to be 20.
• The distance threshold in DEFN 3 is set to 40. We do

not consider the SAC cost in this experiment.

For each possible subset T̂ ′ ⊆ T̂ , the profit of onboarding
T̂ ′ can be calculated with Equation 5 in Section IV-C. The
commonality of the resulting new system can be calculated
as in Definition 4. We maintain a set of Pareto optimal
solutions, such that there is no other subset of T̂ , which,
if onboarded, will result in both higher profit and higher
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Figure 2. Pareto optimal solution for profit/commonality maximization.

commonality. In our current implementation, we exhaus-
tively find each possible subset T̂ ′ ⊆ T̂ , and compute
the profit and commonality if the subset is onboarded to
the initial system. The total analysis time for the Pareto
optimal computation when |T̂ | = 20 takes less than 1
minute on a Intel(R) Xeon(TM) 2.20 Ghz processor with
2.5 GB of RAM. However, if a larger group of onboarding
tenants has to be considered, evolutionary algorithms can be
implemented for a more efficient Pareto front computation.

Figure 2 shows our experimental results for the above-
mentioned Roller system setup. The N marks (labeled with
“Pareto optimal solutions (run 1)”) represent the Pareto
optimal solutions. Each Pareto optimal solution is associated
with a subset of tenants to be onboarded out of the 20
tenants in T̂ . Such a Pareto front representation allows
SaaS provider to carefully explore the trade-offs between
commonality and profit when given a large set of tenants to
onboard. If the provider decides on a commonality threshold
that must be maintained, then the Pareto front immediately
suggests the subset of tenants whose onboarding can max-
imize profitability while preserving sufficient commonality.
Figure 2 also shows a dominated solution corresponding to
onboarding of all 20 tenants in T̂ , with Profit = 12390 and
commonality = 0.1264 (the + mark labeled with “onboard
all (run 1)”). The SaaS vendor may avoid this solution due
to the poor commonality in the resultant system.

In this experiment, we use only one single service (the
Reader Service) to illustrate our framework. However, for
the entire SaaS system with multiple services, the optimiza-
tion problem can be easily adopted at the system level by
considering the average commonality of all services.

B. Sensitivity of the Proposed Mechanism

In Section V-A, the setting of parameter values is based
on our experience on a particular SaaS system. It may
not be generally applicable. However, our proposed tenant
onboarding model makes no assumption about the relative
or absolute values of the parameters. Values can be assigned
to the parameters according to the real situation. In this
section, we would like to analyze the sensitivity of our

tenant selection mechanism w.r.t. the absolute values of these
parameters.

We have performed the tenant selection for the same
initial system and set of tenants to be onboarded, with the
following completely different setting of the parameters:

DOC = 20, α = 2, β = 6, γ = 6, δ = 7, ρ = 20

The resultant Pareto optimal solutions (the � marks labeled
with “Pareto optimal solutions (run 2)”) and the result
of onboarding all 20 tenants (the × marks labeled with
“onboard all (run 2)”) are also shown in Figure 2. We
observe quite similar trends in the two sets of computed
solutions. It shows that our approach is robust since given
the same initial system and tenants to be onboarded, the
tenant selection problem is not very sensitive to the absolute
values of the parameters in our model. As long as the relative
parameter relations remain, similar results can be obtained.
The more accurate the parameters, however, better can the
cost/profit be estimated.

VI. RELATED WORK

Many existing work on multi-tenant applications focus on
issues related to their basic feasibility such as shared data
architecture and security management [6], [8], [20]. From
the software engineering perspective, models and techniques
successfully employed in software product line engineering
have been applied in multi-tenant systems to manage con-
figuration and customization of service variants ([7], [15],
[16]). In particular, [16] extends variability modeling ([2])
to provide information for a tenant to choose/customize
the SaaS application and guides the SaaS provider during
service deployment. Feature diagrams (introduced in [9]) are
often used to model and analyze software product lines, and
allows various types of relationships (parent/child, manda-
tory/optional/alternative etc.) between features and feature
trees to be represented. Such an approach can be incorpo-
rated within our model if we wish to impose constraints on
sets of features that may or may not occur together. Feature
models have also been used to support variability modeling
and quality-of-service analysis of web service orchestrations
[10]. It may be noted, however, that unlike existing work, we
use features to reason about commonality and variability in
support of SaaS evolution and tenant onboarding, rather than
to offer a fixed set of customization options to any tenant.

[3] presents an architectural approach which tries to
separate multi-tenant configuration and underlying imple-
mentation, by adopting a 3-tier architecture (authentication,
configuration, database) in the traditional single-tenant web
application. Along the same lines, experiences in modify-
ing industrial-scale single-tenant software systems to multi-
tenant software have been reported in [4]. A recent work
[17] focuses on the design and implementation of a multi-
tenant workflow engine that enables multiple tenants to run



their workflows securely within the same engine instance.
An earlier work [12] presented a case study of a multi-
tenant electronic contract management SaaS. The multi-
tenant placement problem has been discussed in [11] and
[22], which decides the best server where a new onboarded
tenant should be accommodated. In contrast, we are inter-
ested in identifying the subset of tenants that should be
onboarded and understanding how the SaaS system needs
to evolve to accommodate this. Finally, we have primarily
studied functionality issues for managing multi-tenant SaaS
in this paper. There have also been studies on service
performance issues in multi-tenant SaaS (e.g., see [13]). The
cost assignment in our model can be improved, currently it
is related to the salary of the developer. One can investigate
more complex economic value assignment, such as those
prescribed by service value networks [5].

In our earlier work [18], we had mentioned possible
research directions for multi-tenant SaaS, such as a model
for multi-tenant SaaS to evolve in a controlled manner, and
issues in testing multi-tenant SaaS. No technical solutions
were presented in [18]. In this paper, we have provided tech-
nical solutions for the first set of problems, namely building
a model of multi-tenant SaaS to control its evolution.

VII. CONCLUSION

In this paper, we have presented a formal framework for
managing the evolution of multi-tenant SaaS systems. Our
approach is based on reasoning about tenant requirement
variability and commonality in terms of their contracts (pre-
and post-conditions). We have discussed different scenarios
that arise when accommodating a new tenant in a SaaS,
and the associated development costs. The tenant onboarding
problem has been motivated as a bi-objective optimization
problem wherein the SaaS vendor tries to maximize profit
while retaining a satisfactory degree of commonality. A
detailed case study based on the Apache roller system
demonstrates the usefulness of our approach.
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