
Java Memory Model Aware Sofware Verification

Arnab De
CSA Department

Indian Inst. of Science
arnabde03@gmail.com

Abhik Roychoudhury
School of Computing

National Univ. of Singapore

abhik@comp.nus.edu.sg

Deepak D’Souza
CSA Department

Indian Inst. of Science
deepakd@csa.iisc.ernet.in

ABSTRACT
The Java Memory Model (JMM) provides a semantics of Java multi-
threading for any implementation platform. The JMM is defined in
a declarative fashion with an allowed program execution being de-
fined in terms of existence of “commit sequences” (roughly, the
order in which actions in the execution are committed). In this
work, we develop an operational approximation of the JMM. The
immediate motivation of this work lies in integrating a formal spec-
ification of the JMM with software model checkers. We show how
our operational description of the JMM can be integrated into a
Java Path Finder (JPF) style model checker for Java programs.

1. INTRODUCTION
Modern programming languages such as Java and C# have em-

braced concurrency as a mainstream feature. Furthermore, with
the increasing push towards multi-core platforms in the coming
years, the importance of concurrent programming is steadily in-
creasing. As an evidence of the growing importance of concur-
rent/parallel programming on multi-processor platforms, one may
notice the launching of two Universal Parallel Computing Research
Centers by Microsoft and Intel in collaboration with academia in
March 2008. Increasingly, it is felt that computer architects will
be moving towards processors with many cores (Intel already has
a research processor with 80 cores!), and concurrent/parallel pro-
gramming will become much more mainstream.

With this increased push towards concurrent and parallel pro-
gramming, developing tools and techniques for reliable concurrent
programming is a must. Programmers tend to find parallel/concurrent
programming harder than sequential programming — owing to the
many possible program executions for any given program input.
Moreover, programming languages like Java and C# describe the
semantics of multi-threading via a language level Memory Model.
The language level memory model is somewhat synonymous to the
semantics of multi-threading in the concerned programming lan-
guage — it describes which writes can be visible to a program read
operation. As a simple example, one may consider the following
program fragment with shared variables A, B and local variables
r1,r2, all initially 0.

Thread 1 Thread 2
A = 1; r1 = B;
B = 1; r2 = A;

In this example, we would normally assume r1 ≤ r2 at the end of
the program. In other words, we cannot have r1 == 1 ∧ r2 ==
0 since B is set after A in Thread 1. However, in order to allow un-
derlying compiler/hardware optimizations the language level mem-
ory model may allow re-ordering of the writes in Thread 1, thereby
making the result r1 == 1 ∧ r2 == 0 possible at the end of
the program. Such intricacies in the memory model makes formal
reasoning about programs particularly difficult.

The Java Memory Model [13] essentially describes all allowed
behaviors of a multi-threaded Java program on any implementa-
tion platform. The formal description of the Java Memory Model
is declarative — it describes a notion of execution (a partial order
of actions) and then defines what is an “allowed execution”. How-
ever, the test of whether an execution is allowed is not directly ex-
ecutable. The model defines an execution as an allowed execution
if there exists a commit sequence (sequence of sets of committing
actions in the execution) satisfying certain properties. However,
given an execution, even testing whether it is an allowed execu-
tion is non-trivial. It will require the construction of a sequence
of commit-sets. Unfortunately, no algorithm on how to construct
these commit sets is given in the Java Memory Model.

In this report, we develop an operational approximation of the
Java Memory Model (JMM) and use it for automated software ver-
ification via model checking. Our memory model is an under-
approximation of the JMM in terms of allowed executions. We
note that in (explicit-state) model checking we need to (a) traverse
program executions, and (b) on-the-fly evaluate whether these are
“allowed” executions. Clearly, a declarative description of allowed
executions is not amenable to efficient construction and traversal of
allowed program executions. This is where our operational under-
approximation fits in. We integrate our operational characterization
of the JMM with an on-the-fly software model checker that checks
for assertion violations.

We call our operational Memory Model as OpMM. Since OpMM
is an under-approximation of the JMM, an OpMM-aware model
checker can be used to find bugs in a given program, rather than
verify it. In other words, given a program P — any assertion vi-
olation reported by our OpMM-aware model checker is indeed a
violation in P , but not vice-versa. Thus, our method and tool can
be viewed as an aid for finding subtle concurrency bugs, rather than
as a concurrent program verifier.

It should be noted that although the JMM guarantees Sequential
Consistency (SC) for race-free programs [13], programs in general
may have races for high performance or other reasons. A memory
model aware model checker like ours is most suitable for validating



programs which are not proven to be race-free.
The technical contributions of this report can be summarized as

follows.

• We develop an operational under-approximation of the JMM
(the JMM itself is described in declarative style). Our for-
malization, called the OpMM, is based on structured opera-
tional semantics rules of the language constructs. The core
issue of which writes can be seen by a read operation in a
program is clarified through an algorithm.

We believe that our operational description of the JMM can
be useful for understanding of the model by system designers
such as compiler and JVM writers. Our model is stronger
than the JMM (allows less behaviors) and the system design-
ers can possibly use this model to implement the JMM in
practice.

• We have also integrated our OpMM model with a Java Path
Finder (JPF) style on-the-fly model checker for Java pro-
grams. We discuss specific optimizations which can be used
to improve the scalability of our checker. We believe such
memory model specific optimizations are key to building mem-
ory model aware software model checkers.

The rest of this report is organized as follows. The next section
discusses related work, and the general background about the re-
cent developments in memory models for programming languages.
Section 3 presents a general overview of our approach. Section
4 presents our memory model OpMM. Section 5 establishes that
our model OpMM is an under-approximation of the Java mem-
ory model, and also explores the relationship of OpMM with well-
known hardware memory models like SPARC’s Total Store Order
(TSO). Section 6 discusses the issues in implementing OpMM in-
side a software model checker, whereas Section 7 discusses exper-
imental results obtained from an OpMM-aware model checker for
Java bytecode. Section 2 discusses related work and concludes the
report.

2. BACKGROUND AND RELATED WORK

2.1 Memory Models
Memory consistency models have been used in shared mem-

ory multiprocessors for many years. The simplest model of mem-
ory consistency was proposed by Lamport and is called Sequen-
tial Consistency [11]. This model allows operations across threads
to be interleaved in any order. Operations within each thread are
however constrained to proceed in program order. SC serves as a
very simple and intuitive model of execution to the programmer.
However, it disallows most compiler and hardware optimizations.
For this reason, shared memory multiprocessors have employed re-
laxed memory models, which allow certain reordering of opera-
tions within a thread. The Total Store Order (TSO) and Partial Store
Order (PSO) models, supported by SUN SPARC architectures [6],
differ from SC in that they allow memory write operations to be
bypassed. By bypassing we mean that even if a write operation
is stalled, a succeeding memory operation can execute. Memory
read operations, however, are blocking in TSO and PSO. The TSO
model only allows reads to bypass previous writes. PSO is a more
relaxed model than TSO as it allows both reads and writes to by-
pass previous writes. Unlike TSO and PSO, the WO and RC mod-
els allow non-blocking reads (i.e., reads may be bypassed). How-
ever they classify memory operations as data operations (normal
reads/writes) and synchronization operations (lock/unlock). De-
tails of hardware memory models appear in [1, 5]. Note that all

the memory models only allow reorderings which do not violate
the uniprocessor program dependencies within a thread.

The interest in programming language memory models is rel-
atively new. Among the different programming languages, work
on the Java Memory model (JMM) has received the most atten-
tion. A formal description of the JMM has been presented in [7,
13] with inputs from researchers and developers alike. This model
is presented in a non-operational, declarative style. Even checking
whether a given program execution is allowed by the programming
language semantics is not straightforward – it involves showing the
existence of certain “commit sets” (capturing the order in which
program actions are committed). There appears to be no procedure
for even efficiently checking (say in polynomial time) whether a
given execution of a given program is an allowed behavior under
the JMM. Consequently, any attempt to reason about programs in
a memory model aware fashion remains difficult — an important
motivation which drives our work.

2.2 Memory Model aware Verification
Program validation in a memory model aware fashion was first

studied in the context of hardware memory models. Park and Dill
[14] developed executable memory models for SPARC architec-
tures and used them to verify synchronization routines. Gopalakr-
ishnan et. al. [8] have used SAT solving to check whether an exe-
cution is allowed by a multi-processor memory model, in particular
the Intel Itanium memory model. In recent works, Burckhardt, Alur
and Martin [3] study bounded model checking of concurrent data
types under relaxed hardware memory models. Their work uses a
SAT checker to verify observational equivalence between sequen-
tially consistent behaviors of a concurrent program and behaviors
allowed by relaxed hardware memory models.

In our past work [10], we have developed a bytecode level in-
variant checker for C#, which proceeds in a memory model aware
fashion. This required us to formally specify the C# memory model
and integrate inside a bytecode level model checker. However, the
C# memory model is simpler than the JMM, in that it can be speci-
fied as a re-ordering table describing which pairs of operations can
be re-ordered. Such a memory model specification can be directly
integrated into a state space search, since if a pair of operations
could be re-ordered we could simply allow both possibilities (re-
order them or not) during state space exploration. As we will de-
scribe now, the JMM specification is more complex, and cannot be
captured by a re-ordering table. Allowed executions in the JMM
are only defined by means of certain global properties which effec-
tively restrict which write operations can be seen by a read opera-
tion in the program. Hence our first task is to develop an operational
version of the JMM, which we then use for bytecode level program
verification.

3. OVERVIEW OF OUR APPROACH
In this section, we present an overview of the OpMM, a mem-

ory model defined in terms of its operational semantics. OpMM is
strictly stronger than the Java Memory Model (JMM), that is, any
execution is allowed by OpMM is also allowed by JMM but the
converse is not true.

We now describe the JMM and OpMM models via several ex-
amples. As our first example, we present the following program
fragment, where r1 - r6 are locals, p, q are shared variables and
initially p == q and p.x == 0:

A compiler optimization might replace the last statement of Thread
1 by r5 = r2; as they are assigned same expression r1.x and
the value of the expression is not changed in Thread 1. But this op-
timization may lead to the behavior r2 == r5 == 0, r4 ==



Thread 1: Thread 2:
r1 = p; r6 = p;
r2 = r1.x; r6.x = 3;
r3 = q;
r4 = r3.x;
r5 = r1.x;

Figure 1: Example 1

3 after the execution, which is not allowed by Sequential Consis-
tency on the original program.

In order to support such optimizations, JMM allows this behav-
ior. In the resulting execution, the reads into r2 and r5 see the
write of the initial value and the read into r4 sees the write by
Thread 2. The commit sequence for validating this execution (as
required by JMM [13]) is the following. In the first step, we can
commit all actions except r4 = r3.x. As all non-committed
reads must see a write that happens-before it, the read into r4 sees
the initial write of value 0. In the next step, the read into r4 is com-
mitted, but it still gets the value 0 as the committing reads must see
a write which is committed earlier as well as happens-before the
read. In the next step, when the read is committed at least one step
earlier, it can see any write that has been committed before (but
not necessarily happens-before) — hence the read now can see the
write r6.x = 3 from Thread 2, resulting in the desired behavior.

As we have seen, validating an execution in JMM requires find-
ing a commit sequence according to the rules given in [13]. There
is no efficient algorithm for this purpose other than generating and
testing all possible commit sequences. The problem of generating
all legal executions of a given Java program is even more difficult
because of the declarative nature of JMM.

Now we show how we can generate an execution in OpMM
that displays the desired behavior in the program of Figure 1. In
OpMM, actions are executed in a total-order consistent with the
program-order, but it is not necessary for a read to see the last
write in that total order (thus differing from SC). In fact, a state in
OpMM consists of different views of the heap, one by each thread,
instead of a single global heap. Each location of the heap contains
a set of values which a read is allowed to see. In this example, in
an execution where the write in Thread 2 is scheduled before the
last two reads of Thread 1, the heap location for r3.x and r1.x
contains both the values 0 and 3. Hence it is possible for r4 to
read the value 3 and r5 to read the value 0, and thus producing the
desired behavior.

OpMM uses synchronization-actions to mask the writes that should
not be seen by a later read according to JMM. Let us consider the
following example where r1 is a local and x, l are shared vari-
ables, x initialized to 0 and l is initially unlocked.

Thread 1: Thread 2:
lock l; lock l;
x = 1; x = 2;
r1 = x; unlock l;
unlock l;

Figure 2: Example 2

In any execution of this program, the only value r1 can get is
1, from the write in Thread 1. In any execution in OpMM, two
cases might happen: Thread 1 can execute entirely before Thread
2 or vice versa. No other interleaving is possible as OpMM obeys
mutual exclusion of lock operations. In the first case, the write x
= 1 masks the initial value of x (i.e., 0) as in the same thread,

a newer write masks the older one. Hence when the read r1 =
x is executed, only one value 1 can be seen. In the second case,
when Thread 1 locks the same monitor unlocked by Thread 2, their
views of the heap are synchronized. Consequently the write of 1 in
Thread 1 masks the write by Thread 2 as well as the initial value of
x, resulting in the desired behavior.

It should be noted that OpMM is a strict under-approximation
of JMM i.e. there are executions which are allowed by JMM but
not by OpMM. Let us consider the following example where all
variables are initialized to 0.

Thread 1: Thread 2:
r3 = x; r2 = y;
if(r3 == 0) x = r2;
x = 1;

r1 = x;
y = r1;

Figure 3: Example 3

The behavior r1 == r2 == r3 == 1 after the execution is
allowed by JMM [13], but it is not allowed in OpMM. To allow
this behavior, JMM needs the reads of x to see a different write
before and after committing. In fact, the read r1 = x; initially
sees the write x = 1;, which does not even occur in the final ex-
ecution. As a result, it becomes difficult to model such behaviors
operationally because it loses a clear notion of trace — a sequence
of actions that modify the states. Hence OpMM does not model
the entire JMM. The reasons behind choosing this particular under-
approximation for OpMM are following:

1. It can be presented as an easily implementable and intuitive
operational semantics. We believe this operational under-
approximation can useful to system designers like compiler
writers who may not wish to follow the intricacies of the full
JMM [13].

2. It is more relaxed than many of the traditional relaxed mem-
ory models (we show its relationship with the hardware mem-
ory model TSO), but still it can be proved to be an under
approximation of the JMM.

4. DESCRIPTION OF OPMM
In this section, we present a detailed description of OpMM. It

is defined in terms of its operational semantics, which we present
here. We concentrate on a selected set of programming language
constructs relevant to the memory model. We also describe the
model of the heap and structure of the states and configurations as
required by the semantics.

4.1 Programming Language under Consider-
ation

The programming language we consider is an abstract version of
the Java bytecode.

Local variables are of the form rn. The shared variables can be
accessed through (static or non-static) field access of a reference
type local variable. C, f , v denote any class, field, volatile field,
respectively. All simple statements are prefixed with a thread id
while describing the semantics (written as t : c). Threads, classes,
objects, monitors and volatiles have unique ids.

Statements. The statements we are considering are one of the
following forms:



1. Writing to shared variables: ri.f = rj.

2. Reading from shared variables: ri = rj.f .

3. Writing to volatile variables: ri.v = rj.

4. Reading from volatile variables: ri = rj.v.

5. Locking a monitor: lock ri.

6. Unlocking a monitor: unlock ri.

7. Creating an object: ri = new C.

8. Starting a thread: start ri.

9. Interrupting a thread: interrupt ri.

10. Detecting whether a thread is interrupted: isinterrupted
ri.

11. Detecting whether a thread is alive: isalive ri.

12. skip.

13. Assignment statements involving only local variables.

14. Control statements.

15. Method calls and returns.

16. Throwing and catching of exceptions.

In this report we concentrate on statements of type 1 - 11 as they
are relevant to the memory model. Other statements must follow
the intra-thread semantics as defined in [9].

Program. The program consists of one or more threads. Each
thread has one or more methods. There is one thread with main
method (referred as main thread hereafter). Other threads must
have a run method.

4.2 Structure of the Heap
The heap can be seen to be made of object areas, each object

area allocated to a particular object. As Java is a strongly typed
language, reference type local variables point to one of these object
areas or null. The object areas are divided into cells, one cell for
each field of the object allocated in that object area.

As we will see in Section 4.3, the cells do not contain a value,
but a write-list.

A write-list can contain three types of elements:

1. A write-item (WI) which is a 〈value, tid〉 pair.

2. A release-item (RI) which is a 〈lock, tid〉 pair or a 〈volatile, tid〉
pair.

3. An acquire-item (AI) which is again a 〈lock, tid〉 pair or a
〈volatile, tid〉 pair.

4.3 Structure of States and Configurations

Program State. The program state (denoted by Ω) consists of
one local state for each active thread, and a global state for moni-
tors and volatiles. Each local state Lt (t is the corresponding tid)
consists of the following parts:

• A stack of frames, one frame for each outstanding method
call in the thread (as mentioned in [12]), denoted by St. Each
frame, among other things (as specified in The Java Virtual
Machine Specification [12]), contain values of the local vari-
ables of the corresponding method. We denote the local vari-
able map of the top frame by σt.

• A view of the heap (denoted byHt) which is a function from
cells to a write-list, as specified in Section 4.2.

The global state consists of monitor states and volatile states:

• The monitor state is a mappingM from monitors to tuples of
the form 〈tid , lockcount〉. When the lockcount is 0, the tid
part also has a value 01.

• The volatile state V is a mapping from volatile ids to the
value of the corresponding volatile variable.

It should be noted that our notion of program state has no global
heap, except for the values of volatiles and monitors which are
globally maintained. The state might contain other information like
thread status, class information for objects etc which are required
by Java Virtual Machine [12]. As these information are not directly
related to the memory model, we do not include them in our de-
scription here.

State Transitions. A program statement can cause state transi-
tions. If a statement c changes the program state from Ω to Ω′, we
write it as 〈c,Ω〉 → Ω′. We did not include program counter(pc) in
our description of states as that is not relevant for our work. Execu-
tion order of instructions is described informally in Section 4.4.1.

4.4 Operational Semantics
In this section, we present the operational semantics of OpMM

which is a sound but incomplete approximation of JMM (the proof
of under-approximation is given in Section 5). The semantics is
given in form of inference rules. The consequence of any of these
rules is a state transition by a statement. The premises are the con-
ditions that must be satisfied to enable the transition given as con-
sequence.

The following conventions are used while describing the seman-
tics for the sake of simplicity:

• In the inference rules, k ranges over thread ids and h ranges
over cells in the universal quantifiers.

• Field access of an object returns the corresponding cell.

• Ω[A → B] denotes a state same as Ω but the component A
has been changed to B.

• Ω[F |x : v] is a shorthand expression representing a state which
is equivalent to Ω except F (x) has a new value v.

In this report, we give a formal semantics of the statements that
are relevant to the memory model. Other statements should follow
the intra-thread semantics given in [9].

1We assume that there is no thread with tid 0.



4.4.1 Restrictions on Execution Order.
The execution should start at the mainmethod of the main thread.

At each step, only one statement is executed from the active threads,
if the statement is enabled according to the semantics as given in
Section 4.4.2, producing a total-order of actions. Statements from
a thread are executed in program order. Statements from threads
other than main can by executed only after they are started (using a
start statement). Executions in other threads should start at the
run method of the corresponding thread.

4.4.2 Semantics of Statements.
We now present the operational semantics rules of OpMM for

the different language constructs of Java.

Write statement. A write statement appends the write to the
write-list for the corresponding cell of every local state. Rule (Wr)
in Figure 4 is the operational semantics rule for the write statement.
Here Append(l, i) appends the element i to the list l.

Read statement. A read statement updates the local variable
with a value from the set of write-items returned by the Mask&Read
function applied on the corresponding local write-list and the read-
ing thread-id. Rule (Rd) in Figure 4 is the operational semantics
rule for the read statement. Note that the Mask&Read function is
defined as an algorithm in Algorithm 1. The main function of the
algorithm is to prevent a read r from seeing a write w if there is
another write w′ such that w hb→ w′

hb→ r where hb is the happens-
before relation as defined in [13]. Informally, it maintains two
functions: ThSet and AcSet maps the thread ids and synchroniza-
tion object ids (locks/ volatiles) respectively to undef, unmarked or
marked. Whenever a thread t is not synchronized with the input
thread, ThSet(t) = undef . Similarly when a volatile/monitor k is
not acquired by any thread t in ThSet (i.e. ThSet(t) 6= undef ), the
Mask&Read algorithm treats it as AcSet(k) = undef . Algorithm
1 initially puts the input thread id into ThSet as unmarked and tra-
verses the input write-list, starting from the newest item. When it
finds an acquire-item whose thread id belongs to ThSet, it puts the
lock/ volatile id into the AcSet with the same marking. Similarly,
when it sees a release-item whose lock/ volatile id belongs to Ac-
Set, it puts the thread id into the ThSet with the same marking. A
write is put into the write-set if the thread id is unmarked or undef
in ThSet. If the thread id is unmarked, it is marked after seeing the
write. If a thread id is already marked, the writes by that thread are
not put into write-set.

Unlock statement. An unlock statement can execute only when
the executing thread holds the lock. It appends the corresponding
release-item to all the write-lists. It also changes the monitor state.
Rule (Ul) in Figure 4 is the operational semantics rule for the un-
lock statement. Here Unlock(m) reduces the lockcount of M(m)
and if it reaches 0, changes the tid of M(m) to 0. Recall that M is
a mapping from monitors to the threads locking the corresponding
monitor.

Lock statement. The lock statement can execute if the corre-
sponding monitor is not locked or locked by the same thread. It
appends the corresponding acquire-item to all the write-lists, and
changes the monitor state. Rules (L-1) and (L-2) in Figure 4 are the
operational semantics rule for the lock statement. Here Lock(m, t)
increments the lockcount of M(m) and if was 0, changes the tid of
M(m) to t.

Algorithm 1 Mask&Read
Input: write-list wl, thread-id tid
Output: Set of write-items ws

/*Lock id, Vol id and Tid are the sets of lock ids, volatile ids
and thread ids*/
WriteSet: Set of write-items
ThSet: Tid→ {marked, unmarked, undef}
AcSet: (Lock id ∪ Vol id)→ {marked, unmarked, undef}

1: WriteSet ← ∅
2: ∀k ∈ Lock id ∪Vol id : AcSet(k)← undef
3: ∀t ∈ Tid : ThSet(t)← undef
4: ThSet(tid)← unmarked
5: for all element e in wl, starting from the newest do
6: if e is a write-item 〈v, t〉 then
7: if ThSet(t) = undef then
8: WriteSet← WriteSet ∪ {〈v, t〉}
9: else if ThSet(t) = unmarked then

10: WriteSet← WriteSet ∪ {〈v, t〉}
11: ThSet(t)← marked
12: else if ThSet(t) = marked then
13: skip
14: end if
15: else if e is an acquire-item 〈k, t〉 then
16: if AcSet(k) = marked or ThSet(t) = undef then
17: skip
18: else
19: AcSet(k)← ThSet(t)
20: end if
21: else if e is a release-item 〈k, t〉 then
22: if ThSet(t) = marked or AcSet(k) = undef then
23: skip
24: else
25: ThSet(t)← AcSet(k)
26: end if
27: end if
28: end for
29: ws← WriteSet
30: return ws

Volatile write statement. Volatile writes directly update the
global state for volatiles. It also appends the corresponding release-
item to each write-list of each local state. Rule (V-Wr) in Figure 4
is the operational semantics rule for the volatile write statement.

Volatile read statement. Volatile reads read the value directly
from the global state of volatiles and update the local variable. It
also appends the corresponding acquire-item to each write-list of
each local state. Rule (V-Rd) in Figure 4 is the operational seman-
tics rule for volatile reads.

Object creation statement. The object creation statement ri
= new C creates a new object area in the Hk for all threads k.
A unique id is assigned to it. The local map for ri is updated to
hold reference for the new object. After the object is created, the
constructor call can be treated as a normal method call.

Thread creation statement. When a thread t′ is spawned by
a thread t, the spawned thread inherits the object areas from the
spawning thread, i.e. Ht′ becomes equal to Ht. Moreover, all the



(Wr)

v = σt(rj) h = σt(ri).f Ω′ = Ω[∀k : Hk(h)→ Append(Hk(h),WI(〈v, t〉))]
〈t : ri.f = rj,Ω〉 → Ω′

(Rd)

〈v, t′〉 ∈Mask&Read(Ht(σt(rj).f, t))

〈t : ri = rj.f,Ω〉 → Ω[σt|ri : v]

(Ul)

M(σt(ri)) = 〈t, n〉
Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h),RI(〈σt(ri), t〉));M → Unlock(σt(ri))]

〈t : unlock ri,Ω〉 → Ω′

(L-1)

M(σt(ri)) = 〈0, 0〉
Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h),AI(〈σt(ri), t〉));M → Lock(σt(ri), t)]

〈t : lock ri,Ω〉 → Ω′

(L-2)

M(σt(ri)) = 〈t, n〉
Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h),AI(〈σt(ri), t〉));M → Lock(σt(ri), t)]

〈t : lock ri,Ω〉 → Ω′

(V-Wr)

v = σt(rj) Ω′ = Ω[∀k, ∀h : Hk(h)→ Append(Hk(h),RI(〈σt(ri).v, t〉))]
〈t : ri.v = rj,Ω〉 → Ω′[V |σt(ri).v : v]

(V-Rd)

v = V (σt(rj).v) Ω′ = Ω[∀h : Ht(h)→ Append(Ht(h),AI(〈σt(rj).v, t〉))]
〈t : ri = rj.v,Ω〉 → Ω′[σt|ri : v]

Figure 4: OpMM rules for read/write, lock/unlock and volatile read/write statements

write-lists of the state are appended by a release-item 〈l, t〉 and an
acquire-item 〈l, t′〉, in that order, where l is a unique lock id that
does not occur in the execution.

Thread termination and interruption. When a thread t is
terminated, then after modification of the local state (such as thread
status), a release item 〈l, t〉 is appended to all the write-lists. When
an action from some other thread t′ detects that t has terminated,
an acquire-item 〈l, t′〉 is appended to all the write-lists, before any
other modification in the state by that action. l is a unique lock
id that does not occur in the execution. Similar steps are followed
when a thread is interrupted and some other thread determines it
later.

5. EXPRESSIVE POWER OF THE MODEL
In this section, we show that the memory model semantics pro-

posed in Section 4.4 is an under-approximation of the Java Memory
Model. We also show that OpMM is strictly weaker than the hard-
ware memory model TSO.

5.1 Traces and Occurs-Before Relation
A program trace allowed by the proposed semantics is an inter-

leaving of the actions c0, . . . cn such that

Ω0
c0→ Ω1 . . .Ωn

cn→ Ωn+1

where Ω0 is an initial state. The order of execution must obey the
restrictions given in Section 4.4.1 and each transition 〈cj ,Ωj〉 →
Ωj+1 must be allowed by the semantics given in Section 4.4.2.

Given a trace t, we say ci
ob→ cj , if ci appears before cj in the

trace t. We call ob→ as the occurs-before relation.

5.2 Construction of an Execution from a Trace
Given a trace (as defined in Section 5.1), we first need to con-

struct an execution (according to the definition of execution given
in [13]) corresponding to it.

The execution is E = 〈P,A, po→, so→,W, V, sw→, hb→〉 where

• P is the program.

• A is the set of actions in the trace.

• a po→ b if they belong to the same thread and a ob→ b.

• a so→ b if both of them are synchronization actions and a ob→
b.

• W (a) = b if a is a read action and it reads a write by action
b from its write-list.

• V (a) is the value written by a write action a.

• The synchronizes-with relation sw→ is defined as in [13]. In
particular, an unlock action on a monitor m synchronizes
with all “subsequent” (as per the synchronization order re-
lation so→) lock actions on m that were performed on any
thread. A write to a volatile variable v synchronizes-with all
‘subsequent” (as per the synchronization order relation so→)
reads of v performed by any thread.



• The happens-before hb→ is defined as in [13]. The happens-
before relation is the transitive closure of program order and
synchronizes-with order, that is,

hb→= (
po→ ∪ sw→)∗

It should be noted that
po→ is a total order among the actions from

the same thread and so→ is a total order among synchronization ac-
tions, as required by JMM.

If a trace allowed by OpMM leads to a state that violates an as-
sertion, the corresponding execution constructed from the trace will
also violate the assertion. As our notion of under-approximation is
based on allowed executions, it is enough to show that the execu-
tion constructed from the trace is allowed by JMM.

5.3 Some Properties of OpMM
We now establish some key properties of the OpMM model,

and the associated Mask&Read algorithm (Alg. 1). These prop-
erties will be useful for establishing that OpMM is a strict under-
approximation of the JMM, that is, any execution allowed by OpMM
is also allowed by JMM.

THEOREM 1. If a hb→ b in the constructed execution, then a ob→
b in the trace.

PROOF. As happens-before relation is transitive closure of program-
order and synchronizes-with relations, it is enough to show that po
and sw of the constructed execution are consistent with the ob re-
lation of the trace.

If a
po→ b, then by construction of po edges (in Section 5.2),

a
ob→ b.
Let a sw→ b. Then either a

po→ b or a so→ b or a changes the
thread status which is observed by b. As all of these relations are
consistent with ob, sw is also consistent with ob.

LEMMA 2. During the execution of Mask&Read algorithm (Al-
gorithm 1), for all tid t and sync id (lock id or volatile id) l, ThSet(t)
and AcSet(l) can change their values from undef to unmarked to
marked, but in no other order.

PROOF. This can be proved by simple induction on the number
of iterations of the main loop of the algorithm.

LEMMA 3. Let t′ : a hb→ t : r where a is an action from thread
t′, r is a read action from thread t and result of a is present in the
write-list for r in Ht. Then after a is encountered during the exe-
cution of Mask&Read algorithm for r (Algorithm 1), ThSet(t ′) 6=
undef .

PROOF. We have t′ : a hb→ t : r and hb→= (
po→ ∪ sw→)∗. We prove

the lemma by induction on number of po or sw edges between a
and r.

Base case: If the number of edges is one, then t : a
po→ t : r (as

r cannot be target of an sw edge). ThSet(t) is set to unmarked
in line 4. By Lemma 2, it cannot change to undef later when we
encounter a.
Induction step: By induction hypothesis, if t̂ : â hb→ r using n po or
sw edges, then after encountering â, ThSet (̂t) 6= undef .

If a
po→ â, then t′ = t̂, hence proved.

Otherwise, if a sw→ â, a is a release-item and corresponding AcSet
is not undef (as ThSet (̂t) 6= undef while encountering â). Hence
by lines 22 - 26, ThSet(t ′) 6= undef after encountering a.

COROLLARY 4. If t′ : w hb→ t : r, where w is a write action
to the same location as read r, then before w is encountered dur-
ing the execution of Mask&Read algorithm for r (Algorithm 1),
ThSet(t ′) 6= undef .

PROOF. The proof follows from Lemma 3 and the fact that the
last edge in the happens-before path will always be po in case of a
write.

LEMMA 5. If t1 : w1
hb→ t2 : w2

hb→ t : r, where w1 and w2 are
writes to the same location as read r then before w1 is encountered
during the execution of Mask&Read algorithm for r (Algorithm 1),
ThSet(t1 ) = marked .

PROOF. w2 will be encountered before w1. After w2 is encoun-
tered, by Lemma 4 and lines 9 - 13 of Algorithm 1, ThSet(t2 ) =
marked . Using Lemma 2, by induction on the number of po and
sw edges between w1 and w2, this Lemma can be proved.

THEOREM 6. If t1 : w1
hb→ t2 : w2

hb→ t : r, where w1 and w2

are writes to the same location as read r, then w1 /∈ ws (returned
by Mask&Read algorithm (Algorithm 1) executed during process-
ing of r.

PROOF. This follows directly from Lemma 5 and lines 12 - 13
of the Algorithm 1.

5.4 Well-formedness of Executions
In this section, we show that the execution corresponding to a

trace (as constructed in Section 5.2) is well-formed as per the JMM
(see [13], Section 5.3).

Each read of a variable x sees a write to x. This is obvious
as according to our model, a read statement returns a value from the
write-list of the corresponding cell and the write-list is populated by
write statements to the same cell.

The synchronization order has an order less than or
equal to omega. This is again obvious as a synchronization ac-
tion occurs only after finitely many steps.

Synchronization order is consistent with the program
order. This is true because occurs-before is consistent with the
program order (according to the construction in Section 5.2).

Lock operations are consistent with mutual exclusion.
As no two instructions can occur at same time in the trace, at most
one instruction can attempt to take the lock at one point of time.
It can lock the monitor only if the monitor is not locked or it is
locked by the same thread (Section 4.4.2). This establishes the
mutual exclusion.

The execution obeys intra-thread consistency. Instruc-
tions that operate on local data follow intra-thread semantics. Read
operations immediately update the locals with the new value read
so that the next instruction can see the updated local variables.
Write operations do not change the local variables. Hence the exe-
cution obeys intra-thread semantics.

The execution obeys synchronization-order consistency.
As operations on volatiles modify the global state, and they are to-
tally ordered (by so), a volatile read always sees a write that imme-
diately precedes it in synchronization order.



The execution obeys happens-before consistency. It can
be shown by contradiction. Two cases can happen:

1. There is a r such that r hb→ W (r): In our model, if r hb→
W (r), then we have r ob→W (r) in the trace (by Theorem 1).
But this means when r was executed, W (r) was not part of
the write-list, implying r cannot read W (r). Hence contra-
diction.

2. There is a r such that W (r)
hb→ w

hb→ r: This is not possible
by Theorem 6.

5.5 Causality Requirements
Finally, we need to show that the executions generated by our

model meet the causality requirements given in JMM (see Section
4.5 of the JMM paper [13]). For this purpose, we need to find set of
actions to commit in each step and a validating execution for each
of them.

We can simply follow the occurs-before order of the actions of
the thread. We commit the instructions in that order and use the
execution up to that point to validate it. It must be noted that when
we commit a read, in that step, the read sees a write that happens
before it, but in the next step we can change it to the write it finally
sees as that write has already been committed.

This completes the proof of the fact that OpMM is a strict under-
approximation of the JMM.

5.6 Disallowed Bahavior
Note that OpMM is a strict under-approximation of JMM. This

naturally raises the following question: what kind of program be-
haviors are allowed by the JMM, but disallowed by OpMM? We
address this issue in the following.

A write-seen edge (denoted as ws) is an edge from a write action
w to a read action r such that W (r) = w. In some executions
allowed by JMM, the happens-before and write-seen edges form
a cycle. For example, in the example of Fig. 3, there is a cycle
r1 = x;

hb→ y = r1;
ws→ r2 = y;

hb→ x = r2;
ws→ r1 = x;.

As a1
hb→ a2 and a1

ws→ a2 both imply a1
ob→ a2 and ob is a

partial order, such cycles are not allowed in OpMM. As a result,
any execution containing such cycles are disallowed in OpMM.

5.7 Relationship with TSO
We conclude the section by showing that OpMM is weaker than

traditional weak memory models such as SUN SPARC’s Total Store
Order (TSO) [6]. As TSO is a hardware memory model, to facilitate
the comparison, we assume that the lock and unlock operations in
TSO is comparable to those of OpMM. We also assume that there
are only four types of actions: read/write of shared variables and
lock/unlock of monitors.

An execution allowed by TSO is a tuple 〈P,A, po→, so→,W, V, sw→
,

hb→〉, semantics of each component is same as Section 5.2. There
must be a total order of the actions in A, consistent with po and so,
but unlike Sequential Consistency, a read does not need to see the
last write to the same location in that total order. A read is allowed
to see any write before it in the total order which does not occur
before the last write before a read or a lock action from the same
thread. Moreover, if there is a write to the same location by the
same thread in the trace, the read cannot see any write before that in
that total order. Each thread must maintain intra-thread consistency.
Mutual exclusion of synchronization actions are obeyed.

We now show that for each such execution in TSO, there exists a
trace in OpMM producing the same execution (as per the construc-
tion given in Section 5.2). The trace can be taken to be same as

the total order in the given TSO execution. To show that this trace
c0, c1, . . . is allowed by OpMM, we need to show that there exists
states Ω0,Ω1, . . . such that Ω0

c0→ Ω1
c1→ . . . under OpMM. If ci

is any action other than read, Ωi
ci→ Ωi+1 is valid under OpMM as

the trace is consistent with po and so, intra-thread consistent and
obeys mutual exclusion. If ci is a read, we need to show that it is
allowed to see the same write as in the TSO execution.

The only way OpMM would prevent the read r to see the writew
was if there is a writew′ such thatw hb→ w′

hb→ r. If such is the case,
then either w′ is from the same thread as r or there is a lock action
l by the reading thread such that w ob→ w′

ob→ l
ob→ r. In both cases,

r cannot see w under TSO too. Hence, the execution constructed
from this trace will be same as the execution under TSO.

Algorithm 2 Mask&Read2
Input: write-list wl, thread-id tid
Output: Set of write-items ws

/*Lock id, Vol id and Tid are the sets of lock ids, volatile ids
and thread ids*/
WriteSet: Set of write-items
ThSet: Tid→ {marked, unmarked, undef}
AcSet: (Lock id ∪ Vol id)→ {marked, unmarked, undef}

WriteSet ← ∅
∀k ∈ Lock id ∪Vol id : AcSet(k)← undef
∀t ∈ Tid : ThSet(t)← undef
ThSet(tid)← unmarked
for all element e in wl, starting from the newest do

if e is a write-item 〈v, t〉 then
if ThSet(t) = undef then

WriteSet← WriteSet ∪ {〈v, t〉}
else if ThSet(t) = unmarked then

WriteSet← WriteSet ∪ {〈v, t〉}
ThSet(t)← marked

else if ThSet(t) = marked then
delete e from wl

end if
else if e is an acquire-item 〈k, t〉 then

if AcSet(k) = marked or ThSet(t) = undef then
skip

else
AcSet(k)← ThSet(t)

end if
if ThSet(t) = marked then

delete e from wl
end if

else if e is a release-item 〈k, t〉 then
if ThSet(t) = marked or AcSet(k) = undef then

skip
else

ThSet(t)← AcSet(k)
end if
if ThSet(t) = marked then

delete e from wl
end if

end if
end for
ws← WriteSet
return ws



6. IMPLEMENTATION ISSUES
In this section, we discuss implementation issues for implement-

ing OpMM. In particular, we observe that in our proposed oper-
ational semantics, the write-lists can grow unboundedly and thus,
the size of a state can also grow unboundedly. To solve this prob-
lem, we propose a technique to prune the write-lists. It should be
noted that this technique might not be able to prune the write-lists
in all cases. In particular, if in an execution, a thread keeps writ-
ing to a shared location inside a loop and there is no read to this
location, the corresponding write-list may grow unboundedly.

We modify the Mask&Read algorithm (presented in Algorithm 1)
to delete the write-items if the corresponding ThSet value is marked
when the item is encountered during the traversal of the write-
list. We also delete the release-items and acquire-items if the cor-
responding ThSet value is marked after processing of the items.
The modified algorithm is presented in Algorithm 2. To show that
the proposed model is still an under-approximation of JMM, it is
enough to show that by deleting an item, we do not expose a masked
write. The following Theorem 9 formalizes this reasoning.

LEMMA 7. If t1 : a1
hb→ t2 : a2 and both of the actions are part

of the same write-list in some execution allowed by OpMM (where
the semantics of the read statement is given by Algorithm 2), then
it cannot the case that a2 gets deleted strictly before a1.

PROOF. The Lemma can be proved by contradiction. If the
statement is not true, then there must be a read action such that
by its invocation of Algorithm 2, a2 is deleted but a1 remains in
the list.

As a1
hb→ a2, hence a1

ob→ a2 (by Theorem 1). By the proposed
semantics, a2 is encountered before a1 during the particular invo-
cation of Algorithm 2. As a2 is deleted, hence ThSet(t2) = marked
after processing a2. Using Lemma 2 and by induction on number
of po or sw edges between a1 and a2, it can be shown that either
a1 is a write and t1 is marked while encountering a1, or a1 is sync
action and t1 is marked after processing a1. In both cases, the item
gets deleted. Hence we reach a contradiction.

LEMMA 8. If w hb→ r but there is no intervening write, then w
remains in the write-list after invocation of Algorithm 2 for read r.

PROOF. This can be shown by induction on number of po or sw
edges between w and r.

THEOREM 9. Corresponding invocations of Algorithm 1 and
Algorithm 2 return same sets of write-items.

PROOF. The proof of this theorem directly follows from Lemma 7
and Lemma 8.

7. EXPERIMENTS
We integrated OpMM into a bytecode level software model checker

for Java. This allows us to use OpMM for property checking of
Java programs. This clearly goes beyond conventional software
verification, which ignores the language level memory model, and
implicitly assume Sequential Consistency as the execution model.

Our model checker is an explicit state on-the-fly model checker
in the style of the Java Path Finder (JPF) [16]. It takes the bytecode
representation of a program as input and detects whether any as-
sertion specified in the program can be violated under OpMM. As

the state space of the input program can be infinite, we do not guar-
antee termination in general, but a depth-bound can be imposed on
the depth-first search to force termination.

We present the results of running our tool on some subject pro-
grams in Table 1. For each subject program we check one invariant
assertion encoding the correctness of the program. We now de-
scribe the subject programs and the assertions checked for each of
them.

The subject program dcl represents the original version of double-
checked locking [15]. This program fragment is used for efficient
lazy instantiation of a singleton class. A singleton class is a class
with only one instance; for multithreaded programs this instance
is shared by multiple threads. Double-Checked Locking is a pro-
gram fragment for instantiation in which (a) only one instance is
generated, and (b) the instance is generated only on-demand. The
assertion checks whether the singleton object reference is correctly
constructed after lazy initialization. This assertion can be violated
under JMM [2]. Our tool successfully detects the bug.

The subject program dcl-vol represents the version of double-
checked locking where the singleton object reference is declared
volatile. This version works correctly under JMM, and this is
verified by our tool. In other words, we verify that the singleton ob-
ject is properly constructed before it is referenced. The subject pro-
gram singleton represents the same singleton pattern as dcl,
but here, instead of using double-checked locking, the lock is taken
every time the reference is requested. This version works correctly
under JMM and our tool verifies it.

Subject programs peterson and dekker are traditional al-
gorithms for establishing mutual exclusion. The assertion checks
whether mutual exclusion property of these programs can be vio-
lated. Both of them fail under JMM. Our tool detects the assertion
violations.

Program #bytecode #threads time #states
(sec) explored

dcl 70 2 0.25 87
dcl-vol 70 2 0.31 267
singleton 67 2 0.31 297
peterson 108 2 0.25 99
dekker 135 2 0.27 101

Table 1: Experimental Results

Table 1 shows the results of our experiments. All experiments
were done on a 1.6 GHz dual core machine with 1 GB main mem-
ory. The time reported is in seconds. In cases where the assertion is
violated, the first counterexample is reported. Otherwise, the entire
state space is exhausted.

We note that our checker is currently a prototype. In the future,
there exists scope for (a) optimizing the checker’s implementation
and (b) integrating well-known state space reduction methods like
partial order reduction [4].

8. DISCUSSION
In this report, we develop OpMM, an operational description

of the Java Memory Model. We formally prove that our descrip-
tion is an under-approximation, that is, any behaviors appearing in
OpMM also appear in the JMM, but not vice-versa. We use OpMM
for JMM-aware reasoning about programs, by building an OpMM-
aware bytecode level invariant checker. Invariant violations found
in such a checker can be used for finding subtle concurrency bugs



which may not surface in a standard program verifier assuming Se-
quential Consistency.

9. REFERENCES
[1] S.V. Adve and K. Gharachorloo. Shared memory consistency

models: A tutorial. IEEE Computer, pages 66–76, Dec. 1996.
[2] David Bacon et al. The “double-checked locking is broken”

declaration.
http://www.cs.umd.edu/˜pugh/java/
memoryModel/DoubleCheckedLocking.html.

[3] S. Burckhardt, R. Alur, and M. Martin. Checkfence:
Checking consistency of concurrent data types on relaxed
memory models. In PLDI, 2007.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[5] D.E. Culler and J. Pal Singh. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann Publishers, 1998.

[6] David L. Weaver and Tom Germond, Prentice Hall
Publishers. The SPARC Architecture Manual : Version 9,
1994.

[7] JSR-133 expert group. Jsr-133: Java memory model and
thread specification, August 2004.

[8] G. Gopalakrishnan, Y. Yang, and G. Lindstrom. QB or not
QB: An efficient execution verification tool for memory
orderings. In CAV, 2004.

[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
Java(TM) Language Specification, The (3rd Edition) (Java
(Addison-Wesley)). Addison-Wesley Professional, 2005.

[10] T.Q. Huynh and A. Roychoudhury. A memory model
sensitive checker for C#. In Formal Methods Symposium
(FM), 2006.

[11] Leslie Lamport. How to make a multiprocessor computer
that correctlt executes multiprocess programs. IEEE
Transactions on Computers, 28(9), 1979.

[12] Tim Lindholm and Frank Yellin. Java Virtual Machine
Specification. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[13] Jeremy Manson, William Pugh, and Sarita V. Adve. The java
memory model. In POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 378–391, New York, NY,
USA, 2005. ACM.

[14] S. Park and D.L. Dill. An executable specification and
verifier for relaxed memory order. IEEE Transactions on
Computers, 48(2), 1999.

[15] Douglas C. Schmidt and Tim Harrison. Double-checked
locking. Pattern languages of program design 3, pages
363–375, 1997.

[16] Willem Visser, Klaus Havelund, Guillaume Brat, and
SeungJoon Park. Model checking programs. In IEEE
international conference on Automated software engineering
(ASE), 2000.


