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ABSTRACT
Debugging field failures can be a challenging task for app-developers.
Insufficient or unreliable information, improper assumptions and
multitude of devices (smartphones) being used, are just some of
the many factors that may contribute to its challenges. In this work,
we design and develop an open-source framework that helps to
communicate, localize and patch energy consumption related field
failures in Android apps. Our framework consists of two sets of
automated tools: one for the app-user to precisely record and re-
port field failures observed in real-life apps, and the other assists
the developer by automatically localizing the reported defects and
suggesting patch locations. More specifically, the tools on the de-
veloper’s side consist of an Eclipse-plugin that detects specific pat-
terns of Android API calls, that are indicative of energy-inefficient
behaviour. In our experiments with real-life apps we observed that
our framework can localize defects in a short amount of time (~3
seconds), even for apps with thousands of lines-of-code. Addition-
ally, the energy savings generated as a result of the patched de-
fects are significant (observed energy savings of up to 29%). When
comparing the patch locations suggested by our framework to the
changes in the patched code from real-life app-repositories, we ob-
served a significant correlation (changes suggested by our tool also
appeared in the source-code commits where the reported defects
were marked as fixed).
Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging
Keywords: Mobile Apps; Debugging; Energy-efficiency

1. INTRODUCTION
Debugging field failures, even for functionality related defects,

can be a challenging process for the developers [1–4]. It can be
even more challenging in the case of non-functional defects (such
as energy-inefficiencies) because such defects depend not only on
the failure-revealing inputs but also on the state of the hardware de-
vice on which the app is executed. Online coding repositories of-
ten provide tools such as issue tracking systems, discussion forums,
etc, to alleviate this problem, however, in many scenarios such tools
are insufficient. Consider the example of Issue 520 (Battery drain
when not in use) for the app MyTracks [5] (more than 10 Million

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobileSoft’16, May 16-17, 2016, Austin, TX, USA
Copyright 2016 ACM 978-1-4503-4178-3/16/05 ...$15.00
http://dx.doi.org/10.1145/2897073.2897085 .

downloads on Google Play Store). Since the original commenter
had reported this issue, a total of 43 people (including project mem-
bers) have participated in the discussion over a period of 4 years to
debug the issue. Participants of the discussion have provided test-
cases and device descriptions, and exchanged various versions of
app files, snapshots, log files, changed devices, etc. However, these
ad-hoc methods have done anything but to further confuse the in-
volved parties. Here is an excerpt from their conversation.

Comment 1
Jul 21, 2011

When I don’t use MyTracks, I don’t expect to see it at
the top of the list of applications draining the battery

Comment 3
Jul 23, 2011

I don’t really understand this issue. I checked the log
but I did not see any suspicious. . . .

Comment 5
Jul 27, 2011

Answer to comment 3: if you examine the log related
to comment 2, you will see that MyTracks has never
been launched but the application still won the third
prize for power consumption.

Comment 35
Oct 3, 2012

. . . Using a battery monitor called "GSam Battery
Monitor", it give more information about what "My
Tracks" is using: "Orientation", and it’s the only
things use by "My Tracks" when it does not track any-
thing (no CPU, no wakelock ..)

Comment 40
Jul 13, 2013

In response to comment 35, we have removed the
"Orientation" sensor in My Tracks version 2.0.5

Comment 41
Jul 13, 2013

I need help to debug this further. . . . wondering . . . I
can email you a few APKs to try.

This example goes on to show how challenging it could be to
communicate and debug defects in real-world apps even when both
the parties (the user who reports the defect and the developer) were
willing to cooperate. As highlighted in our previous work [6], a
mobile app may demonstrate energy-inefficient behaviour due to a
number of reasons (cf Table 2). Some of these defects may only
manifest when complex sequence of interactions (or patterns) oc-
cur during the execution of the app. For example, suboptimal re-
source binding (binding resource too-early or unbinding too late)
may make an app energy-inefficient. Another example could be the
scattered usage of network components that cause power loss due
to Tail Energy [7]. To localise such energy-consumption related
defects, the developer needs to track relevant (energy/computation
intensive) Android API calls in a context-sensitive manner (where,
when, and how within the activity life-cycle). However, such con-
textual debugging information is much beyond user’s capability to
collect for communication. As a result, often the information ex-
changed between the two parties is insufficient, vague and some-
times even misleading.

What is needed to solve this problem is a framework that can pro-
vide a reliable yet succinct means of communicating user-observed
defects and an automated technique to use this communicated in-
formation to localize and debug these defects on the developer side.
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Figure 1: Overview of log-based, energy-inefficiency localization in mobile apps

In this paper we present a framework that can break the com-
munication barriers between users and developers on assisting in
energy-aware debugging. Figure 1 presents an overview of our
framework, which contains two main parts: one for the user and
the other for the developer. The user side tools consist of an in-
strumentation utility, which can automatically instrument a given
apk file, followed by a customized logging utility, which records
the log messages and system states at runtime. To report a defect
the user simply executes the instrumented app, with the failure-
revealing test inputs, on her mobile device, while the logging utility
is running. The log file recorded automatically thus contains all the
information that is needed to localize/patch the defect and can be
sent to the developer.

The developer side tool consists of an Eclipse plugin, in which
the debugging framework has been embedded. Provided with the
log file, the debugging framework generates a profile call graph,
which is subsequently analysed through a contextual analyzer to
identify Android API call patterns for energy-inefficiencies. The
pattern-based fault-localization technique is motivated by the fault-
model presented in [6]. If such patterns are found, the framework
localizes the defect in the app source-code and also suggests po-
tential patch locations. It also provides a visual representation of
observed defect. The framework on the developer side works in an
automated fashion and requires minimal configuration.

Key Contributions:
• We present a practical framework for debugging energy con-

sumption related field failures in mobile apps. Our frame-
work assists the app-user to precisely report the observed de-
fect, and assists the developer to localize, visualize and patch
the reported defect.

• We present a set of Android API call patterns that are indica-
tive of energy-inefficient behaviour in mobile apps. These
patterns are motivated by the fault-model in [6]. We also pro-
vide real-life examples (user-reported issues) for each defect
type.

• We present a context-sensitive analyzer that detects patterns
of energy-inefficient behaviour within the profile call graph
of the app, that is generated from the user-provided log-files
capturing the faulty-scenario. The context, in particular, cap-
tures the dependence among the relevant (energy and/or com-
putation intensive) APIs and the life-cycles stages of an ac-
tivity.

• We provide an open-source implementation of our frame-
work at http://www.comp.nus.edu.sg/~rpembed
/energydebugger/. As far as we know, our toolset is the
first that provides support for energy-aware debugging. Eval-
uation of our framework with real-life apps has shown that it

can localize defects in short amount of time (~3 seconds),
even for apps with thousands of lines-of-code. Additionally,
the energy savings generated as a result of the patched de-
fects are significant (observed energy savings up to 29%).
When comparing the patch locations suggested by our frame-
work to the changes in the patched code from real-life app-
repositories, we observed a significant correlation (changes
suggested by our framework also appeared in the source-
code commits that indicated the observed energy-defect to
be fixed).

2. DETAILED METHODOLOGY
In this section we shall discuss the (i) Instrumentation & Log-

ging, (ii) Profile Graph Generation, (iii) Pattern-based contextual
analysis for energy-inefficient behaviour detection and (iv) Defect
localization and patch suggestion.

2.1 Instrumentation & Logging
Before the app can be executed to generate the log files, it has

to be instrumented by our tool. Table 1 lists some of the packages
from which methods are instrumented by our tool. These methods
can be divided into two categories (i) event-handlers, that are in-
voked on arrival of events and (ii) Android API call that may have
significant impact on the energy consumption. For example, the
package android.app.activity (in the category event han-
dlers), houses the method that are called when an activity is created
(onCreate) or when an activity is paused (onPause), etc. Whereas,
the package android.hardware.* (in the category Android
API calls), houses the methods that are used to access hardware
components such as Sensors and Cameras.

Table 1: Event-handlers and Android API calls that are instru-
mented

Category Type Package Name
Event Activity android.app.activity

Handlers Service android.app.service
Receiver android.content.BroadcastReceiver
Bluetooth android.bluetooth.*
Sensors android.hardware.*
Location android.location.*

Multimedia android.media.*
PowerManager android.os.PowerManager.*

Database android.content.SQLite.*
Android SMS android.telephony.SmsManager

API Telephony android.telephony.TelephonyManager
calls Network (A) android.net.*

Network (J) java.net.URL
IO java.io.*

Cipher javax.crypto.Cipher
Apache Http org.apache.http.*

Thread java.lang.thread



12:31:22.471: DummyEvent: AndroidApp()

12:31:22.471: EventHandler(240049): com\totsp\crossword\shortyz\ShortyzApplication_onCreate()

 . . .

12:31:22.481: EventHandler(240049): Finished_onCreate

12:31:22.481: EventHandler(240049): com\totsp\crossword\BrowserActivity_<init>()

 . . .

12:31:22.486: EventHandler(240049): Finished_<init>

12:31:22.496: EventHandler(240049): com\totsp\crossword\BrowserActivity_onCreate()

 . . .

12:31:22.566: EventHandler(240049): Finished_onCreate

12:31:22.566: EventHandler(240049): com\totsp\crossword\BrowserActivity_onResume()

 . . .

12:31:22.571: EventHandler(240049): Finished_onResume

 . . .

12:31:56.136: EventHandler(240049): com\totsp\crossword\BrowserActivity$5_run()

12:31:56.136: EventHandler(240049): com\totsp\crossword\net\Downloaders_download()

12:31:56.161: EventHandler(240049): com\totsp\crossword\net\ThinksDownloader_download()

12:31:56.171: EventHandler(240049): java/net/URL;-><init>()

12:31:56.231: EventHandler(240049):org/apache/http/client/methods/HttpGet;-><init>()

12:31:59.626: EventHandler(240049): com\totsp\crossword\net\AbstractDownloader_copySream()

 . . .

12:31:59.966: EventHandler(240049): Finished_copyStream()

12:31:59.966: EventHandler(240049): Finished_download(Ljava/util/Date;)Ljava/io/File;

12:31:59.971: EventHandler(240049): com\totsp\crossword\net\Downloaders_processDownloadedPuzzle()

12:32:00.861: EventHandler(240049):  Finished_processDownloadedPuzzle

12:32:06.526: EventHandler(240049): Finished_download(Ljava/util/Date;Ljava/util/List;)V

 . . .

12:32:07.801: EventHandler(240049): Finished_run

 . . .

12:32:31.786: DummyEvent: Finished_AndroidApp 
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Figure 2: (a) Log-messages generated from Shortyz app (b) Partial profile call graph for Shortyz app

Figure 3 shows an example code after instrumentation. Observe
that for the event-handler onCreate both start and end have been
instrumented (lines 3 and 11, respectively). Additionally, the log
messages contain the thread id which helps in resolving ambiguity
in presence of multiple threads. All Android API calls which be-
long to packages described in Table 1 are instrumented in a similar
manner (lines 5 and 6). For certain Android API call we need to
add an additional line of instrumentation to record their parameters.
This because for such Android API calls, their parameters may de-
cide the resultant power consumption. For instance, in Figure 3,
the parameters to the API call setFlashMode decide the state of
flash (off, on, torch, etc) post invocation. Therefore, an additional
line (cf. line 8) has been instrumented.

It is worthwhile to know the instrumentation tool works on apk
file (source files not needed) and is very light weight, hence it can
be run on any commodity machine on the user side. Also it is
relatively easy to use as it does not require any prior configuration.
Once the target apk files have been instrumented, the app-user (who
wishes to report the defect) can execute the instrumented app on her
mobile device. This execution should be done while our logging
utility is monitoring over android debug bridge (adb). To do so,
the user simply needs to connect the mobile-device through a USB
cable to the PC on which the logging utility is running. The log-
ging utility specifically monitors and records the log messages that
are instrumented by the logging utility. In addition, it also records
information relevant to device’s power consumption, such as status
of wakelocks, frequency of GPS updates, etc.

  public void onCreate(Bundle paramBundle)

  {

    Log.i(”EventHandler”,”PackageName\ActivityName\onCreate”+Process.myTid());

    //...

    Log.v("AndroidAPI", "Landroid/hardware/Camera;->open()");

    Camera localCamera = Camera.open();

    //...

    Log.i("Parameters", "Landroid/hardware/Camera$Parameters;->setFlashMode" + "o!");

    Log.v("AndroidAPI”, "Landroid/hardware/Camera$Parameters;->setFlashMode");

    parameters.setFlashMode("o!");

    Log.i("EventHandler", "Finished_onCreate");

 }
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Figure 3: Example of code instrumentation

2.2 Profile Graph Generation
The energy profile graph for an Android app is a dynamic call

graph [8], that represents call dependencies between various sub-
routines that are executed in a given execution of the app. It pri-
marily emphasizes on the method invocations related to energy

consumption and app’s GUI activity life-cycle. Call graph pro-
filing [8–11] has been an effective method of program analysis
and has been used in applications such as performance analysis
and compiler optimizations. For example, in context of perfor-
mance analysis, call-graph profiling has been used to monitor per-
subroutine time consumption, based on which performance bottle-
necks can be identified. The energy profile graph is based on simi-
lar principles but it is bit more sophisticated than the standard call-
graph. Not only does it record the amount of time spent within each
application component, but also records the behaviour of energy-
intensive resources (such as the GPS, Screen, Wifi, etc) and status
of activity life-cycle within a given application. It is worthwhile to
note that such a call graph is possible because of instrumentation
as described in section 2.1.

The log (generated using the logging utility, cf. Figure 1) is a
well-structured, hierarchical text file. The entries in the log file are
ordered by time-stamps. Figure 2(a) shows an example of such a
log file. Note that since an Android app is event-driven, it does not
have an explicit mainmethod. Therefore, for the purpose of clarity
we introduce a pair of dummy events, labelled AndroidApp()
and Finished_AndroidApp(), that represents the start and
end of execution of the app. Such a pair of entry-exit events forms
the basis of the nested hierarchical structure for the call graph, since
for each event-handler e, all of its subroutines, including method-
invocations, are logged within the (entry-exit) pair of events for e.
In Figure 2, such an entry-exit pair can be found on lines 15 and
28, respectively, and examples of method-invocation can be found
on lines 18 and 19.

During the log-file parsing (to generate the profile call graph), we
also create two axillary data structures: AndroidActivityTable and
ResourceActivityTable. As the name suggests, the AndroidActivi-
tyTable keeps track of activity related nodes (such as onCreate,
onResume) in the profile call graph, and ResourceActivityTable
keeps track of nodes related to energy-intensive resources. The ac-
tual processing of the log-file happens in two passes:
First Pass: For each event-handler, entry-exit events are matched.
Method-invocations that are related to energy-intensive resources
are recorded in the ResourceActivityTable. Activity stages are recorded
in AndroidActivityTable. Two implementation issues that may arise
during this pass are as follows:

Abnormal Exits Abnormal exits (from method calls) may hap-
pen due to runtime exceptions. This may create unmatched
method call (entry-exit) pairs in the log file. To detect such



issues, we maintain an environment stack. When an exit
event does not match with the top entry event in the envi-
ronment stack, it implies that the method call corresponding
to the top entry event, may have had an abnormal exit.

Multi-Threading Log messages from multiple simultaneously ex-
ecuting threads (within the app) can also disrupt the balanced
entry-exit pairs in the log file. To counter this issue, our run-
time logging utility records the thread ID for each logged
event. This allows us to do the entry-exit pair matching for
each thread.

Second Pass: Well-balanced, (entry-exit) paired events are used to
construct a hierarchical call-dependency graph, where each node
contains the following fields supporting the first-child/next-sibling
representation:

class Node {
Node firstChild; // first subroutine child
Node nextSibling; // next sibling subroutine
Node parent; // parent caller
String className; // class for current method
String methodName; // current method name
long timeStamp; // logging timeStamp
long runtime; // runtime between entry-exit events
boolean MPCC; // if method contains Android API calls
... // of interest

}

Figure 2(b) shows a partial call graph for one of the analysed apps,
where rectangular nodes are used to represent event-handler nodes
and round nodes are used to represent Android API calls.

2.3 Patterns for Energy-inefficient Behaviour
Table 2 presents a list of energy-inefficiency related defects com-

monly observed in mobile apps. For each defect category, we present
the pattern of Android API calls that indicate energy-inefficient be-
haviour, the set of affected components and a real-world example
along with user comments, where such a defect has been observed.
These defect patterns are derived from the energy-inefficiency fault-
model presented in our previous work [6].

Most of the patterns (Pdefectcategory) in Table 2 are represented
using a context-free grammar. The symbols acomponent, ucomponent

and rcomponent are used to denote the Android API calls for ac-
quire, usage and release of a component. Whereas, the symbol
xcomponent is used to denote all Android API calls not associated
with a component. The symbols ε, a, u, r, x are used as terminals,
whereas the symbols Q and X are used as variables. Rest of sym-
bols used in the patterns retain their conventional meaning.

The patterns for Pimmortality bug and Ploop hotspot require some addi-
tional explanation as they use non-standard notations. Pimmortality bug,
in particular, is a disjunction of three separate scenarios. Specifi-
cally, if patterns consistent withPresource leaks, Pwakelock bugs orPvacuous services

are detected and localized to a program location which is restarted
every time the system (mobile device) is rebooted, then our frame-
work reports the presence of an immortality bug. For this defect
category, we define two additional functions PL and Launchon-
Reboot. The function, PL : Pdefectcategory → location, pro-
vides the program location (〈class,method, lineno〉) for a given
pattern (specifically the beginning of the pattern). The function,
LaunchOnReboot : location→ boolean, is used to determine the
feasibility of a given program location to be launched at reboot. It
is worthwhile to know that for Android apps, it is possible to de-
sign such a function because the relevant information (which meth-
ods will be launched on reboot) is provided statically by means of
AndroidManifest.xml. Specifically, the function LaunchOn-
Reboot keeps a map of all Receivers or Activities that have
registered for the BOOT_COMPLETED broadcast intent.

Loop-energy hotspot (Ploop hotspot) represents the scenario where
an energy hotspot, i.e. Psuboptimal binding, Ptail energy or Pexpensive services,
is localized to a loop in the app source code. Being executed in
a loop can magnify the impact of such defects and therefore may
need additional re-factoring effort. An additional function, InLoop :
location → boolean, is added which can tell if a program lo-
cation falls within the boundaries of a loop construct (i.e. for,
while, do-while). In the following paragraphs, we shall out-
line the overall algorithm for pattern-detection. However, for the
purposes of brevity we shall limit our discussion to only two defect
patterns (Presource leaks and Ptail energy).

2.4 Contextual Analysis for Energy-inefficient
Pattern Detection

The fault-localization process begins by analysing the contextual
dependency among Android API calls, activity events, and other
work loads, within the profile call graph. Our contextual analysis
focuses on the innermost activity cycle for each energy-related An-
droid API call to identify patterns that are associated with energy-
inefficient behaviour. The main purpose of our contextual analysis
is to extract a contextual subgraph which contains the following
information:

WHEN the runtime scenario in which the foreground appli-
cation activity lies, e.g., Activity.onResume() and
Activity.onPause(). The when-context will help de-
velopers to replay the scenario when energy bugs or
hotspots happen.

HOW the sequence of Android API call showing how the re-
lated hardware resource is acquired, used, and released,
if any. The how-context is valuable to identifying the
faulty patterns and categorizing the type of bugs or
hotspots.

WHERE for each Android API call involved in when and how-
context, the method and class details of Android API
call, the caller details of Android API call (where it was
actually invoked), as well as the subsequent calls to that
Android API call are gathered. The subsequent calls are
done to resolve ambiguity in case its caller invokes that
Android API call multiple times. The where-context is
critical to fault localization in source code.

Algorithm 1 Energy Defect Detection
1: Global: AT – an abbreviation for AndroidActivityTable
2: RT – an abbreviation for ResourceUsageTable
3: Input: resourcesInUse – resources used in the app
4: Output: a collection of energy defects, if any
5: function DEFECTDETECTION(resourceInUse)
6: ds← ∅
7: for (each h : resourceInUse) do
8: for (each defect : h.defectList) do
9: switch (defect) do

10: case “resource leaks”: . Algorithm 2
11: · · · · · ·
12: break
13: case “tail-energy hotspot”: . Algorithm 3
14: · · · · · ·
15: end switch
16: end for
17: end for
18: return ds
19: end function



Table 2: List of energy-inefficiency related defects as presented in the work of [6]. For each defect category, we present the defect pattern,
patch suggestion and affected hardware components and also provide a real-world example, along with user comments.

Defect Type Affected Components Defect Pattern (P) Patch Suggestion Real-world example

Csipsimple "When I run Sipdroid, by the
Issue 81 end of the day I have battery

Presource leak → ai Q Release ai after [12] indicator at about 50%. When

H
ar

dw
ar

e
R

es
ou

rc
es Resource Q→ Xī | Xī ui Q PL(Presource leak) I run CSipSimple instead, with

Leaks I/O Components Xī → ε | xī Xī all other activities basically the
i ∈ {Wifi, Sensor, same, by end of the day the

GPS, Camera } battery indicator is yellow or
even red (< 20% I think)."

Suboptimal Psuboptimal binding → ai Q ri Sofia Public "Disable GPS updating when
Resource Q→ Xī ui Xī | Xī ui Q Re-factor Xī Transport estimates dialogue
Binding Xī → ε | xī Xī Issue 38 is displayed . . . This will "

[13] reduce battery usage
Adw "This could lead to some

Sl
ee

p-
st

at
e

Tr
an

si
tio

n
H

eu
ri

st
ic

s Launcher battery drain, or with our
Power Management Pwakelock bug → ap QXp̄ Add rp to match Android AMOLED screens - burn in.

Wakelock p ∈ {CPU, Screen, Q→ Xp̄ | ap Q rp | QQ the reference Issue 202 I discovered this by acciden-
Bug Keypad} Xp̄ → ε | xp̄ Xp̄ count of ap [14] tally hitting the app drawer

button when setting my
c ∈ {CPU} phone on my desk, I assum-

ed it would turn it self off
but after 15 minutes never did."

Tail-energy Network Ptail energy → an Q rn Google Feature Suggestion: Optimize
Hotspot n ∈ { Wifi, 4G, Q→ Xc un Xc | Xc un Q Re-factor Xc Voice Data Usage . . . Totally agreed.

3G,2G } Xc → ε | xc Xc Location I’ve used this app on three
Issue 4 different phones, and I’ve seen

[15] noticeable battery drainage
when it’s active."

Vacuous Pvacuous services → as Q Stop service Recycle- "Battery life is absolutely

B
ac

kg
ro

un
d

Se
rv

ic
es Services Background Q→ Xs̄ | Xs̄ us Q as after locator terrible . . .It appears to be due

Services Xs̄ → ε | xs̄ Xs̄ PL(Pvacuous services) Issue 33 to the GPS constantly searching
[16] for a signal."

Expensive s ∈ {GPS, Sensors, Pexpensive services → as us rs Osmdroid "MyLocationOverlay class
Services Wifi,4G,3G,2G } If configuration parameters of as Change configuration Issue 76 uses 0 as default values for

do not follow energy-efficiency parameters for as [17] requesting location updates.
guidelines [18] 0 (fastest updates possible) is

maybe an overkill and drains
some battery" . . .

Immortality Pimmortality bug ≡ { Use patch suggestion Omnidroid "Battery Drain Concerns . . .
Bug LaunchonReboot ( PL (Presource leak)) for respective issue. Issue 98 I know it was omnidroid

∨ May re-factor [19] because I looked at the battery
LaunchonReboot( PL (Pwakelock bug)) PL(< pattern >) use graph and omnidroid was

∨ from methods that using 8 times more battery

D
ef

ec
tiv

e
Fu

nc
tio

na
lit

y LaunchonReboot( PL (Pvacuous services)) launch on reboot than the next highest app.
} It dwarfed everything else."

All of (app restarts itself on reboot)
Loop-energy the above K9Mail "I found today that when

Hotspot Issue 424 my mail accounts were
Ploop hotspot ≡ { Use patch suggestion [20] temporarily unreachable due

InLoop( PL (Ptail energy)) for respective issue. to a server glitch . . . battery
∨ May re-factor drained *very* quickly while

InLoop( PL (Psuboptimal binding)) PL(< pattern >) the phone became noticeably
∨ out of loops warmer even though it was

InLoop( PL (Pexpensive services)) in standby mode with
} the screen display off. Also,

k9mail is AFAIK the only
third-party background
service that I have running"

a : Android API call to acquires a I/O component(h)/power management utility(p)1/services(s)2 PL : Pdefectcategory → location
u : Android API call that uses a I/O component(h)/power management utility(p)/service(s) LaunchonReboot : location→ boolean
r : Android API call to release a I/O component(h)/power management utility(p)/service(s) InLoop : location→ boolean
x : any Android API call

1 : power management utilities can be reference counted
2 : of the many possible services, only the energy-intensive services, such as the once using sensors, are monitored



Algorithm 1 shows the skeleton of the main procedure, named
DEFECTDETECTION, on how to detect all the relevant energy bugs
or hotspots given a list of resources in use. For each resource h
in use, we prepare h.defectList, a list of possible bug or hotspot
types associated with h. Our defect detection procedure will per-
form contextual analysis to investigate the resource usage in an en-
ergy profile subgraph to find out whether the runtime trace matches
a defect pattern from a list of possible resource-specific defects.
Note that AT and RT are abbreviations for AndroidActivityTa
ble and ResourceUsageTable, respectively.

Algorithm 2 Contextual Analysis for Resource Leak Bugs
1: for (i← 0 to RT.size() −1) do . each Android API call RT[i]
2: if (RT[i] ∈ ah) then . Android API call to acquire h
3: bT ime← FOREGROUNDBEGIN(AT, i)
4: eT ime← FOREGROUNDEND(AT, i)
5: j ← i+ 1
6: paired← false
7: while (not paired and j < RT.size() and
8: RT[j].timeStamp < eT ime) do
9: if (RT[j] ∈ rh) then . Android API call to release h

10: paired← true
11: end if
12: j ← j + 1
13: end while
14: if (not paired) then
15: defect.type← “resource leaks” . new a defect
16: defect.info← {RT[i]}
17: ds← ds ∪ {defect}
18: end if
19: end if
20: end for

Detecting Presource leaks : Hardware components that are acquired
by an app during its execution must be released before exiting, or
else, the resources continue to be in high-power state and keep con-
suming energy. Typically, resources that are acquired during the
setup stages of an activity (such as onResume()) should be re-
leased during its tear-down stages (such as onPause()). Failing
to follow such protocols may lead to resource leaks. Such scenarios
are represented using defect pattern Presource leaks in Table 2. Algo-
rithm 2 outlines the analysis required to detect such a defect pattern
within the contextual dependency subgraph. For each Android API
call for resource acquisition (line 2), we first capture its contextual
dependency subgraph by locating the foreground running activity
while the resource h has been acquired. To determine the tempo-
ral boundary of the contextual dependency subgraph, we use the
procedures FOREGROUNDBEGIN and FOREGROUNDEND (lines 3-
4). These two procedures can be implemented by searching the
data-structure AndroidActivityTable for the innermost activity cy-
cle just wrapping the Android API calls for resource acquisition.
Subsequently, our framework checks for a release Android API
call for the resource that has been acquired within the subgraph
(7-13). Finally, if the release Android API call is not found a de-
fect is recorded (line 14). The data-structure defect.info (line 16)
maintains a sufficient set of method signatures related to when- and
how-context so that the contextual subgraph can be easily retrieved
for fault-localization and defect-visualization.

Detecting Ptail energy: It is common for network components in a
mobile device to linger in a high power state, for a short-period of
time, after the imposed workload has completed [7]. Such heuris-
tics can reduce the time it takes to transit the device from a low-
power (idle) state to an high power (active) state, when the subse-
quent (network) request arrives. However, while network compo-

nent waits in a higher-power state, no transmission takes place but
additional energy is consumed. The additional energy consump-
tion is referred to as Tail Energy and can be minimized to increase
the energy-efficiency of an app. The defect pattern (Ptail energy) from
Table 2 represents such a scenario. Algorithm 3 shows the con-
textual analysis required to identify the presence of such a defect
pattern. Similar to Algorithm 2, we begin by obtaining the con-
textual subgraph (lines 4-5). Subsequently, the pattern Ptail energy is
searched for in the subgraph (lines 7-14). More specifically, the
procedure PROFILEGRAPHBROWSE(RT[i], RT[j]) traverses the
profile graph from the node RT[i] to node RT[j], in a temporally-
sequential order, (equivalent to pre-order traversal), while collect-
ing CPU intensive processes (Xc) between resource usage Android
API calls.

Algorithm 3 Contextual Analysis for Tail-Energy Hotspot
1: i← 0
2: while (i < RT.size()) do
3: if (RT[i] ∈ uh) then . Android API call to use h
4: bT ime← FOREGROUNDBEGIN(AT, i)
5: eT ime← FOREGROUNDEND(AT, i)
6: j ← i+ 1 . to find the next resource usage index j
7: while (RT[j].timeStamp < eT ime) do
8: if (RT[j] ∈ uh) then
9: defects.info← defects.info ∪

10: PROFILEGRAPHBROWSE(RT[i],RT[j])
11: i← j
12: end if
13: j ← j + 1
14: end while
15: if (defect is not empty) then
16: defect.type← “tail-energy” . new a defect
17: ds← ds ∪ {defect} . add a new defect
18: end if
19: i← j
20: else
21: i← i+ 1
22: end if
23: end while

2.5 Defect Localization & Patch Suggestion
Finding the presence of energy-inefficient patterns is only a part

of the debugging effort. The other part involves locating the de-
fect, or rather the origin of defect, within the app-source code. The
contextual analyzer on a profile call graph returns a set of detected
defects, each of which contains a defect type and a sequence of ev-
idential method signatures, ordered by time-stamps. The sequence
of evidential methods, depending on the defect type as outlined in
Table 2, may contain (a) when-context, the events related to fore-
ground activity stages, (b) how-context, Android API calls where
a hardware component is acquired, used, or released, or (c) other
Android API calls not associated with the involving hardware com-
ponent, but with noticeable computational time, e.g., greater than
5 milliseconds. Each evidential method α has detailed signatures
which include α’s prototype and its Class information, its caller’s
prototype and Class information, and the details of α’s subsequent
calls in its caller method. The subsequent calls are used to resolve
the ambiguity in case that there are multiple occurrences of α in its
caller method. We assume that the app-developer has access to the
app source-code while debugging. To localize a defect, our frame-
work simply highlights the defect type and displays the defect sce-
nario by illustrating the sequence of evidential methods, and further
allows users to select each of evidential method to reach the source
code where it was invoked for understanding the reported defect.

Our framework also gives concrete patch suggestions, as out-
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lined in Table 2, for each reported defect. For example, on the
defect of resource-leaks where the acquisition Android API call,
ai, misses a corresponding release statement, it is suggested that a
release Android API call may be added in onPause. There may be
multiple alternative locations (in the source code), where the patch
may be added. Specifically, in the case of energy bugs, where the
acquired services/resource/power management utilities can be re-
leased in several locations in the program. Our framework takes
a conservative approach in suggesting patch-location for energy
bugs, suggesting the onPause event handler as the patch location
for the activity that acquires the service/resource/utility, since for
each activity that comes to the foreground, the onPause event han-
dler is called whenever it leaves the foreground. For another exam-
ple, in the scenario of tail-energy hotspot, where usages of network
components un are scattered with noticeable irrelevant methodsXc

in-between, it is suggested that all un’s with a same network com-
ponent should be grouped together, if possible, and followed by
the irrelevant methods Xc’s. Similarly, for the loop-energy hotspot
where tail-energy hotspot occurs within a loop structure, it is sug-
gested that the irrelevant methods Xc’s should be handled in a sep-
arated subsequent loop, if possible, for energy saving.

3. TOOL WALK-THROUGH
In this section, we shall demonstrate our developer’s debugging

tool for defect detection and patch suggestion. Our framework has
been embedded into an Eclipse Plugin (EnergyDebugger) that fa-
cilitates easy access for developers. As shown in Figure 5, the de-

bugging process begins when the developer selects an open project
in EnergyDebugger perspective. At this point, the selected project
is parsed to obtain project metadata such as class description, method
signatures, method-to-line number mappings, loop-to-line number
mappings, etc. The framework also keeps track of Activities,
Services and Listeners within the app. The code for meta-
data collection is implemented using JDT core (org.eclipse.
jdt.core) libraries [35]. The debugging process then allows the
developer to load a log file which is pre-generated by user, using
our instrumentation and logging tool. Following automatic contex-
tual analysis and defect localization, the debugging tool reports all
found defects and their associated patch suggestions; each defect
can be selected by developers for further visualization and under-
standing. We present a walk-through of our debugging tool for two
Android apps, namely Ushaihdi Android [36] and Shortyz [27].
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Table 3: Open-source, Android apps that were used in the evaluation of our framework
App Name App Description LoC/Apk Event Handler Android API Energy-intensive

version/code Size (KB) Classes Calls Resources Used∗
Pa

tc
he

d
A

pp
s

DroidAR 1.0/1 [21] An augmented-reality app for Android. 18177/398 6 224 n, l, c, s, d
Osmdroid 3.0.1/2 [22] Provides replacement for Android’s MapView 8107/276 10 544 n, l, s, d
Osmdroid 1.0.0/1 [17] Provides replacement for Android’s MapView 5308/225 9 413 n, l, d

Recycle-locator 1.0/1 [16] Area-specific restroom, mailbox finding app. 717/116 3 61 n, l
SP Transport 1.08/9 [13] Android app that assists in bus-travel 1437/142 3 23 n, l
SP Transport 1.17/18 [23] Android app that assists in bus-travel 1766/161 3 56 n, l

Ushaidi v2.2/13 [24] App for Collection, visualization for crisis data 10621/713 22 276 n, l, p, c, d

U
np

at
ch

ed
A

pp
s

Aripuca 1.3.4/24 [25] Recording tracks and saves waypoints. 8093/660 14 730 n, l, s, d
Benchmark 1.1.5/9 [26] Comprehensive benchmark suite for Android devices 9739/1020 23 71 n, p, d

Shortyz 3.1.0/30100 [27] App to downloads and displays crossword puzzles 5638/175 12 568 n, d
iTLogger 1.0.0 / 2 [28] An app for measuring road quality using on-board sensors 4014/553 7 205 l, s, b, c, p, d
Omnidroid 0.2.1/6 [29] Automated event/action manager for Android 12425/258 28 393 n, l, c, d
MobiPerf 2.5/1050 [30] App for doing mobile network measurements. 8009/401 12 340 n, l, p
Sensorium 1.1.8/11 [31] Collects sensor data such as 3G, GPS, battery charge. 4001/1248 6 7840 n, l, b, s, d
StrobeLight 1.2/3 [32] Strobe light apps using camera-flash 210/22 1 21 c

Userhash 1.1/2 [33] View location of friends and family. 837/171 7 405 n, l, p
Zmanim 3.3.84.296/84 [34] List of halachic/halakhic times. 72977/842 4 1102 n, l

∗ Network(n), Location(l), Camera(c), Sensors(s), Storage(d), Power Management(p), Bluetooth(b)

Ushaihdi Android is an open source app for crowd-sourcing cri-
sis information over the internet. In our experiments we use ver-
sion v2.2 of the app, which had a known vacuous background
services defect (Issue 11). Figure 4(a) presents some of its GUI
elements. The test case obtained from the online issue report to
generate the faulty behaviour is App Start→ OK→ Back→
Add Report → Home. Figure 4(c) shows a partial screenshot
of our tool for debugging Ushaihdi Android. The screen shows the
scenario when a defect of vacuous background services is found
and visualized. The editor view on the left displays the source code
UserLocationMap.java, where the setDeviceLocation
method is highlighted. The image view on the right visualizes the
defect scenario, including the when-context and the how-context,
in a sequential order, and two service acquisition events are high-
lighted in yellow. The user may click any of those nodes in the
image to jump to their respective invoked source code in the ed-
itor. The pop-up message, together with all the highlights, gives
users a clear clue for patching. For this app, the suggested patch
involves stopping the service in the onPause method of class
UserLocationMap.java.

Note that the defect scenario is derived from its corresponding
contextual profile subgraph, as shown in Figure 4(b), via contextual
analysis. Each evidential method node in the visualization contains
a detailed method signature, which can easily redirect each method
node to its invoked source location. In addition, our debugging tool
provides different hierarchical views (e.g., the contextual subgraph)
for users to understand defects; for the sake of concise presentation,
we show a simple image view in Figure 4(c).

Figure 6: Defect localization for the Shortyz app

Our framework also performs an additional step of processing
which could not be highlighted in the previous example. This step

checks if the detected defect patterns falls within a loop (i.e. the
scenario of loop-energy hotspot) or within a region of code that
is launched on reboot (i.e. the scenario of immortality bug). We
describe this step by using the Shortyz app. Shortyz is a cross-
word puzzle application that downloads, processes and displays
free crossword puzzles from a variety of internet locations. Af-
ter obtaining the log-files our framework generates the profile call
graph (see Figure 2(b)). To achieve its functionality, this app launches
puzzle download procedure repeatedly (method download in class
Downloaders.java). These procedures fetch puzzle data over
the network (see invocations of APIs, URL and HttpGet, in Fig-
ure 2). The interesting insight which our framework provides is
that a processing step (method processDownloadedPuzzle
in class Downloaders .java) is triggered in between two down-
load procedures, leading to occurrence of tail-energy hotspot in the
app. Additionally, the download-processing iterations happen mul-
tiple times in a loop, as a result this app has an instance of loop-
energy hotspot. Our framework precisely locates the defect loca-
tion (see Figure 6, where line 205 indicates the loop) and provides
all these information (through highlighting, graphs and reports) to
assist the developer in fixing the defect.

4. EVALUATION
We evaluated our framework to address the following research

questions: (i) Does the log-based field failure localization approach,
that has been used in our framework, works for real-life apps? Is
this approach scalable? (ii) How useful are the results of defect-
localization approach and the patch-suggestion approach, that are
used in our framework? (iii) Is it possible to reduce the energy-
consumption of the affected apps by applying the patches suggested
by our framework? If so, by how much?

4.1 Experimental Setup
We used an off-the-shelf Samsung S4 smartphone to generate

log-files for our experiments. The specific device that was used in
our experiments was equipped with a Quad-core 1.6 GHz CPU, 2
GB RAM and was running Android Kitkat OS (4.4.2). The instru-
mentation and logging utility, debugging framework, as well as a
power measurement utility were all run on a PC with an Intel Core
i7 processor, 8 GB RAM and Windows 7 OS. We used the setup
shown in Figure 7 to measure the energy consumption of an app on
the mobile device. In particular, we used a Monsoon Power Mon-
itor [37] to supply the mobile device with a steady voltage of 4.2
Volts and to measure its power consumption. During interactions
with the mobile device (when measuring energy-consumption) we



Table 4: Summary of defect localization and patch location suggestion for patched-apps
App Name Issue No, Defect Issue Commits Observed Changes Proposed Changes Energy

version/code Description, Open While Class (Method) Class (Method) Saved (%)
Assigned Priority Days Issue Open

DroidAR Issue 27, Vacuous 3 2 Commit : 2e315c080974a56751e Setup.java (onPause)
1.0 / 1 background services EventManager.java(resumeEventListeners)

Priority-Medium Setup.java(onDestroy,onStop,onRestart 29
killCompleteApplicationProcess,onPause)
ArActivity.java(onResume), GeoUtils.java(disableGPS)

Osmdroid Issue 53, Vacuous 240 559 Commit : r751 SampleMapActivity.java
3.0.1 / 2 background services SampleMapActivity.java(onResume,onPause) (onPause) 11

Priority-Medium
Osmdroid Issue 76, Expensive 11 4 Commit : fd2b17227ab183a5a16 MyLocationOverlay.java
1.0.0 / 1 background service MyLocationOverlay.java (getLocationUpdateMinTime, (enableMyLocation) 5

Priority-Medium getLocationUpdateMinDistance,enableMyLocation,
setLocationUpdateMinDistance)

Recycle-locator Issue 33, Vacuous 0 0 Commit : f19b7fc5a7a0 Map.java (onPause)
1.0 / 1 background services Map.java(onPause, createMap,locateUser) 23

Priority-Medium
SP Transport Issue 38, Sub-optimal 2 9 Commit : 698a27e83900e42a6dd HtmlResult.java

1.08 / 9 resource binding LocationView.java(disableLocationUpdates,onResume, (showResult) 17
Priority-Medium enableLocationUpdates) HtmlResult.java (showResult)

SP Transport Issue 76, Vacuous 0 0 Commit : d2dfa786da728ae6975 LocationView.java
1.17 / 18 background services LocationView.java(onPause, onCreateDialog) (onPause) 12

Priority-High
Ushaidi Issue 11, Vacuous 0 0 Commit : 561d6fb10a5fc600ab6 UserLocationMap.java
v2.2 / 13 background services UserLocationMap.java (onPause, onDestroy) (onPause) 10

Priority-n/a

followed a few timing protocols to maintain consistency across all
measurements. For instance, the interval between two successive
events (touches/taps/clicks) in the test case was 15 seconds and an
idle time of 45 seconds was observed just after the app had stopped
execution. Also for all experiments the screen time-out duration of
the device was set to 15 seconds.
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Figure 7: Power-measurement setup

4.2 Subject Programs
We gathered two sets of open-source apps to be used in our ex-

periments. We shall henceforth refer to these sets as patched-apps
and unpatched-apps. Patched-apps consist of apps for which there
exist known energy-related issues reported by the user (along with
test-scenarios) and patches that are applied by the developers to re-
solve the energy-related issue. Unpatched-apps on the other hand
consist of apps for which energy-related issues were known (from
previous works such as [6]) but there were no developer-provided
patches to fix the issue. Table 3 provides some key information
for both sets of apps. These apps are diverse in size and use of
energy-intensive resources. The number of event-handler classes
(i.e. related to activities, services and receivers, details in Table 1)
varied from 1 to 28, whereas the number of Android API calls re-
lated to energy-intensive resources varied from 21 to 7, 840. The
energy-intensive resources used by each app are shown in the last
column of Table 3. The line-of-code (LoC) of these apps varied
between 201 to 72, 977 (average LoC of 10, 122). The links for
source-code of subject apps are provided in [38].

4.3 Efficacy of Defect-detection
We conducted the first set of experiments with the patched-apps.

These apps were specifically useful in the initial stages of this work

because they provided us with useful insights into how users ob-
served and reported energy-related issues, as well as, how devel-
opers analysed and fixed these issues. A list of these issues can
be found in column 2 of Table 4. We observed that when these is-
sues were brought to developer’s notice they were classified with
medium or high priorities. Also the developers usually fixed these
defects within a fortnight. However, in some cases issues remained
open for a considerably long period of time, mostly due to improper
understanding of the defect. Consider the Issue 53 [22] in app Os-
mdroid, which stayed open for 240 days during which time 559
versions were committed to the repository. We present the timeline
of the conversation related to Issue 53 in following.

May 25, 2010 Issue opened. Test case provided.
Oct 4, 2010 Priority increased from low to medium
Oct 8, 2010 User thinks defect is fixed
Jan 11, 2011 Project member suggests closing the issue
Jan 12, 2011 Project member claims the issue is not fixed
Jan 20, 2011 Project member fixes Issue. Provides commit number

were issue has been fixed and closes issues.

Unlike the confusion which ensues as a result of ad-hoc commu-
nication, our framework provides definitive answers as to whether
there exists a defect for a given test case/scenario. When we tested
the log-files generated from the apps (including for Osmdroid Is-
sue 53) our framework was able to pinpoint exact locations of de-
fects in the source-code (manually cross-checked by going through
user-comments, code-changes, etc). Also the defect visualization
provided by our framework further assists the developer in under-
standing the cause and effect of the observed defect. Once con-
fident about the efficacy of our framework (in detecting defects),
we conducted another set of experiments with the unpatched-apps
for which our framework was able to pinpoint locations of the de-
fects in the source-code as well. Table 6 provides a list of defect-
locations for this set of apps.

4.4 Scalability of Defect-detection
The scalability of our technique is mostly dictated by the sizes

of the log-files that are used for profile generation. In general, pro-
grams with more event-handlers and Android API usages may gen-
erate bigger log-files. The length of test-input sequence may also



affect the size of log-files. It is worthwhile to know that LoC may
not be a good indicator of log-file size, as it may not correspond
to more event-handlers or Android API usages. For example, app
Shortyz has only 5, 538 LoC but generated 50, 049 lines of log mes-
sages whereas app Benchmark has 9, 739 LoC but generated only
356 lines of log messages (cf. Tables 5 and 6). In general, the anal-
ysis was relatively fast, with the longest analysis time being 3.1
seconds for 112, 897 lines of log messages for app DroidAR.

Table 5: Line of log messages and analysis time for all apps
App Name (version/code) Line of Log Messages Analysis Time (seconds)

DroidAR (1.0 / 1) 112,897 3.1
Osmdroid (3.0.1 / 2) 3,504 0.1
Osmdroid (1.0.0 / 1) 1,526 0.1

Recycle-locator (1.0 / 1) 396 0.1
SP Transport (1.08 / 9) 543 0.1
SP Transport (1.17 / 18) 14,281 0.2

Ushaidi(v2.2 / 13) 876 0.1
Aripuca (1.3.4 / 24) 3,838 0.5

Benchmark (1.1.5/ 9) 356 0.1
Shortyz (3.1.0 / 30100) 50,049 0.6

iTLogger (1.0.0 / 2) 2,967 0.1
Omnidroid (0.2.1 / 6) 2,284 0.2
MobiPerf (2.5 / 1050) 3,210 0.2
Sensorium (1.1.8/ 11) 11,347 0.5
StrobeLight (1.2 / 3) 87 0.1

Userhash (1.1 / 2) 226 0.1
Zmanim (3.3.84.296 / 84) 50,892 0.8

4.5 Effectiveness of the Patch-suggestion
The final set of experiments (with a power-measurement setup

as described in Section 4.1) were conducted to evaluate the effec-
tiveness of the patch-suggestion. For the patched-apps this was
relatively straightforward as we could compare the patches sug-
gested by our framework to the patches applied by the developer
for each defect. However, for unpatched-apps, since there was
no such information available, we compared energy consumption
before and after patches were applied, to evaluate the effective-
ness of the patches. For the experiments with patched-apps, we
observed a significant correlation between the changes suggested
by our framework and changes added to the source-code commits
where the defect was resolved (cf Table 4, columns 5 and 6). Power
measurement experiments with the unpatched-apps also returned
positive results, with energy-savings varying from 6% to 29%.

Table 6: Summary of results for unpatched-apps
App Name Defect Defect Energy

version/code Description Location Saved (%)
Aripuca Vacuous AppService.java( 15
1.3.4/24 services startLocationUpdates,

startSensorUpdates)
Benchmark Wakelock Benchmark 29

1.1.5/9 Bug (onCreate)
Shortyz Loop-energy Downloaders.java( 11

3.1.0/30100 hotspot processDownloadedPuzzle,
download) + 3 more

iTLogger Vacuous iTloggerActivity 9
1.0.0/2 services (onCreate)

Omnidroid Immortality LocationMonitor 14
0.2.1/6 Bug (init)

MobiPerf Wakelock PoneUtils 12
2.5/1050 Bug (acquireWakelock)

Sensorium Vacuous GPSLocationSensor(_enable), 21
1.1.8/11 services NetworkLocationSensor(_enable)

StrobeLight Sub-optimal StrobeRunner 6
1.2/3 binding (run)

Userhash Immortality ViewActivity 15
1.1/2 Bug (onClick)

Zmanim Resource LogUtils 21
3.3.84.296/84 Leak (startSession)

5. RELATED WORK
[Monitoring] Due to increasing popularity of smartphones and their
limited battery power, energy consumption models of mobile apps
have been extensively studied [7, 39–45] for monitoring and opti-
mizing their energy usage. These models, typically based on mon-
itoring device components’ measurable parameters and computing
the approximate battery drain caused by the component over time,
provide an energy-aware quality of service support for users.
[Profiling] Increasing attention has been drawn to the research con-
necting energy consumption models with various user or system
activities in mobile applications. For examples, real user activi-
ties [46, 47] were collected and studied to guide power consump-
tions for mobile architectures. An accurate power model was con-
structed based on both the power management and activity states
of those power-intensive hardware components [39]. Eprof [44,48]
is a fine-grained energy profiler for smartphone apps, mapping the
power draw and energy consumption to program entities via a An-
droid API driven finite state machine [44]. PowerScope [49] is an
alternative tool for profiling the energy Usage of Mobile Applica-
tions. However, those energy profiling tools still focus on answer-
ing the ultimate question, “Where is the energy spent inside my
app?”, to provide an energy-aware quality of service support.
[Diagnosing] Several automated tools [50–52] have been recently
developed for detecting energy anomalies and diagnosing energy
inefficiency for mobile applications. The ADEL tool [50] detects
and isolates energy leaks resulting from unnecessary network com-
munication via data flow analysis. The Carat tool [51] detects and
diagnose energy anomalies by using a collaborative battery con-
sumption and utilization measurements aggregated from multiple
clients. The GreenDroid tool [52] monitors sensor and wake lock
operations to detect two common causes of energy problems: miss-
ing deactivation of sensors or wake locks, and cost-ineffective us of
sensory data, and generate detailed reports to assist developers in
validating detected energy problems.
[Debugging] Debugging functionality-related defects, e.g., fault lo-
calization [2,53] and patch generation [1,3,4], is difficult and time-
consuming. Debugging energy-inefficiency defects is even more
challenging because the defects may depend on the running con-
textual sensitive scenario, including the state of hardware device, a
specific sequence of user interactions, and program call dependen-
cies. For locating energy-inefficiency issues, developers often seek
assistances from users through online coding repositories since no
debugging tool is currently available. Our framework in this paper
provides both an effective communication channel from users to
developers and an automated energy-inefficiency debugging tool.

6. CONCLUSION
We present a practical framework for localizing energy-efficiency

related field failures in mobile apps. Our framework provides a sim-
ple yet effective communication protocol to be used between the
users and developers. Not only does our developer-side debugging
tool detect and localize the presence of energy defects in the app
source code, but also suggests potential patch location for the re-
ported defects. Evaluation with real-life apps have shown that our
tool can localize defects effectively and efficiently, even for apps
with thousands of lines-of-code. Additionally, the energy savings
generated as a result of the patched defects are significant (observed
energy saving between 5% to 29%).
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