
WOMM: A Weak Operational Memory Model

Arnab De1, Abhik Roychoudhury2, and Deepak D’Souza1

1 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India
{arnabde,deepakd}@csa.iisc.ernet.in

2 School of Computing, National University of Singapore, Singapore.
abhik@comp.nus.edu.sg

Abstract. Memory models of shared memory concurrent programs de-
fine the values a read of a shared memory location is allowed to see. Such
memory models are typically weaker than the intuitive sequential con-
sistency semantics to allow efficient execution. In this paper, we present
WOMM (abbreviation for Weak Operational Memory Model) that for-
mally unifies two sources of weak behavior in hardware memory models:
reordering of instructions and weakly consistent memory. We show that a
large number of optimizations are allowed by WOMM. We also show that
WOMM is weaker than a number of hardware memory models. Conse-
quently, if a program behaves correctly under WOMM, it will be correct
with respect to those hardware memory models. Hence, WOMM can be
used as a formally specified abstraction of the hardware memory models.
Moreover, unlike most weak memory models, WOMM is described using
operational semantics, making it easy to integrate into a model checker
for concurrent programs. We further show that WOMM has an impor-
tant property - it has sequential consistency semantics for datarace-free
programs.

1 Introduction

With the push towards multicore platforms in the coming years, the impor-
tance of concurrent programming is steadily growing. Increasingly, it is felt that
computer architects will be moving towards processors with many cores and
concurrent/parallel programming will become much more mainstream.

In general, programmers tend to find parallel/concurrent programming harder
than sequential programming, owing to the many possible executions of a pro-
gram for any given input. Shared-memory concurrent programming languages
describe the semantics of concurrency via a Memory Model — it describes which
writes can be visible to a program read operation. Programmers intuitively con-
sider the memory model of a concurrent program as Sequential Consistency (SC)
[1], where each process proceeds in program order and the operations from each
process are interleaved and a read sees the last write to the same memory loca-
tion in that interleaving. Although the SC semantics is easy for the programmers
to understand, it does not allow many compiler and hardware optimizations.

As a simple example, one may consider the program fragment in Figure 1.
Throughout the paper, we use x, y, . . . to denote shared memory locations and
r1, r2, . . . to denote local variables/ registers.

Initially, x == y == 0

Proc 1: Proc 2:

x = 1; r1 = y;

y = 1; r2 = x;

r1 == 1, r2 == 0 not allowed by the SC

Fig. 1. Not allowed by SC - I

Initially, x == 0
Proc 1: Proc 2: Proc 3:

x = 1; r1 = x; r3 = x;

x = 2; x = 3; x = 4;

r2 = x; r4 = x;
r1 == r4 == 1, r2 == r3 == 2 not

allowed by SC

Fig. 2. Not allowed by SC - II

In this example, we would normally assume r1 ≤ r2 at the end of the pro-
gram. In other words, SC does not allow r1 == 1 ∧ r2 == 0 since y is set after
x in Proc 1. However, Proc 1 may reorder the writes at runtime (as evidenced
by hardware multiprocessor memory models such as Sparc Partial Store Order
(PSO) [2]), thereby making the result r1 == 1 ∧ r2 == 0 possible at the end
of the program.

Similarly, the behavior demonstrated in the example from Figure 2 cannot
be produced by an SC execution. Nevertheless, the interconnection network may
cause Proc 3 to see the writes from Proc 1 out of order, but Proc 2 may see them
in the program order, causing this behavior.

To accommodate such optimizations, weaker or more relaxed memory models
have been proposed. Such memory models typically allow more behaviors than
the SC. Such intricacies in the memory model makes understanding concurrent
program behavior particularly difficult.

Conventionally hardware multiprocessor memory models — such as Total
Store Order (TSO), Partial Store Order (PSO) and Relaxed Memory Order
(RMO) of Sun Sparc [3, 2] have been specified using a reordering table, denot-
ing whether two instructions accessing two different memory locations can be
reordered at runtime. Similarly, the official memory models for IA-32 and AMD-
64 architectures are defined as a set of informal rules [4, 5]. Recently, a rigorous,
axiomatic memory model [6] has been proposed for x86 multiprocessors that
matches the informal documentations. These memory models differ from each
other in subtle but complex ways. Moreover, the specifications are either in-
formal or axiomatically defined, making them difficult to follow. As a result, a
compiler writer or a low-level programmer may not get an abstract view of the
underlying hardware memory models.

We have observed that weak behavior in multiprocessors is mostly caused by
two features. A processor can reorder instructions accessing different memory
locations (as in Figure 1) or writes to the same memory location may be visible to
different processors in different orders (as in Figure 2). In this paper, we present
formal semantics of a Weak Operational Memory Model, referred as WOMM,
that combines these two features. We use a language that contains some of
the essential features of multiprocessor programs. We use a simple operational

semantics to specify our memory model, making it easy to follow for the compiler
writers and low-level programmers. The operational style of our specification
allows easy integration to program analysis tools such as model checkers. We
demonstrate that a number of optimizations are allowed by WOMM. We show
that WOMM is weaker than the Location Consistency (LC) [7] memory model,
which, in turn, makes it weaker than a number of memory models such as TSO,
PSO, RMO etc. Consequently, any execution allowed by these hardware memory
models will be allowed by WOMM. As a result, if a compiler assumes WOMM as
the underlying hardware memory model, the compilation will be correct for all
these hardware memory models. Finally, we show that WOMM has an important
property — it guarantees sequential consistency for datarace-free programs.

2 Program Model

We consider a simple and abstract program model for the sake of presentation.
A multiprocessor system consists of a finite number of processors, each with an
unique id. All the processors have a finite number of local registers. Memory is
shared among all the processors.

The program consists of one executable per processor. Each executable has
a finite number of static instructions, with designated first and last instructions.
In the rest of the paper, we identify the executables by the processors they run
on. Instructions can be categorized into following types. We use the following
conventions: r, r1, . . . represent registers, [r] a shared memory location whose
address is equal to the contents of r, exp a local expression and L a program
label.

Read (Rd) (r1 = [r2]): Reads the content of the memory location [r2] to
the register r1.

Write (Wr) ([r1] = r2): Writes the value of the register r2 to the memory
location [r1].

Local computation (Loc) (r = exp): Assigns the value of the expression
exp , which does not have any memory access, to the register r.

Conditional goto (Cond) (if r goto L): If the register r has a non-zero
value, program counter is set to the L, otherwise to the next program lo-
cation.

Unconditional goto (Jmp) (goto L): Sets program counter to the L.
Acquire (Acq) (acquire [r]): Acquires the memory location [r]. Once a

processor executes acquire on a memory location, no other processor can
acquire that location till the former processor releases it. Moreover, it works
as a one-way barrier — instructions after an acquire cannot be reordered
before it at runtime.

Release (Rel) (release [r]): Releases the memory location [r] enabling other
processors to acquire it. It also works as a one-way barrier — instructions
before a release cannot be reordered after it at runtime.

A synchronization instruction is either an acquire or a release instruction. Note
that a large number of synchronization primitives found in real hardwares can

be closely modeled with these two types of instructions. The acquire and re-
lease instructions are close to the load-acquire/ store-release instructions of the
Itanium architecture [8]. A two-way memory barrier instruction can be mod-
eled by an acquire instruction immediately followed by a release instruction on
the same memory location, where there is one memory location per processor
designated for this purpose. An atomic operation involving access to a single
memory location (such as test-and-set and compare-and-exchange) can be mod-
eled as acquire instruction on that memory location, followed by instructions
implementing the atomic instruction, followed by a release instruction on the
same memory location (assuming that memory location is not accessed in any
other way).

In the rest of the paper, short names of the instructions in the above list
represent the set of all possible instructions of the corresponding type and the
representative form given along is used to represent an arbitrary instruction of
that type. The word instruction may refer to a static instruction or a dynamic,
runtime instance of a static instruction. depending on the context. We also use
the term action to refer to dynamic instructions.

3 Operational Semantics

In this section we formally describe the operational semantics of WOMM, a
weak abstract memory model for shared memory multiprocessors. Informally,
instructions are issued in program order and put into an instruction queue. An
instruction can commit any time after all the instructions it depends on commit.
Each memory location, instead of containing a single value, contains the set of
all accesses to that location along with some causal order among them. A read
can return any value from this list under certain consistency restrictions.

3.1 Structure of States

Given a program P , a program state Ω consists of a global state Θ and one local
state Φp for each processor p.

A global state Θ consists of the following components:

– A map Π from memory locations to memory states. Informally, a memory
state in our semantics contains all the accesses to that memory location
along with the causal orders among them. Formal description of a memory
state is given below.

– A map L from memory locations to lock states. A lock state may contain
either a processor id, denoting the location is acquired by the processor with
id, or 0, denoting the location is free.

A memory state is a partially ordered multiset (pomset), denoted by (S,�),
where S is the multiset and � is the partial order. A multiset S is a collection
of pomset items. Being a multiset, it allows duplication of elements. Each item
is added by some instruction. The pomset items can be of following types. Here

val denotes a value, pid denotes a the processor id performing the corresponding
write/ release/ acquire action and loc denotes a memory location.

1. A write item (WI) which is a 〈val, pid〉 pair.
2. A read item (DI) which is simply 〈pid〉.
3. A release item (RI) which is a 〈loc, pid〉 pair.
4. An acquire item (AI) which is again a 〈loc, pid〉 pair.

The relation � is a partial order, i.e. a reflexive, antisymmetric and transitive
binary relation on S. The corresponding irreflexive relation is denoted by ≺.
Whenever this relation is updated (e.g. in Figure 3 and Figure 6), we assume
that the new relation is reflexively and transitively closed to maintain the partial
order property.

As the same local register name can be used in different unrelated instructions
in a processor, it may create false dependencies among those instructions. For
example, if two consecutive instructions assign to the same local register, there
may not be any actual data flow between them, but they still cannot be reordered
näıvely as a future read of that register may get affected by the reordering.
To avoid such false dependency and facilitate reordering of instructions, local
registers are renamed at runtime. A single local register can be associated with
different dynamic registers at different points of the execution and each dynamic
register can have different values. We assume that there are infinite number of
dynamic registers available.

A local state Φp consists of the following components:

– A map µp that maps static register names of to their current dynamic names.
– A map σp that maps dynamic registers and the program counter to the

values they contain. The domain of values includes a special value undef.
– An instruction queue Qp, which contains dynamic instructions (actions) that

have been issued but not yet committed (see Section 3.2). Actions are ordered
by the order of their issue in the queue. Registers are renamed with dynamic
names for the actions residing in the queue (see Section 3.4).

– A map δp that maps an issued action to the pomset item corresponding
to the action if the instruction is a read or a write or a synchronization
instruction.

Initial State: In the initial state, all the maps in the local states of the processors
and the instruction queue are empty (i.e. returns undef for any input) except the
program counter which points to the first instructions of every executable. All
memory locations are free. All memory states contain a special write element,
containing an arbitrary initial value of the location, denoted by WI 〈val ,>〉.

3.2 Execution

An execution of a program is a total order of operations where each operation is
an issue or a commit of an action. An operation can occur if all its premises are

met and causes some state transition. The premises and effects of operations are
described in Section 3.4 and Section 3.5. . The total order among operations in
an execution is referred as the occurs-before relation (denoted by ob→).

If i is an action, issue(i) and commit(i) denote the corresponding issue and
commit operations. Similarly, if op is an operation, inst(op) denotes the corre-
sponding dynamic instruction. The state transition from Ω to Ω′ caused by an
operation op from processor p is denoted by 〈p : op, Ω〉 → Ω′.

Execution of a program starts with issue of the first instruction from the any
arbitrary processor. For each processor, the execution starts with the issue of
the first instruction from that processor. A processor finishes execution when the
last instruction, along with all previously issued instructions, of that processor is
committed. The program finishes execution when all processors finish execution.

A trace is a sequence of operations, denoted as 〈op1, op2, ...〉. As occurs-before
is a total order, any execution in WOMM can be expressed as a trace in a natural
way. An execution represented as a trace is referred to as a trace execution.

3.3 Complete Execution and Observable State

We call an execution complete if all issued instructions are committed. Note that
a complete execution might not be a finished execution.

The ultimate goal of our semantics is to define, given a closed program, the
set of observable states reachable from an initial state, via a complete execution.
An observable state is the value of the local registers and program counters of
each processor. If p is a processor and r is register of p, the value of r is given
by σp(µp(r)).

Note that an implementation obeying WOMM need not execute the instruc-
tions from different processors in a total order, but the observable state after
executing a set of instructions by the implementation must be reachable via a
complete trace execution of exactly the same set of instructions.

3.4 Semantics of Issue

Issues of instructions must be done in program order. As a consequence, the issue
operations update the program counters. For the sake of simplicity, we do not
show this requirement and effect in the formal rules. Issue of any instruction by
a processor p also has the following effects:

– Renames the registers. If a register r is read in the instruction, it is renamed
to µp(r). If it is assigned to, it is renamed with a new dynamic name and µp

is updated to reflect that and σp(µp(r)) is set to undef. It is important to
follow the order as the same static register can be both read and assigned in
a single instruction. This operation is denoted as Rename.

– Appends the renamed instruction to the instruction queue Qp.

If there is an uncommitted Cond instruction issued from a processor, the
next instruction to be issued is undefined. Hence an instruction can be issued by

a processor only if there is no Cond instruction in the corresponding instruction
queue. Similarly, if the value of a dynamic register is undef, a read or write
instruction dereferencing that register cannot be issued.

If the instruction is a read/write instruction, then the corresponding read/
write item is added to the pomset corresponding to the memory location involved
in that instruction. The write items do not have the value defined.If the instruc-
tion is a synchronization instruction, then the corresponding release/ acquire
item is added to all the pomsets. To mark that the synchronization instruction
has not committed, the memory location in the corresponding release/ acquire
item is kept undefined. The newly added items are ordered after the existing
items from the same processor. The operation of adding an item I to a pomset
P during issue is denoted by IssueUpdate and is formally defined in Figure 3,
where Pid maps an item to the corresponding processor. The map δp is updated
accordingly.

IssueUpdate ≡ λI.λP.(S′,�′)
where

P = (S,�)
S′ = S ∪ {I}
�′ = � ∪ {(e, I) | e ∈ S

∧(Pid(e) = Pid(I) ∨ Pid(e) = >)}

Fig. 3. Issue Update

Figure 4 shows the for-
mal rules for issue by an ar-
bitrary processor p. Issue-Rd,
Issue-Wr, Issue-Acq, Issue-Rel
and Issue-Gen are the rules
for issue of read, write, ac-
quire, release and other types
of instructions, respectively.
Ω[C1; . . . ;Cn] denotes a state
which is equal to Ω except the

changes C1, . . . , Cn, in that order. Any change Ci can have two forms: M |M ′

denotes the state component M is modified to M ′ and if M is a map, M{x→ v}
denotes that M(x) is updated with the value v. In the quantifiers, x ranges over
the set of memory locations. If l is the address of a memory location, [l] denotes
the corresponding memory location. The list append operation is denoted by
“.”.

3.5 Semantics of Commit

Actions in the queue can be committed out-of-order, as long as it follows the
following ordering restrictions:

– Synchronization actions must be committed in program order.
– Any action must be committed after any local acquire action issued before

it.
– Any action must be committed before any local release action issued after

it.
– Any read action can commit only if there is no local uncommitted write to

the same memory location issued before it.
– Any action reading a register can be committed only if the value of all

registers read in the action are not undef.

(Issue-Rd)

inst ≡ r1 = [r2] Cond ∩Qp = ∅ I = DI 〈p〉
l = σp(µp(r2)) 6= undef P = IssueUpdate(I,Π([l]))

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π{[l]→ P}; δp{inst→ I}]

(Issue-Wr)

inst ≡ [r1] = r2 Cond ∩Qp = ∅ I = WI 〈∗, p〉
l = σp(µp(r2)) 6= undef P = IssueUpdate(I,Π([l]))

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π{[l]→ P}; δp{inst→ I}]

(Issue-Acq)

inst ≡ acquire[r] Cond ∩Qp = ∅ I = AI 〈∗, p〉
Π ′ = ∀x : Π{x→ IssueUpdate(I,Π(x))}

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π|Π ′; δp{inst→ I}]

(Issue-Rel)

inst ≡ release[r] Cond ∩Qp = ∅ I = RI 〈∗, p〉
Π ′ = ∀x : Π{x→ IssueUpdate(I,Π(x))}

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π|Π ′; δp{inst→ I}]

(Issue-Gen)
inst /∈ Rd ∪Wr ∪ Sync Cond ∩Qp = ∅
〈t : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst)]

Fig. 4. Rules for Issue of an Instruction

– An acquire action can commit only if the corresponding memory location is
not acquired or acquired by the same processor. A release action can commit
if the memory location is already acquired by the same processor.

Informally, the effects of a commit on the program state are as follows. Here
p refers to the processor performing the operation and inst refers to the dynamic
instruction corresponding to the operation. Note that the registers mentioned
here are the dynamic ones, already renamed during issue.

Read (r1 = [r2]): Updates σp(r1) with the value read. The value read can
be any value from the set of write items returned by the function Consis-
tentRead, defined in Figure 5, where x is the memory location read, I is
the corresponding read item (given by δp(inst)) and Val returns the value
associated with a write item. This function returns the set of complete write
items such that there is no intervening write item between any returned
write item and the read item in the pomset order and any returned write
item is not ordered after the read item. Note that the relation � is closed
transitively after each update (see Section 3.1). The read cannot commit if
the returned set is empty.

Write ([r1] = r2): Completes the corresponding write item (given by δp(inst))
with the value of the local register (given by σp(r2)).

ConsistentRead ≡
λx.λI.{e | Π(x) = (S,�)

∧ e ∈ S ∧ e ∈WI
∧ @e′ ∈WI : e ≺ e′ ≺ I
∧ ¬(I ≺ e)
∧ Val(e) 6= ∗}

Fig. 5. Consistent Read

CommitUpdate ≡
λI.λP.(S′,�′) where
P = (S,�)
S′ = S
�′ = � ∪ {(e, I) | e ∈ S

∧e ∈ RI
∧MemLoc(e) = MemLoc(I)}

Fig. 6. Commit Update

Local computation (r = exp): Evaluates the local expression on RHS using
the values given by σp and updates σp(r). The evaluation of the expression is
denoted by Evaluate function. If any of the local registers on RHS has value
undef, Evaluate returns undef. Otherwise it follows the natural semantics
of expression evaluation.

Acquire (acquire [r]): Completes the corresponding acquire item (given by
δp(inst)) with [σp(r)].3 Also modifies the lock state of the memory location
[σp(r)].

Release (release [r]): Completes the corresponding release item (given by
δp(inst)) with [σp(r)]. Also modifies the lock state of the memory location
[σp(r)].

Commit of any acquire action also updates the partial order of memory states.
It makes the corresponding acquire item ordered after all previously committed
release items on the same memory location. This operation, referred as Commi-
tUpdate, is defined in Figure 6, where I is the acquire item, P is the pomset and
MemLoc maps an acquire/release item to the memory location associated with
it.

Cond and Jmp actions do not change the state, except removing themselves
from the instruction queue.

Figures 7 show formal rules for committing an action. Note that the registers
in these instructions are already renamed to dynamic names. We do not show
the obvious requirement that the committing instruction must be present in
the instruction queue and after it is committed, it is removed from the queue.
Pre(q, i) denotes the set of actions in instruction queue q which were issued
before the action i and Post(q, i) denotes the set of actions in instruction queue
q issued after i, where i ∈ q. Wr(x) denotes the set of write actions to the
memory location x. We follow all the conventions defined in Section 3.4.

3.6 Abstract Execution

Although the trace execution semantics (Section 3.2) helps in generating and
traversing executions of a program, it is sometimes useful to view the executions

3 Note that the update of pomset item by commit of a synchronization instruction
affects all pomsets as the synchronization item is added to all the pomsets during
issue.

(Commit-Rd)

inst ≡ r1 = [r2] l = σp(r2) WI 〈v, p′〉 ∈ ConsistentRead([l], δp(inst)))
Pre(Qp, inst) ∩Acq = ∅ Pre(Qp, inst) ∩Wr([l]) = ∅

〈p: commit(inst), Ω〉 → Ω[σp{r1→ v}]

(Commit-Wr)

inst ≡ [r1] = r2 l = σp(r1) v = σp(r2) 6= undef Pre(Qp, inst) ∩Acq = ∅
〈p: commit(inst), Ω〉 → Ω[δp{[l]→WI 〈v, p〉}]

(Commit-Loc)

inst ≡ r = exp v = Evaluate(σp, exp) 6= undef Pre(Qp, inst) ∩Acq = ∅
〈p: commit(inst), Ω〉 → Ω[σp{r→ v}]

(Commit-Acq)

inst ≡ acquire [r] l = σp(r) (L([l]) = 〈0〉 or L([l]) = 〈p〉)
L′ = L{[l]→ 〈p〉}

δ′
p = δp{inst → AI〈[l], p〉}

Π ′ = ∀x : Π{x→ CommitUpdate(δ′
p(inst), Π(x))}

Pre(Qp, inst) ∩ Sync = ∅
〈p: commit(inst), Ω〉 → Ω[L|L′; δp|δ′

p; Π|Π ′]

(Commit-Rel)
inst ≡ release [r] l = σp(r) L([l]) = 〈p〉

L′ = L{[l]→ 〈0〉}
δ′

p = δp{inst → RI〈[l], p〉}
Pre(Qp, inst) = ∅

〈p: commit(inst), Ω〉 → Ω[L|L′; δp|δ′
p]

Fig. 7. Rules for Committing an Instruction

as abstract executions, in the style of [9], where the actions are related by few
causal orders. In this section we show how a complete WOMM trace execution
can be naturally translated to an abstract execution.

More specifically, an abstract execution is a tuple 〈P,A, po→, so→,W, V, sw→, hb→〉,
where P is the program, A is the set of actions executed,

po→ is the program
order, so→ is the synchronization order, W is the write seen function, V is the
value written function, sw→ is the synchronizes-with relation and hb→ is the happens-
before relation. We define each component of the tuple in context of a complete
WOMM execution as below:

– P is the closed program.
– A is the set of actions issued and committed. Note that in a complete exe-

cution, all issued actions are committed.

– Given two actions i and i′, i
po→ i′ iff issue(i) ob→ issue(i′) and Pid(i) =

Pid(i′).

– Given two synchronization actions i and i′, i so→ i′ iff commit(i) ob→ commit(i′).

– W (r) = w, if the read action r reads the value written by the write action
w.

– V (w) = v, if the write action w writes the value v.
– A release action i synchronizes-with an acquire action i′ if MemLoc(i) =

MemLoc(i′) and i
so→ i′.

– Happens-before relation is the transitive closure of synchronizes-with and
program order relations.

It should be noted that there can be multiple complete trace executions
corresponding to a single abstract execution. All such executions lead to the
same final observable state.

4 Relaxed Behaviors Allowed by WOMM

Initially, x == y == 0

Proc 1: Proc 2:

r1 = x; r2 = y;

y = 1; x = 1;

r1 == r2 == 1 is allowed by WOMM

Fig. 8. Behavior Allowed by WOMM

A large class of hardware optimiza-
tions can be described as reordering
of locally independent actions, sim-
ply referred as independent actions.
In the code fragment from Figure 8,
the processors can reorder the writes
before the reads as they access dif-
ferent memory locations, resulting in

the behavior described. WOMM allows this behavior in the trace execution
〈issue(r1 = x), issue(r2 = y), issue(y = 1), issue(x = 1), commit(y = 1),
commit(x = 1), commit(r1 = x), commit(r2 = y)〉. Note that the semantics al-
low this trace. Before the commit of read of x in Proc 1, the pomset of x contains
three items — two write items WI 〈0,>〉, WI 〈1, 2〉 and a read item DI 〈1〉. The re-
lations in the pomset are as follows: {WI 〈0,>〉 ≺WI 〈1, 2〉,WI 〈0,>〉 ≺ DI 〈1〉}.
From the definition of ConsistentRead (Figure 5), the read can see the value
1. Similarly, the read of y can also see the value 1, thus making this behavior
possible. The behavior in Figure 1 is also allowed by WOMM in a similar way.

We present the formal definition of independent actions as follows.

Definition 1 (Independent Actions). Let s1 and s2 be two actions from the
same processor p in an execution such that s1

po→ s2. They are independent if all
of the following are true:

1. s1 and s2 are not conflicting accesses.
2. There is no data flow from s1 to s2 through a register.
3. s1 is not an acquire.
4. s2 is not a release.
5. Both s1 and s2 are not synchronization instructions.
6. s1 is not a conditional branch.

The following theorem states that a processor can reorder independent in-
structions at runtime under WOMM semantics.

Theorem 1. Let at any point of an execution E, s be an action issued by a
processor p but not yet committed. The action s can commit immediately if all
the uncommitted actions by processor p are independent with s.

Proof. Proof of this theorem follows directly from the definition of independent
actions and the semantics of commit (Figure 7). ut

The memory subsystems and the communication networks of relaxed mul-
tiprocessor platforms often do not guarantee strict ordering of “events”. In the
example of Figure 2, the writes by Proc 1 are seen in different orders by the
reads of Proc 2 and Proc 3. WOMM allows this behavior by committing the
writes from Proc 1 before any reads. As Proc 1 is not synchronized with Proc
2 or Proc 3, the reads can see any of the writes from Proc 1. Note that this
behavior cannot be produced by simply reordering independent actions.

In Section 5 we show that WOMM is weaker than the traditional hardware
memory models such as TSO, PSO, RMO etc. This implies that WOMM allows
all runtime optimizations allowed by those models.

5 Relationship with Other Memory Models

In this section, we show that WOMM is strictly weaker than the Location Con-
sistency (LC) memory model [7]. As the LC is weaker than many common hard-
ware memory models (such as TSO, PSO [2], Release Consistency [10]), this in
turn, makes WOMM weaker than those traditional memory models. Hence, any
runtime optimizations allowed by the these hardware memory models are also
allowed by WOMM.

Theorem 2. WOMM is strictly weaker than the Location Consistency memory
model.

Proof. As the LC semantics do not allow explicit reordering of instructions,
an LC execution [7] can be viewed as a trace execution, where an issue of an
instruction is immediately followed by the commit of the same and the ordering
of those instructions is consistent with the program and synchronization order.
The write and the synchronization instructions update the pomset the same way
as WOMM’s IssueUpdate (Figure 3) and CommitUpdate (Figure 6) functions. A
read instruction in LC gets its value from the pomset, restricted by the following
constraints — the write item is either not ordered before the read, or there is no
other intervening write item in the pomset relation. As the instructions are not
reordered and the execution respects all uniprocessor control dependencies, it is
not possible for a read to see a write item which is ordered after the read. Hence
the constraints imposed on read by the LC are equivalent to the ConsistentRead
function. Hence it is easy to see that this trace is allowed by the WOMM. As a
result, given a program, any observable state reachable under the LC semantics
is also reachable under WOMM.

The example in Figure 8 shows that WOMM is strictly weaker than the LC.
In the LC, as at least one read must commit before the writes with value 1, both

r1 and r2 cannot be 1 simultaneously. But this is possible in WOMM as the
writes with value 1 can commit first followed by the reads and both the reads
can see the value 1. ut

6 The DRF Guarantee

Designers of memory models face two conflicting goals — on one hand, the
semantics should be strong enough so that it is easy for the programmers to
understand it (e.g. the SC); on the other hand, it should be weak enough to
allow different optimizations. A compromise between these two goals is reached
via the DRF guarantee.

Definition 2 (Datarace-Free Program). In an execution, a pair of instruc-
tions accessing the same shared-memory location are called conflicting accesses if
at least one of them is a write. A (closed) program is called datarace-free (DRF)
or correctly synchronized if all pairs of conflicting accesses in any sequentially
consistent execution of that program are ordered by happens-before.

Definition 3 (DRF Guarantee). Relaxed memory models with the DRF guar-
antee ensure that any execution of a datarace-free program under the relaxed
memory model is equivalent to some sequentially consistent execution of that
program.

This property is highly desirable for weak memory models as it ensures
that programmers need not worry about the weak memory models as long as
they write only correctly synchronized programs. In this section, we prove that
WOMM gives the DRF guarantee. To show that WOMM has this property, we
first state the following lemma in context of an abstract execution allowed by
WOMM.

Lemma 1. In a WOMM execution of a correctly synchronized program, if each
read sees a write that happens-before the read, then the execution has sequentially
consistent behavior.

This lemma is proved in [9] for the Java Memory Model. The same proof can be
used in the context of an abstract WOMM execution.

The following lemma states a connection between the relation of pomset
items at any state of a WOMM trace execution and the happens-before relation
of the abstract execution equivalent to the trace.

Lemma 2. Consider a WOMM trace execution E. Let I and I ′ be two complete
pomset items, corresponding to the instructions i and i′ respectively, belonging
to the same memory location at any state Ω during E. Let EA be the abstract
execution equivalent to E. I ≺ I ′ in Ω iff i

hb→ i′ in EA.

This lemma is proved in Appendix A.
Now we prove the following theorem stating that WOMM provides the DRF

guarantee.

Theorem 3. Any abstract execution of a correctly synchronized program allowed
by WOMM is equivalent to a sequentially consistent execution.

Proof. Let EA be an abstract execution of a correctly synchronized program
P allowed by WOMM and E be a trace execution of P equivalent to EA. By
Lemma 1, if EA is not equivalent to any SC execution of P , there must be at
least one read that sees a write that does not happen-before it. Using Lemma 2,
when such a read commits in E, the corresponding read item ID will not be
related to the write item IW it sees. Let r be the first such read, which sees a
unrelated write w, to commit in E. Using Lemma 2, all reads committed before
r see writes that happen-before them.

We construct a complete trace execution E′ from E the following way. Let
A′ be the set of last committed instructions from each processor (in ob order)
when r is committed in E. We then include in A′ all instructions of E that pre-
cede those instructions in program order. Some of such instructions may not be
committed when r is committed in E. In E′, those instructions are committed in
program order such that each read sees a write that happens-before it (that is,
the corresponding read item is ordered after the seen write item in the pomset).
Note that none of these incomplete instructions can be an acquire instruction,
according to the semantics of commit. Hence, instructions from different pro-
cessors can be committed in any order consistent with program order, without
affecting the happens-before relations. At last, the read r is modified such that
it also sees a write that happens-before it. Note that, this completion does not
affect the already committed instructions, neither does it introduce any new sw
edge.

Let us consider the execution E′
A corresponding to the complete execution

E′. In E′
A, each read sees a write that happens-before it. Hence, by Lemma 1, it

must be equivalent to an SC execution, but there is a write w and a read r to the
same memory location which are not related by happens-before. This contradicts
the fact that the program is correctly synchronized. Thus, there cannot exist any
read in EA which sees a write that does not happen-before the read. Hence, by
Lemma 1, the execution EA is equivalent to an SC execution. ut

7 Related Work

Most of the early works in relaxed memory models for hardware multiprocessors
has been summarized in [3]. Shen et al [11] shows that breaking an instruction
into finer-grained operations and using an abstract semantic cache can lead to
weak memory models. The notion of abstract shared memory state used in the
Location Consistency memory model [7] is very similar to our memory model.
A recent work [6] developed rigorous axiomatic semantics of multiprocessor ma-
chine code for x86 architectures.

Some recent works have stressed the need for precise, concrete, operational
style specification of memory models [12, 13]. Boudol et al [14] shows how oper-
ational specification of memory models help in proving the DRF guarantee for
such models.

Verifying concurrent programs under relaxed memory models requires precise
specification of the memory model. Burckhardt et al [15] exhaustively check
all executions of a concurrent program under a relaxed memory model that
allows certain reordering and buffering. In our earlier works, we formalized the
memory model for C# [16] and proposed an operational approximation of the
Java Memory Model [17] and developed memory model sensitive model checkers
to find bugs in concurrent C# and Java programs.

8 Conclusion and Future Work

In this paper, we have presented a weak operational multiprocessor memory
model. Our work is useful for understanding such models at an abstract level. The
compiler writers and low-level programmers can follow this semantics without
going into the details for each hardware memory model separately. We have
shown that our proposed semantics is weak enough to allow many hardware
optimizations. We formally compared it with the Location Consistency model.
The operational style of our specification enables traversal and enumeration of
executions of a given program that are allowed by the model, helping in easy
integration into model checkers.

In future, we plan to extend our memory model to also allow speculative
execution of instructions. We also plan to integrate the current model to state
space exploration tools (such as software model checkers) for memory model
sensitive program reasoning.

References

1. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput. 28(9) (1979) 690–691

2. David L. Weaver and Tom Germond, Prentice Hall Publishers: The SPARC Ar-
chitecture Manual : Version 9. (1994)

3. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Computer 29(12) (1996) 66–76

4. Intel: Intel 64 and ia-32 architectures software developer’s manual volume 3a: Sys-
tem programming guide. http://www.intel.com/Assets/PDF/manual/253668.

pdf

5. AMD: Amd64 architecture programmer’s manual (2007)

6. Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen,
M.O., Alglave, J.: The semantics of x86-cc multiprocessor machine code. In:
POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, New York, NY, USA, ACM (2009) 379–
391

7. Gao, G.R., Sarkar, V.: Location consistency — a new memory model and cache
consistency protocol. IEEE Trans. Comput. 49(8) (2000) 798–813

8. Intel: A formal specification of intel itanium processor family memory ordering.
http://www.intel.com/design/itanium/downloads/251429.htm (October 2002)

9. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: POPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM (2005) 378–391

10. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: Computer Architecture, 1990. Proceedings., 17th Annual International
Symposium on. (May 1990) 15–26

11. Shen, X., Arvind, Rudolph, L.: Commit-reconcile & fences (crf): a new memory
model for architects and compiler writers. SIGARCH Comput. Archit. News 27(2)
(1999) 150–161

12. Nardelli, F.Z., Sewell, P., Sevcik, J., Sarkar, S., Owens, S., Maranget, L., Batty, M.,
Alglave, J.: Relaxed memory models must be rigorous. In: Exploiting Concurrency
Efficiently and Correctly Workshop. (2009)

13. Mador-Haim, S., Alur, R., , Martin, M.M.: Specifying relaxed memory models
for state exploration tools. In: Exploiting Concurrency Efficiently and Correctly
Workshop. (2009)

14. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In:
POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, New York, NY, USA, ACM (2009) 392–
403

15. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of
concurrent data types on relaxed memory models. In: PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language design and
implementation, New York, NY, USA, ACM (2007) 12–21

16. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification.
Form. Methods Syst. Des. 31(3) (2007) 281–305

17. De, A., Roychoudhury, A., D’Souza, D.: Java memory model aware software valida-
tion. In: PASTE ’08: Proceedings of the 8th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, New York, NY, USA, ACM
(2008) 8–14

A Proof of Lemma 2

Proof. If I ≺ I ′ at some state Ω in E, then, from the definition of IssueUpdate
(Figure 3) and CommitUpdate (Figure 6), either i and i′ are from the same pro-
cessor and issue(i) ob→ issue(i′), or there is a sequence of synchronization instruc-
tions s1, s′

1, . . . , sn, s
′
n such that each sj and s′

j are release and acquire instruc-
tions on the same memory location respectively, s′

j and sj+1 are from the same

processor, issue(i) ob→ issue(s1) ob→ commit(s1) ob→ commit(s′
1) . . . commit(s′

n) ob→
commit(i′) and issue(s′

n) ob→ issue(i′) (i might be same as s1 and s′
n might be

same as i′). From Section 3.6, it implies that in EA, i
po→ s1

sw→ s′
1 . . . s

′
n

po→ i′.
From the definition of happens-before relation, i hb→ i′.

Conversely, if i hb→ i′, either i
po→ i′, or there are instructions i1, i′1, . . . , in, i

′
n

such that i
po→ i1

sw→ i′1
po→ i2 . . . in

sw→ i′n
po→ i′, where each ij is a release and i′j

is an acquire action. In the first case, clearly I ≺ I ′. In the second case, from
the semantics of commit, when i′ commits, all these instruction must already be

committed. From IssueUpdate and CommitUpdate, the pomset items of each of
these instructions are ordered after the pomset item of the previous instruction.
Hence, I ≺ I ′. ut

