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ABSTRACT

Intuitively we know, some software errors are more complex
than others. If the error can be fixed by changing one faulty
statement, it is a simple error. The more substantial the fix
must be, the more complex we consider the error.

In this work, we formally define and quantify the com-
plexity of an error w.r.t. the complexity of the error’s least
complex, correct fix. As a concrete measure of complexity
for such fixes, we introduce Cyclomatic Change Complexity
which is inspired by existing program complexity metrics.

Moreover, we introduce CoREBench, a collection of 70
regression errors systematically extracted from several open-
source C-projects and compare their complexity with that
of the seeded errors in the two most popular error bench-
marks, SIR and the Siemens Suite. We find that seeded er-
rors are significantly less complex, i.e., require significantly
less substantial fixes, compared to actual regression errors.
For example, among the seeded errors more than 42% are
simple compared to 8% among the actual ones. This is a
concern for the external validity of studies based on seeded
errors and we propose CoREBench for the controlled study
of regression testing, debugging, and repair techniques.

Categories and Subject Descriptors: D.2.5 [Software
Engineering] Testing and Debugging

General Terms: Theory, Measurement, Experimentation

Keywords: Error Complexity, Coupling Effect, Regression

1. INTRODUCTION
Software errors can be arduous. Their fixes can account

for half of the code changes even in well-tested software [4].
Before they are fixed, they can remain in the program for
many years, causing problems for the software users. When
they are fixed, these fixes can introduce even further errors.

Related processes can be automated based on our under-
standing of the inherent nature of software errors. Testing
techniques seek to expose errors; debugging techniques seek
to determine the faulty source code for an error; and repair
techniques seek to fix the faulty source code.
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Two properties of errors are complexity and detectability.
While the complexity of an error is determined by how sub-
stantial the error’s fix is required to be, the detectability of
an error is determined by the amount of input exposing the
error. Intuitively, an error that is hard to detect may still
require only a simple fix. Offutt [24] relates both properties
and conjectures: the detectability of simple faults is similar
to the detectability of complex faults – the coupling effect
hypothesis. He defines simple faults as ones that can be fixed
by changing one statement while complex faults cannot.

In this paper, we are the first to quantify error complexity
and formally define the term and a metric. The complexity
of an error is determined by the complexity of the correct,
least complex fix of the error. The fix must be correct be-
cause no other errors should be introduced and least complex
because even Offutt’s simple faults can be fixed in multiple
ways, including a complete revision of the program.

To measure the complexity of a fix, we formally define
software change complexity and introduce a concrete change
complexity metric – Cyclomatic Change Complexity (CyCC),
which is inspired by McCabe’s cyclomatic program complex-
ity metric [20]. Program complexity is a measure of the in-
teractions among the various elements of the software. Simi-
larly, we define the change complexity as a measure of the in-
teraction among the various changed elements in the changed
software. We give an efficient algorithm to compute CyCC.

Equipped with our novel error complexity metric we set
out to learn about the nature of complex regression errors.
The two most popular benchmarks for experimentation with
regression errors are the Siemens Suite [13] and SIR [9].
In both cases, most errors were introduced through a pro-
cess called fault seeding. Developers were asked to change
the given programs slightly such that they contain errors of
varying detectability. However, we were not certain about a
varying complexity of the seeded errors and constructed our
own benchmark to compare to actual regression errors.
In this paper, we introduce CoREBench as a collection

of 70 regression errors and compare the complexity of these
to the complexity of the seeded ones in the Siemens Suite
and SIR. We harvested the regression errors in CoREBench

systematically from four widely deployed, well-tested open-
source software projects. Indeed, we find that the seeded
regression errors are significantly less complex, i.e., require
significantly less substantial fixes, compared to the actual
regression errors in CoREBench. For example, among the
seeded errors more than 42% are simple compared to 8%
among the actual ones. This is a concern for the external
validity of studies based on such seeded regression errors.
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We apply our error complexity metric to the regression
errors inCoREBench in order to experimentally investigate
the nature of complex regression errors. Three of our main
findings are enumerated in the following:
• Between the complexity of the change introducing an er-
ror and of the change fixing it seems to be no correlation.
That is, even simple changes can introduce complex errors.
One could say that the cause of a regression error is already
dormant in the code and the change merely triggers it. Or,
the regression errors may be evolving when the program is
and the complexity of errors may change during evolution.
• Between the complexity and life span1 of an error seems
to be no correlation. That is, even complex errors may be
fixed on the same day when they are introduced or a few
years later. This may be indirect evidence that simple and
complex errors are of similar detectability, i.e., coupled [24].
• Change Interaction Errors (CIEs)2 require consistently
more substantial fixes than other types of regression errors
(Non-CIEs). This suggests that CIEs are not only of less de-
tectability [4] but also of greater complexity than Non-CIEs.

We define change complexity as a measure of interaction
among the changed elements and introduce the CyCC as
a concrete metric. Yet, there are other metrics, such as
number of Changed Lines of Code (CLoC), paths, or hunks.
We study CLoC versus CyCC and find: While both rarely
agree on the specific value or rank of a change’s complexity,
they strongly correlate in general. Basically, both indicate
high complexity for substantial change. We believe, CyCC
is a precise and practical measure of change complexity.

In summary, this paper makes the following contributions.

1. Error Complexity Metric. We formally define and
quantify the complexity of an error w.r.t. the complex-
ity of the error’s least complex and correct fix. Investi-
gations into error complexity are relevant for software
testing, debugging, and repair: What is the root cause
of an error that requires a substantial fix? Is a test
suite adequate to expose complex errors? How do we
correctly and efficiently repair complex errors?

2. Change Complexity Metric. We formally define
software change complexity, introduce CyCC as a con-
crete complexity metric, discuss an algorithm to com-
pute the CyCC efficiently based on a graph containing
the control-flow among the changed statements, and
make available a tool that computes the CyCC of any
C source code commit in under one second on average.

3. Regression Error Benchmark. We make available
CoREBench, a collection of 70 realistically complex
regression errors. For each error, we provide the bug
report, the error-introducing source code commit, the
error-fixing source code commit, and a validating test
case that fails for all versions between these commits,
but passes before and after.

4. Empirical Study. We study the complexity of actual
regression errors and establish that seeded errors in
existing benchmarks are significantly less complex.

CoREBench and the implementation of CyCC are available
at http://www.comp.nus.edu.sg/∼release/corebench.

1The life span of an error is the time an error is observable
from when it is introduced to when it is fixed.
2A regression error is a CIE [4] if a sequence of changed
statements must be executed in order to expose the error
while “skipping” one of them does not expose the error.

2. AN ERROR COMPLEXITY METRIC
We define the complexity of an error w.r.t. the complex-

ity of the correct, least complex fix of the error. To mea-
sure the complexity of a fix, we formally define software
change complexity as a measure of the interaction among
the changed elements in a changed program and propose
a concrete change complexity metric. Cyclomatic Change
Complexity (CyCC) directly measures the number of lin-
early independent3 change sequences in a changed program
and is thus inspired by McCabe’s cyclomatic program com-
plexity. Intuitively, CyCC quantifies the amount of changed
decision logic in the program.

351 : intmax_t value = 0;
352 : int sign = (*valuestring == ’-’ ? -1 : 1);
353 : if (sign < 0)
354 : valuestring++;
355 : do {
356 : if (ISDIGIT(*valuestring))
357 : value = 10*value + sign * (*valuestring-’0’);
358 : } while (*++valuestring)
359--: return value * sign;
359++: return value;

Figure 1: Fix of simple error core.6fc0ccf7

Figure 1 shows an example of a simple error in coreutils.
The simplified code fragment parses a valuestring into an
integer value. However, every string containing a negative
number is parsed as a positive number. This error is simple
because only one statement (in line 359) needs to be changed
in order to repair the error.

447++: else if (ent->fts_info == FTS_NS) {
448++: if (ent->fts_level == 0){
449++: reportSymlinkLoop();
450++: } else {
451++: if (symlink_loop(ent->fts_accpath)){
452++: reportSymlinkLoop();
453++: }
454++: }
456++: }

Figure 2: Fix of complex error find.24bf33c0

Figure 2 shows an example of a complex error in findutils.
The bug report states that “find does not report symlink
loop when trying to follow symlinks”. Hence, the developer
adds the presented code fragment to describe conditions un-
der which symlink loops need to be reported. The error
is complex because it requires three additional conditional
statements and several statements to fix it correctly.

2.1 Measuring Change Complexity
Traditional program complexity measures the interaction

among the elements in a software system. So, we can define:

Definition 1 (Change Complexity)

Change complexity is a measure of the interaction among

the changed elements in a changed program.

Note that deleted statements are changed elements never-
theless and can be represented by dummy statements in the
changed program (see e.g., [25]).
3A linearly independent path is a complete path through the
program that introduces at least one new edge that is not
included in any other linearly independent paths.
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As a concrete measure of change complexity, we introduce
CyCC which is computed based on a graph containing the
control-flow among the changed basic blocks – the CSG.

Definition 2 (Change Sequence Graph (CSG) [4])

The change sequence graph of a changed program P ′ is

a directed graph containing as vertices the program en-

try as source, the program exit as sink, and the changed

basic blocks in P ′, with an edge between any two vertices

if control may pass from the first to the second without

passing through a third.

The source vertex is connected through an edge to every
changed basic block that may be executed first, that is, be-
fore some other changed basic block is executed. To the sink
vertex is connected every changed basic block that may be
executed last, that is, after any other changed basic block is
executed. This simplified definition of CSG accounts for all
sequences of changed statements that can be exercised but
not for potential interaction locations (see [4]) and can be
computed from the changed program’s Control Flow Graph.

Figure 3: Change sequence graphs with linear
independent paths (359) (left); (447), (447-448-

449), (447-448-451), (447-448-451-452) (middle); and
(100), (200), (100-200), (200-100), (200-200) (right).

For example, Figure 3 depicts three different CSGs. The
paths through a CSG from source to sink represent different
sequences of changed statements that may be executed. The
CSGs on the left and in the middle are computed for the
changed code fragments in Figures 1 and 2. It is interesting
to note that the size of the CSG depends only on the size
of the changed code and not on the size of the complete
program.

Definition 3 (Cyclomatic Change Complexity)

The complexity of a set of program changes C is defined

with reference to the Change Sequence Graph constructed

for C as CyCC = E −N + 2P , where

E is the number of edges of the CSG,

N is the number of nodes of the CSG, and

P is the number of connected components in the CSG.

Cyclomatic Change Complexity (CyCC) measures the num-
ber of linearly independent sequences of changed statements
from entry to exit in a changed program. We argue that
the changed statements in each sequence may “interact” dif-
ferently. In fact, some sequences are critical in exposing so
called Change Interaction Errors [4] while others are not.
In Figure 3, based on the number of linearly independent
paths in the CSG, we compute a CyCC=1 (left), CyCC=4
(middle), and CyCC=5 (right), respectively.

2.2 Measuring Error Complexity
Before we define and measure the complexity of an error, we
quote the IEEE glossary to define what we mean by error.

Definition 4 (Software Error [15])

A software error is the difference between a computed,

observed, or measured value or condition and the true,

specified, or theoretically correct value or condition.

An error’s detectability is determined by the proportion of
program inputs that expose the error. Such input is said to
fail w.r.t. the error. For example, the code fragment in Fig-
ure 1 parses negative numbers incorrectly. E.g, input setting
valuestring to “-2” fails w.r.t. the error as it produces the
output value of 2 instead of -2. If valuestring is directly
a program input, then the error has a high detectability.

Definition 5 (Error Complexity)

The complexity of an error E is the complexity of the least

complex change required to pass all input that fails w.r.t.

E while the output for all other input remains unchanged.

Intuitively, we define the complexity of an error based on
how substantial its fix must be – without introducing new
errors. For example, the error in Figure 1 can be correctly
repaired with the change of only one statement (line 359).
With CyCC = 1, it is a simple error. The error in Figure 2
can be repaired with a change involving three additional
conditional statements. Assuming short-circuit evaluation
for these conditions (see [12]), the CSG in Fig. 3 (middle)
might be the least complex. The error is of complexity four.

However, we note that other measures, such as number of
changed LoC, paths, or hunks, may assign different specific
values to an error’s complexity. While different measures
may disagree on its specific value or rank, they should cor-
relate in general (see RQ1 in Sec. 5). For instance, if an error
requires a substantial fix involving a high number of changed
LoC distributed over the code, the values for other measures
of complexity should be high as well. We believe that CyCC
is a precise and practical measure of change complexity as
given in Def. 1 and thus of error complexity as in Def. 5.

3. COMPUTING INTER-PROCEDURAL

CHANGE SEQUENCE GRAPHS
We present an algorithm to synthesize the inter-procedural

Change Sequence Graph (CSG) efficiently from the intra-
procedural control-flow graphs of the changed methods and
the call graph of the changed program. The intra-procedural
Control-Flow Graphs (CFGs) of the changed methods are
traversed to establish the control-flow among the changed
basic blocks in the CSG. The Call Graph (CG) of the changed
program is traversed to establish whether a basic block tran-
sitively calls a changed method.
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The inter-procedural CSG is computed more efficiently
than previously in Reference [4] because it does not require
the entire inter -procedural CFG for the complete program.

Algorithm 1 depicts the CSG construction process. Given
two versions of a program, P and P ′, the algorithm com-
putes the inter-procedural CSG. After determining which
methods and basic blocks have changed, the algorithm fol-
lows along the control-flow and method calls from every
changed basic block onwards. If another changed basic block
is found, an edge is added to the CSG between the original
changed basic block and the found one. Then, we establish
whether the original changed basic block can be executed as
first or last changed basic block and a corresponding edge is
added to program entry and exit, respectively.

Algorithm 1 Inter-procedural Change Sequence Graph

Input: Programs P and P ′

1: determine changed methods and basic blocks using diff

2: let CG← constructCallGraph(P ′)
3: let CSG← {entry, exit}
4: for each changed method m ∈ CG do
5: let CFG← constructCFG(m)
6: add all changed basic blocks from CFG to CSG

7: for each changed basic block c ∈ CFG do
8: traverseChange(c, CFG, c)
9: end for
10: end for
11: connectEntryExit()
12:
13: function traverseChange(curr, CFG, c)
14: if curr marked as traversed then return
15: else mark curr as traversed
16: for each bb that directly follows curr in CFG do
17: if bb is a changed basic block then
18: add an edge from c to bb

19: else
20: traverseChange(bb, CFG, c)
21: end if
22: end for
23: for each changed m′ that curr may call in CG do
24: let CFG′ ← constructCFG(m′)
25: traverseChange(CFG′.first, CFG′, c)
26: end for
27: end function
Output: Inter-procedural CSG

In more detail, Algorithm 1 works as follows. First, a
syntactic differencing-tool, such as the Unix diff-tool, de-
termines the syntactic differences between both program
versions (line 1). These differences are used subsequently
to determine in the changed version those basic blocks and
methods that have changed. Then, the call graph is con-
structed for the changed program and the CSG initialized
with entry and exit vertices (lines 2-3). After this initializa-
tion, the algorithm computes the intra-procedural CFG for
each changed method m, adds the changed basic blocks from
the CFG into the CSG, and starts traversing the control-
flow recursively from each changed basic block c onwards
(lines 4-10). Since the method traverseChange is a re-
cursive traversal algorithm, we mark the visited vertices as
such (lines 14-15). If any basic block bb transitively following
c is changed, then add an edge from c to bb (lines 16-21). If c
or any transitively following basic block, transitively calls a

changed method m′, continue traversal from the first basic
block in the CFG′ of m′ (lines 23-26). Finally, the method
connectEntryExit computes the edges from the entry-
vertex to any changed basic block that can be executed first,
that is before some other basic block is executed, and the
edges to the exit-vertex from any changed basic block that
can be executed last, that is after any other changed basic
block is executed (cf. Def. 2). A complete implementation
is discussed in Sec. 4.3.2.

4. EMPIRICAL STUDY

4.1 Objects of Empirical Analysis

4.1.1 CoREBench: Complex Regression Errors

CoREBench is a collection of 70 regression errors that we
systematically extracted from the code repositories and bug
reports of four open-source software projects: Make, Grep,
Findutils, and Coreutils (see Fig. 4).

We chose these projects because they are well-specified,
well-tested, well-maintained, and widely-used open source
programs with standardized program interfaces. The version
history and all bug reports can be publicly accessed on the
GNU homepage.4 The program interfaces and parameters
were specified in POSIX as IEEE standard in 1988 [14].

We built the corpus by (1) identifying a regression-fixing
commit in the 1,000 most recent revisions and a test that
passes after but fails before the fix, and (2) the regression-
introducing commit, such that the same test passes before
and fails after the commit. Regression errors which could
not be reproduced using a test case are not reported. This
was the case for some system- or concurrency-related bugs.

To identify a regression-fixing commit (
Fix

➠ ), we parsed the
commit messages of the 1,000 most recent commits and a file
which highlights recent new features and fixes for keywords,
such as “regression”, “introduced”, and “broken”. Except
for Make, the file and commit messages are sufficiently de-
tailed and may even reference the error-introducing commit.
For Make, we parsed the bug report referenced in the com-
mit messages. Also for Make, we removed seven commits
in which the regression fix was tangled5 with other fixes.
Computing the error complexity based on tangled fixes will
give wrong results. For all regression errors we ensure that
the commit is solely devoted to fixing exactly one error. The
error-witnessing test case was always provided with the bug-
fixing commit or the bug report.

To identify the error-introducing commit (
Reg

➠ ), we used
the error-witnessing test case and a binary search on the
complete version history of the subject. The binary search
is automated using git bisect, which conceptually searches
all revisions before the error-fixing commit to determine the
exact (error-introducing) commit before which the test case
passes (P✓) and after which the test case fails (P✗). For
Coreutils, we add five regression errors that we already
identified in Reference [4]. Finally, we determined two com-
mits describing the lifetime and a test case exposing the
effects of each regression error:

. . .➠P✓

Reg

➠ P✗➠ . . .➠P✗

Fix

➠ P✓➠ . . .

4http://savannah.gnu.org and http://debbugs.gnu.org
5See Reference [11].
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Subject Size Maturity #Commits #Tests #Bug Reports Extract. Period #RErrors
in kLoC 1stcommit total (last year) marked fixed recent 1k commits extracted

Coreutils 83.1 Oct. 1992 27,807 (290) 4772 832 08.05.11 – 06.10.13 22
Findutils 18.0 Feb. 1996 2,031 (43) 1054 312 01.08.05 – 26.10.13 15

Grep 9.4 Nov. 1989 1,307 (31) 1582 66 25.09.01 – 26.10.13 15
Make 35.3 Apr. 1988 2,288 (134) 528 305 01.03.96 – 24.11.13 18

Figure 4: Subjects of CoREBench

Using this approach, we have identified and validated 70
regression errors (incl. six segmentation faults) that were
introduced by 57 different commits. From the time an er-
ror was introduced to the time the error was fixed, it took
on average 1.7 years. Eleven errors were fixed incorrectly.
In these cases the error was indeed removed in the fixed
version. Yet, up to three new errors were introduced that
required further fixes. About one third of the errors were
introduced by changes not to the program’s behavior but to
non-functional properties such as performance, memory con-
sumption, or APIs. In some cases one error would supercede
another error such that the superceded was not observable
for the duration that the superceding remained unfixed.6

4.1.2 Base Line: SIR and Siemens Suite

The Subject Infrastructure Repository (SIR) [9] and the
Siemens Suite [13] are arguably the most popular error bench-
marks. For every correct program version P✓, there are sev-
eral faulty versions P✗. One may evaluate regression testing
and debugging techniques by considering:

P✓

Reg

➠ P✗

Fix

➠ P✓.

The popularity may be due to the provision of test or-
acles, standardized program interfaces, a large number of
test cases, and a uniform format for the materials provided.
Program input and output are clearly defined. Each sub-
ject consists of a “golden version” as test oracle and several
erroneous versions with one fault each. Measuring popular-
ity by the number of citations: In the five years preceding
this paper, the publications associated with the SIR [9] and
Siemens Suite [13] have been cited almost six hundred times.

Figure 5 shows the characteristics of the subjects in both
benchmarks. The number of tests was derived from the file
universe while the number of regression errors was derived
from Fault_Seeds.h that accompanies each subject.

Subject Size #Tests #Regression

in kLoC Errors

S
ie
m

e
n
s
S
u
it
e tcas 0.2 1,608 41

totinfo 0.6 1,052 23
printtokens 0.7 4,130 7

printtokens2 0.6 4,115 10
replace 0.6 5,542 32

schedule 0.4 2,650 9
schedule2 0.4 2,710 10

S
I
R

(C
S
u
b
je
c
ts
) space 6.2 13,585 38

bash 59.8 1,200 32
flex 10.5 628 81
grep 10.1 625 57
gzip 5.7 214 59

make 35.5 795 35
sed 14.4 370 32
vim 122.2 974 22

Figure 5: Subjects of Siemens Suite and SIR

6For instance, find.66c536bb supercedes find.dbcb10e9.

Unfortunately, in both benchmarks almost all errors were
created by manual fault seeding7. We claim that fault seed-
ing introduces a bias towards less complex errors. Our novel
measure of error complexity, for the first time, allows us to
assess the substance and extent of this bias.

4.2 Variables and Measures
Our experiment manipulated two independent variables (IV):

• IV1 Genuineness: There are two categorical factors
of genuineness. Seeded regression errors result from
faults that were manually seeded. Actual regression
errors appear in typical evolving software projects.

• IV2 Regression Cause: We consider two categorical
factors of regression cause. Change Interaction Errors
(CIEs) can be observed only if a certain sequence of
changes is exercised (cf. [4]). All other errors (Non-
CIEs) are regression errors that are not CIEs.

In our experiment, we measured 3 dependent variables (DV):

• DV1 Error Complexity: We consider two measures
of error complexity which is defined w.r.t. the error-
fixing commit. The Cyclomatic Change Complexity
(CyCC) is described in Section 2.2. The Changed Lines
of Code (CLoC) corresponds to the number of exe-
cutable source code lines that were changed. Both are
measured for the version just before the error is fixed.

• DV2 Error Life Span: We measure the error life
span as the number of days between the commit intro-
ducing and the commit fixing the error.

• DV3 Error-Introducing-Commit Complexity:
We measure the error-introducing-commit complexity
as CyCC of the commit introducing the error.

4.3 Experimental Design

4.3.1 Measuring Error Complexity for CoREBench

To investigate the complexity of actual regression errors,
we analyse their actual fixes. But why should the actual
fix be that “least complex, correct” fix describing the error
complexity (see Def. 5)? In fact, for each error there can be
innumerable fixes and not every fix is correct such that not
only the observed error is fixed but also no new errors are
introduced and least complex such that no other correct fix
is of less complexity.

In practice, we neither have all possible fixes nor do we
have all possible test cases that observe that the error (and
only the error) is really fixed. Instead, for the analysis of
CoREBench we put forward the following hypothesis:

Competent Repair Hypothesis.
Software developers write fixes with a complexity as low
as possible and that are close to being correct.

7Except for space, all errors are manually generated.
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First, the Competent Repair Hypothesis (CRH) states that
developers write fixes that are as simple as possible. For sev-
eral errors in CoREBench we found two fixes – the second
fixed the error “more efficiently” or repaired “the root cause”
of the error even though the first fix was already a correct
one.8 Complex fixes are often accompanied by very elabo-
rate explanations why such complex changes were necessary
to fix the error.

Then, the CRH states that developers write fixes that are
close to being correct. Indeed, the fixes for eleven of seventy
errors in CoREBench were incorrect such that the repair of
one introduced a new error. However, in general we believe
that the programmer is likely to fix the error correctly. If
this was not the case, we would register an exponential in-
crease of bug reports. This hypothesis is an instance of the
Competent Programmer Hypothesis [8] which states that
developers “create programs that are close to being correct”.

4.3.2 Infrastructure and Implementation

We implemented Algorithm 1 based on the C Interme-
diate Language (CIL) program analysis framework [22] and
the Unix diff tool to compute the Cyclomatic Change Com-
plexity (CyCC) and the executable Changed Lines of Code
(CLoC) of a code commit as the two measures of DV1. Both,
tool implementation and CoREBench can be downloaded
at http://www.comp.nus.edu.sg/∼release/corebench.

Figure 6: CyCC Tool Implementation

As depicted in Figure 6, the implementation works as fol-
lows. First, the changed version (v2.c) is compiled into an
intermediate file (v2.i) using cilly. Then, our script uses
the diff tool to determine the lines of code that have syn-
tactically changed in v2.c. Note that CLoC is the number of
executable changed lines of code while the syntactic changes
can also comprise comments. If the program version history
is maintained remotely and the changed version is available
on the local machine, our script uses the previous verison
(v1.c) from the repository. Otherwise, its location must be
provided to compute the difference.

Next, CIL can compute the call graph and intra-procedural
control-flow graphs (CFG) for the changed program. Using
the output of the diff-tool, we find the changed methods
in the call graph and the changed basic blocks in the CFGs
of the changed methods. Note that diff detects any line of
a multi-line statement that is changed while CIL only main-
tains the first of the potentially multiple lines of a statement.
We address this issue for the most common multi-line state-
ment (if-conditions) but not for others. Furthermore, top-
level variable and method declarations (e.g., int x;) are not
available in the CIL CFGs and macros are readily expanded.
Thus, modifications of these program elements, as well as
deleted basic blocks, are not reflected in the CIL-CFGs and
the inter-procedural CSG, respectively.
8See commit message of find.b445af98

Once the change sequence graph is synthesized for a source
code commit, our implementation computes the CLoC and
CyCC according to Definition 3. Note that during our ex-
periments, we ignore errors and code commits that yield
“empty” CSGs. For CoREBench, we report the results for
all 70 regression errors. However, for SIR and the Siemens
Suite, several changes were only to variable or method dec-
larations (e.g., change of type) or C macros. While these
were ignored, we report the results for the remaining 259 re-
gression errors in SIR and 108 regression errors in Siemens.

The experiments were run on a Linux machine with Intel
Core2 Quad CPU at 2.83GHz and 4GB of main memory.
On average, it took less than 1 second to compute the com-
plexity of an error.

4.4 Threats to Validity
Construct validity refers to the degree to which a test

measures what it claims, or purports, to be measuring. Three
threats to construct validity are the empirical reliability of
the competent repair hypothesis, the reliability of CyCC
as good measure of error complexity, and the correctness
of the implementation of the measure into the CyCC tool.
(i) The Competent Repair Hypothesis (CRH) links that
theoretical least complex, correct fix specified in Definition 5
to the actual fix of the errors inCoREBench (see Sec. 4.3.1).
Assuming the CRH, we measure the complexity of actual
regression errors based on the actual fixes of these errors. If
the CRH does generally not hold, the actual error complex-
ity may be different from the measured error complexity.
(ii) The CyCC metric may not be a good measure of the
complexity of a fix and thus of error complexity. However,
we note that Definition 3 of CyCC is inspired by an exist-
ing measure of software complexity [20] which itself inspired
Definition 1 of change complexity. We study the relation-
ship to another measure of change complexity (see Sec. 5).
(iii) The CyCC tool may be incorrectly implemented. For
instance, some changed elements, like deleted basic blocks,
are not represented in the computed CSG from which the
CyCC is computed. However, all results are computed us-
ing the same tool, subjecting each (compared) measurement
to the same potential bias. Furthermore, we make available
the source code of the implementation for inspection.

External validity refers to the extent to which the re-
sults of a study can be generalized to other objects which
are not included in the study. One threat to the external
validity is the representativeness of the the chosen objects of
empirical analysis. Indeed, our objects are well-maintained,
open-source C software projects containing regression errors
typical for such projects. However, for instance regression
errors in projects written in other languages, like Java, or
in commercially developed software may be of different kind
and complexity. Hence, the results and conclusion are to be
interpreted in this context.

Internal validity refers to the degree to which the inde-
pendent variable causes the changes seen in the dependent
variable being examined within the study. While it is clear
that (IV1) the actual regression errors are not seeded and
vice versa, it may be that (IV2) regression errors classified as
change interaction errors are not actually change interaction
errors. However, for each regression error, we attempted to
determine the specific sequence of changed statements that
need to be exercised to expose the error. In the results we
note which errors could thus not be classified.
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Figure 7: Cumulative distribution of error complexity for all subjects in each benchmark

5. DATA AND ANALYSIS
We investigate the nature of complex regression errors.

In our main research hypothesis, we claim that the process
of creating errors using manual fault seeding introduces a
bias towards less complex errors. Formally, we submit a null
hypothesis which needs to be rejected in order to empirically
prove this claim. We also find out whether actual, more
complex regression errors have a longer life span and whether
complex errors are introduced by complex commits.

Furthermore, we investigate another measure of change
complexity – the number of Changed Lines of Code (CLoC).
While we cannot directly compare both measures, we find
out whether our Cyclomatic Change Complexity (CyCC)
and CLoC agree on the ranking of two-hundred commits in
terms of their complexity. If so, CLoC and CyCC may be
used interchangeably to assess the complexity of a commit.

Lastly, we use the actual regression errors to study the
prevalence, complexity, and life span of an interesting class
of regression errors – Change Interaction Errors (CIEs; cf.[4]).
We classify a regression error E as CIE if a sequence of at
least two changed statements must be executed in order to
expose E while “skipping” one of the changed statements
does not expose E. Conservatively, we also require that
each change in the sequence can potentially be skipped.

5.1 Research Questions and Null Hypothesis
In statistical inference, the null hypothesis, H0, states

there is no relationship between two measured phenomena.
The null hypothesis can be rejected based on observed data
of a scientific experiment with the conclusion that there is
very likely a relationship. The null hypothesis can never be
accepted as more data may still reveal a relationship.

To test H0, we measure either a difference or the strength
of the relationship. In the first case, we subtract the mean
of one from the mean of the other dataset. In the latter
case, we measure Spearman’s rank correlation coefficient [28]
which is more robust for non-normal distributions than the
common Pearson’s product moment correlation. If we fail
to reject H0 with a very low correlation coefficient, we can
still conclude that if a relationship exists, it is very weak.

• Ha

0
: There is no difference between the complexity of

seeded and actual regression errors.

• Hb

0
: There is no relationship between the complexity

and life span of a regression error.

• Hc

0
: There is no relationship between the complexity

of the error and the commit introducing the error.

Furthermore, we want to answer these research questions:

• RQ1 Can the number of Changed Lines of Code (CLoC)
and the Cyclomatic Change Complexity (CyCC) be
used interchangeably?

• RQ2 What is the complexity, prevalence, and life span
of Change Interaction Errors?

H
a

0
: Seeded vs. Actual Errors (IV1, DV1)

We compare the error complexity (as CyCC) of the seeded
regression errors in the Siemens Suite and SIR with that
of the actual regression errors in CoREBench to study
the effects of IV1 on DV1 and test Ha

0 . For SIR and the
Siemens Suite, we measure the complexity of the errors by
considering the non-faulty versions as the fix for the error
in the faulty versions. For CoREBench, we measure the
complexity of the errors by analyzing the complexity of the
regression-fixing commits and assume the Competent Repair
Hypothesis. Also, for CoREBench we choose the regression
errors such that every regression-fixing commit is designated
to fixing exactly one error only.

0%

20%

40%

60%

80%

100%

 1  10  100  1000

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

Error Complexity

SIR
1-(0.80/x)^1.36

Siemens
1-(0.69/x)^1.08

CoREBench
1-(1.48/x)^0.62

Figure 8: Cumulative distribution of error complex-
ity for seeded errors (SIR and Siemens) vs. actual
errors (CoREBench)

We reject Ha
0 and conclude: seeded regression errors are

significantly less complex than actual regression errors. The
mean error complexity differs by 21.9 for SIR and 21.7 for the
Siemens Suite. Fitting the data to a power-law distribution,
we compute the cumulative distribution functions shown in
Figure 8. The complexity distributions for each subject and
benchmark are shown in Figure 7.

404



Among the seeded errors, simple errors (complexity one)
occur five times more often than among the actual errors.
Specifically, 42% of the seeded errors are simple while only
8% of the actual errors are. Simple errors are characterized
by a localized fault and can often be fixed by changing just
one statement. In contrast to actual errors, the complex-
ity of the seeded errors barely exceeds 10. Less than 1% of
the seeded errors have a complexity of more than 10 com-
pared to 30% of the actual errors. This means, that actual
errors are generally more complex than the errors created
through manual fault injection. The most complex error in
CoREBench is twenty times more complex than the most
complex error in the SIR and the Siemens Suite.

H
b

0
: Life Span vs. Complexity (DV1, DV2)

We compare the life span and complexity of actual regression
errors to study the correlation between DV1 and DV2 and
test Hb

0 . Every commit has a timestamp, so we can compute
the life span of an error by subtracting the timestamp of the
error-introducing from that of the corresponding error-fixing
commit. We measure the complexity using CyCC and depict
the results in Figure 9.
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Figure 9: Correlation of error life span vs. complex-
ity (left), cumulative distribution of life span (right)

We cannot reject Hb
0 and conclude that if a relationship

between the life span and complexity of an error exists, then
it is very weak. We compute a Spearman’s rank correlation
coefficient of ρ = 0.0675 with a two-sided p-value=0.5790.
In other words, even simple errors that are “easy” to fix can
take a very long time to fix. Vice versa, even complex errors
that are difficult to fix can be fixed on the same day as the
error is introduced.

Independent of error complexity, error life span follows a
power-law distribution. Once introduced, 12% of the regres-
sion errors are fixed within a week while half of them stay
undetected and uncorrected for more than 9 months up to
8.5 years. While there is a large number of errors with a
small life span, there is a small number of errors with very
large life span.

H
c

0
: Introducing vs. Fixing Errors (DV1, DV3)

For each actual regression error, we compare the CyCC of
the commit introducing and the commit fixing the error to
study the correlation between DV1 and DV3 and test Hc

0 .
The results are presented in Figure 10. On the left, we show
for each regression error the complexity of the commit intro-
ducing the error versus the complexity of the commit fixing
the error. On the right, we show the cumulative distribution
of error-introducing and error-fixing commits independently.
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Figure 10: Correlation (left) and cumulative distri-
bution (right) of the complexity of the two commits
introducing and fixing an error.

We cannot reject Hc
0 and conclude that if there exists

a relationship between the complexity of an error and the
complexity of the commit which introduces the error, then it
is very weak. We compute a Spearman’s rank correlation
coefficient of ρ = 0.1656 with a two-sided p-value=0.1705.
In other words, even complex errors can be introduced by
simple changes and vice versa. One interpretation is that
sometimes the root cause of some complex regression errors
is already dormant in the program and only “unmasked” in
the changed code. Then, we should consider these changes
as the trigger instead of the root cause of an observed error.
Another interpretation is that the error itself evolves during
its life span due to many other changes to the program.
Then, the complexity of errors may change during evolution.

On average, error-introducing commits are more complex
when compared to error-fixing commits (see Fig. 10 – right).

RQ.1 Changed Lines of Code as Proxy Measure

For 200 random code commits9, we measure the CyCC and
Changed Lines of Code (CLoC), to study the concordance
and correlation of two measures of DV1 (Error Complexity).
Concordance describes the degree to which both measures
agree on the complexity of a set of changes and is measured
using Cohen’s kappa [6]. Full agreement (κ = 1) means that
CyCC rates a set of changes C1 more complex than another
set of changes C2 if and only if CLoC rates C1 more complex
than C2. In contrast, correlation describes the strength of
the relationship and is measured using Spearman’s ρ. Strong
correlation (ρ = 1) means that if CyCC is large than CLoC
is also likely to be large and vice versa.

The results are presented in Figure 11. The Bland-Altman
plot [3] on the left allows us to compare the differences be-
tween the measurements with both measures of complexity
for each commit. The mean (x̄) of these differences is called
bias and the reference interval (x̄ ± 1.96×standard devia-
tion) is called limits of agreement. If the measures tend to
agree, the differences will be plotted near zero. As CLoC
and CyCC are not directly comparable and the power-law
distribution generates strong outliers, we compare the ranks
instead of the measurement values. The rank of measure-
ment lies between one and the number of measurements and
is greater than the rank of another measurement if and only
if the measurement value is greater than that of the other
measurement. The plot on the right depicts the (value) cor-
relation of both measures on a logarithmic scale.

9We chose the 50 most recent code commits in each of the
projects Coreutils, Findutils, Grep, and Make.
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Figure 11: Bland-Altman plot of measurement ranks
(left) and correlation (right) of CLoC vs. CyCC.

Moderate Agreement. The Changed Lines of Code and
Cyclomatic Change Complexity cannot be used interchange-
ably to assess the complexity of a set of changes. The limits
of agreement, shown in the Bland-Altman plot, are far apart
(±59.4 out of 200 ranks). We also compute a Cohen’s kappa
of κ = 0.014 for the measurement ranks (κ = 0.151 for the
values) which indicates only moderate agreement between
both measures on the complexity of a code commit.

Two measures that are designed to measure the same
property (here, change complexity) may not agree but should
have a good correlation. Indeed, we compute Spearman’s
correlation ρ = 0.86 with a two-sided p-value < 0.0001. So,
as the CLoC increases, the CyCC increases and vice versa.

RQ.2 Complexity, Life Span, and Prevalence of
Change Interaction Errors (IV2, DV1, DV2)

We compare the error complexity (as CyCC) and life span of
Change Interaction Errors (CIEs) with the error complexity
and life span of actual regression errors that are not Change
Interaction errors (Non-CIE) to study the effects of IV2 on
DV1 and DV2. We also measure the prevalence of CIEs
among actual regression errors.

The results are presented in Figure 12. In the table, we
show the classification of actual regression errors into CIE,
Non-CIE, and Unclassified. For the latter, the regression
cause could not be identified. On the left, we show the cu-
mulative distribution of the complexity of CIEs versus Non-
CIEs cropped at an error complexity of 50. On the right
side, we show the cumulative distribution of the life span of
CIE versus Non-CIEs on a logarithmic scale.

CIE Non-CIE Unclassified

Coreutils 7 13 2
Findutils 5 7 3

Grep 5 7 3
Make 5 10 3

Total 22 37 11
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Figure 12: Prevalence (top), complexity (left), and
life span (right) of Change Interaction Errors

Error Complexity. CIEs are consistently more complex
than Non-CIEs. The mean complexity of CIEs (20.1) differs
from that of Non-CIEs (9.9) by 10.2. On average 10% more
CIEs exceed any given complexity than Non-CIEs. For ex-
ample, while about 32% of the CIEs exceed a complexity of
10, only 22% of the Non-CIEs exceed the same complexity.
This means CIEs are “more difficult to fix” than other types
of regression errors.

Error Life Span. CIEs and Non-CIEs have a similar life
span. Indeed, the mean life span of CIEs (623 days) differs
from that of Non-CIEs (463 days) by 160 days. However, on
average only 1% more CIEs exceed any given life span than
Non-CIEs. From the chart (Fig. 12–right) it seems evident
that there is no significant difference between the life span of
CIEs and that of Non-CIEs. This means CIEs are manually
“as difficult to find” as other types of regression errors.

Prevalence. Change interaction errors are prevalent.
In fact, 22 of 59 classified actual regression errors can be clas-
sified as CIEs. This means that the existence of change in-
teraction errors as a particular type of regression errors must
be considered during the testing and debugging of evolving
open source C programs. The prevalence and peculiarity
of change interaction errors suggests that CIEs should not
be disregarded during the empirical evaluation of techniques
and methodologies in the scientific research of regression
testing, debugging, and program repair.

In summary, compared to any other type of regression
errors, CIEs are more difficult to expose automatically [4]
while it takes the same time to encounter them manually (cf.
error life span). Once discovered, CIEs are “more difficult
to fix” (cf. error complexity). Since CIEs are prevalent in
open-source C programs, they form an important class of
regression errors that can be studied in CoREBench.

6. RELATED WORK
We first discuss investigations into the relationship of error

complexity and detectability, continue with work related to
quantifying error complexity, and conclude with an overview
of related work on the construction and public provisioning
of a benchmark suite with actual regression errors.

Offutt [24] asserts a relationship between the detectability
and complexity of software errors. He defines a simple fault
as one “that can be fixed by making a single change to a
source statement”while a complex fault is one that can thus
not be fixed. In his coupling effect hypothesis he conjec-
tures that a “test dataset that detects all simple faults in a
program will detect a high percentage of the complex faults”
which holds if and only if the detectability10 of simple errors
is somewhat similar to the detectability of complex errors.
In the present work, we have extended Offutt’s definition of
error complexity to be ordinal rather than nominal.
Andrews et al. [1, 2] confirm that the detectability of simple

errors resulting from auto-generated faults (i.e., mutants) is
similar to the detectability of actual (complex) errors and
conclude that the mutation-adequacy of a test suite is a
good indicator of its fault-detection capability. Namin et al.
[21] caution that this insight is highly sensitive to external
threats mentioning several influential factors that must be
accounted for. In the present paper we have investigated not
the detectability but the complexity of regression errors and

10The detectability of an error is determined by the propor-
tion of input exposing the error (see Sec. 2.2).
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found that the complexity of regression errors resulting from
seeded faults is different from that of actual regression errors.
This raises concerns for the validity of studies based on SIR
and Siemens specifically and on seeded errors in general.

While it is intuitively clear that some errors are simple
and others certainly more complex, we are not aware of any
previous attempt to quantify error complexity. However,
there has been a great effort to understand how to quantify
software complexity [29]. Some established measures of soft-
ware complexity are McCabe’s cyclomatic complexity [20],
Henry and Kafura’s information flow complexity [10], and
Chidamber and Kemerer’s object-oriented complexity [5].
To quantify error complexity, we introduce and compare two
measures – the cyclomatic change complexity (CyCC) and
the number of changed lines of code (CLoC).

A popular technique to extract actual regression errors
from software repositories is the SZZ-algorithm [26, 16].
First, SZZ identifies the error-fixing commit by parsing the
commit messages for relevant keywords. Then, SZZ iden-
tifies the error-introducing commit by blaming the changed
lines in the error-fixing commit. Blaming or annotating is
a function of the repository to determine the commits that
modified or added any given line of code. Fundamentally,
the SZZ-algorithm assumes that the lines changed in the
fix contain the fault location and determines which com-
mit changed these lines previously to introduce the error.
However, we find that the changed lines in the error-fixing
and error-introducing commits in CoREBench do not even
overlap for one in every three regression errors.

Three benchmarks that contain actual program errors are
iBugs [7], BugBench [18], and Marmoset [27]. iBugs

consists of a large number of real bug fixes in the version
history of two Java projects, AspectJ and Rhino. For some
bug fixes, the benchmark also maintains those test cases
that were submitted with the fix. BugBench consists of
mostly memory-related errors while Marmoset contains er-
rors extracted from student projects and may not contain a
representative sample of actual program errors. In contrast
to these, our CoREBench allows us to study regression
testing and regression debugging techniques as well as the
evolution of software errors over several program versions
for up to eight years from error-introduction to fix.

Two benchmarks that contain seeded regression errors in-
troduced by manual fault seeding are the Siemens Suite [13]
and SIR [9]. Both are discussed in detail in the empirical
section of the present paper.

7. CONCLUSION
The research on and development of automated techniques

to expose, locate root-causes of, and repair regression errors
requires an understanding of the inherent nature of such
errors. In order to develop automated regression testing,
debugging, and repair techniques, we need to be aware of
the underlying, general properties of regression errors.

In this paper, we advertise the study of regression errors
with a varying degree of complexity and propose the subjects
in CoREBench, as a collection of actual regression errors,
for such controlled studies. We have analyzed the two most
popular benchmarks, the Siemens Suite and SIR, which con-
tain regression errors with a varying degree of detectability
and found that these errors are often simple and generally
significantly less complex than actual regression errors. In
other words, their fixes were required to be less substantial.

Our novel measure of error complexity enables research
and development of regression testing, debugging, and repair
techniques that account for a varying degree of complexity.
We may ask more refined research questions, such as:

• What is the root-cause of a complex error? If
an error requires a substantial fix, can we assume that
there is just one faulty statement causing the error?
Are faults of complex errors localizable [19]? The an-
swers may have implications for the performance of
(statistical) debugging techniques.

• Test suite adequacy to expose complex errors?
Some widely used metrics of test suite adequacy, such
as statement or branch coverage, are based on the im-
plicit assumption that errors are often simple, i.e., that
the fault is localizable within some branch or statement
which is covered. Now we may be able to investigate
the effectiveness of coverage-adequate test suites w.r.t.
a varying degree of error complexity and may develop
more sophisticated adequacy-criteria that account for
complex errors. Moreover, for the study of the rela-
tionship between simple and complex errors (e.g., see
coupling effect [24]), we can take error complexity as
an ordinal rather than a dichotomous measure.

• How do we repair complex errors? By definition,
the fix of complex errors is more substantial than for
simple errors. The research community has made sig-
nificant progress understanding the automated repair
of (simple) localizable errors [23, 17]. Now we may be
able to evaluate the efficiency of such repair techniques
w.r.t. a varying complexity of the repaired errors.

The artifact evaluation committee of ISSTA 2014 has found
CoREBench and the CyCC tool to exceed expectations.
We hope that our novel error complexity metric and the
many actual regression errors in CoREBench spur a mul-
titude of studies of regression testing, debugging, and repair
techniques and of those assumptions underlying these tech-
niques so as to better understand the nature of complex
regression errors.
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