
Automated Path Generation for Software Fault Localization

Tao Wang
School of Computing

National University of Singapore

wangtao@comp.nus.edu.sg

Abhik Roychoudhury
School of Computing

National University of Singapore

abhik@comp.nus.edu.sg

ABSTRACT
Localizing the cause(s) of an observable error lies at the heart of
program debugging. Fault localization often proceeds by com-
paring the failing program run with some “successful” run (a run
which does not demonstrate the error). An issue here is to generate
or choose a “suitable” successful run; this task is often left to the
programmer. In this paper, we present an efficient technique where
the construction of the successful run as well its comparison with
the failing run is automated. Our method constructs a successful
program run which is close to the failing run in terms of a distance
metric capturing control flow. The distance metric takes into ac-
count the sequence of statements executed in the two runs, and not
just the set of statements executed. We use the distance metric to
locate “similar” branch instances which appear in the failing and
successful run with different outcomes. The program statements
for such branches are returned as bug report. In our experiments
with the Siemens benchmark suite we found that the quality of our
bug report compares well with those produced by existing fault lo-
calization approaches where the programmer manually provides or
chooses a successful run.

Keywords
Program Understanding, Automated Debugging, Fault Localiza-
tion

1. INTRODUCTION
Program debugging is an age-old software engineering activity.

Many programmers still use a source-level debugger, which origi-
nated in the 1970s, to localize the cause of a program bug. They
use these tools to iteratively check program behaviors and hypoth-
esize/confirm the error cause. To improve the state of debugging
tools, we need to develop methods where the error cause can be
identified from the observable error with a higher degree of automa-
tion. The work done in this paper contributes to such a research
perspective — we seek to further automate the task of localizing
software faults.

An important challenge in automated debugging is in charac-
terizing the desired correct behaviors. One approach for describ-

ing correct program behaviors is to use logical assertions at spe-
cific control locations of the program, often given as pre- and post-
conditions of program methods. Thus, a program is correct ifall its
execution traces satisfy each assertion whenever the corresponding
control location is visited. Given an execution trace showing an
observable error, one can check for violation of some of the user-
provided assertions to localize the error. However, developing these
assertions is usually a difficult task.

Another approach to fault localization, which has been explored
in the recent times [5, 9, 12, 15, 16, 17, 24], considers certain ex-
ecution traces of the buggy program itself as representative correct
behavior. Fault localization progresses by comparing the failing ex-
ecution run, which exhibits the observable error, with one that does
not. Most of the research in this line of work has focused on how
to compare the successful and failing execution runs. They use the
successful run to find out points in the failing run which may be re-
sponsible for the error, and for each of those points which variables
may be responsible for the error. However, these works do not dis-
cuss how the successful run is obtained. Usually, they assume that
a large number of successful runs are available and the programmer
chooses one of them.

In this paper, we automate the process of constructing one suc-
cessful run from a program’s failing run. We construct a successful
run from the failing run by changing the outcomes of some of the
conditional branch instances in the failing run. This, indeed, is the
key idea of our approach. By evaluating some branch instances
in the failing run differently, certain faulty statements may not be
executed, leading to a successful run. Branch statements whose
instances have been evaluated differently are submitted to the pro-
grammer as bug report.In this paper, whenever we refer to evalu-
ating branch statement instances differently, we mean changing the
outcome of the branch condition evaluation.

Consider the program fragment in Figure 1 where a0 value is
printed in line 10 corresponding to inputx=0 , deemed by the pro-
grammer as an observable “error”. We can construct a successful
run by altering the outcome of the branch(x>0) ; such a run corre-
sponds to a positive value of inputx . Now, by comparing the suc-
cessful run with the failing run we report the branchif (x>0) to
the programmer; he/she may notice that the bug fix lies in weaken-
ing the branch condition toif (x>=0) .

In the preceding, we have illustrated a simple example where the
bug fix gets pinpointed straightaway from the bug report. In reality,
there can be various scenarios of the bug report matching or not
matching the actual source of bug. If the bug fix involves changing
the value assigned tov at line 1 of Figure 1, our bug report will not
be equally helpful.

In general, given a programP and a failing execution runπ,
there exist many runs ofP which do not exhibit the error observed

1. v=0;
2. ...
3. if (x>0) {
4. u=5;
5. ...
6. }
7. else {
8. u=v;
9. }
10. printf(‘‘%d’’,u);

Figure 1: A simple example.

in π. Certain works [16] have shown empirically that successful
executions which are “similar” to the failing execution run can be
more useful for fault localization. In this paper, we systematically
generate a successful run from the failing run with the help of a
distance metric capturing control flow. Given a failing runπ of
programP , our method automatically generates a successful run
π′ of P whose control flow is close toπ as per our distance metric.
Data flow is not considered since we want to generate the success-
ful run efficiently. Our distance metric is sensitive to thesequence
of statements executed in the two runs, not just the set of statements
executed. Given a failing runπ and a successful runπ′ which exe-
cute the same set of statements but possibly in different order, our
distance metric captures the difference in relative order of state-
ments by reporting sequence of branch instances which are evalu-
ated differently inπ, π′. The statements for these branch instances
are returned as bug report.

How useful is our path generation method and the resultant bug
report? To evaluate our technique, we have employed it to localize
bugs of the Siemens benchmark suite [19], an established suite of
programs with injected faults. Experiments show that our approach
can automatically generate successful executions and bug reports
within tolerable time. The quality of our bug report compares well
with those by previous approaches [5, 16] which requires the pro-
grammer to manually provide/choose a successful run.

Summary of Contributions.The main results of this paper
are as follows. We develop a fault localization method based on
comparing a failing program run with a successful program run.
We take the view that thedistancebetween two runs can be sum-
marized by the sequence of comparable branch statement instances
which are evaluated differently in the two runs. Based on this view,
we automatically generate a feasible successful run1 which is close
to, that is, haslittle distancewith, the failing run. We return the
sequence of branch instances evaluated differently in the two runs
as bug report. We experimentally evaluate the quality of our bug re-
port, the size of our bug report and the time overheads of our fault
localization method.

Section Organization.The rest of this paper is organized as
follows. The next section introduces related work on fault local-
ization. Our distance metric and path generation algorithm are pre-
sented in Sections 3, 4. Sections 5, 6 discuss our experimental setup
and experimental results. Section 7 concludes the paper.

2. RELATED WORK
In this section, we discuss work on localizing software errors.

1A feasible successful run is an execution run which is exercised by
some program input and does not exhibit the bug being localized.

Using assertions for program debugging/testing has long been
studied. Assertion processing has been integrated into program-
ming languages and environments [14, 18]. There is a rich body of
work on this topic and we do not discuss it here since it is orthog-
onal to our approach. There has also been intense research on the
topic of input/test case generation based on various coverage crite-
ria. The aim of these methods is to expose more program behaviors
for the purpose of testing. This is somewhat different from our goal
since we generate a program input/execution-run for localizing the
error cause in aspecificfailing run.

Recently, there has been a lot of interest in program error lo-
calization by comparing successful and failing runs of the buggy
program [3, 5, 9, 12, 15, 16, 17, 24]. These techniques often differ
in which characteristic of execution runs is used for comparison.
The characteristic can be acyclic paths [17], potential invariants
[15], executed statements [3, 12], transitions [9], basic block pro-
files [16] or program states [5, 24]. Jones et al. [12] and Ruthruff et
al. [20] have proposed to mine a set of successful and failing runs,
and color statements according to the likelihood that the statement
is faulty. Liblit et al.’s technique [13] discovers abnormal return
value of methods from many runs. Unlike our method, these works
require that both failing and successful runs are available before
fault localization.

The work of Renieris and Reiss [16] is related to ours. They have
demonstrated through empirical evidence that the successful run
which is “closest” to the failing run can be more helpful for fault lo-
calization than a randomly selected successful run. However, [16]
does not automaticallygeneratethe closest successful run from a
failing run. Instead, they choose the successful run which is closest
to the failing run from a large number of available successful runs.
Thus, even if a large set of representative program inputs is avail-
able, one has to first classify a subset of these inputs as successful
for anygivenfaulty run.

Moreover, [16] compares two runs (and measures how close they
are) by comparing thesetof basic blocks2 executed in each run.
Thus, they cannot distinguish between runs which execute the same
statements but in different order. We consider thesequenceof state-
ments executed in each run for determining proximity of two runs.
Clearly, even if for a faulty run, the programmer has a number of
successful runs at his disposal (i.e. automated generation of one
successful run is unnecessary), our sequence based distance metric
can be used for accurately comparing the control flow of two runs.
Our distance metric bears some similarities to the notion of prox-
imity between execution runs in [5], where [5] compares program
states with similar contexts for fault localization. Detailed exper-
imental results comparing our method with [5] and [16] appear in
Section 6.

Software fault localization via model checking has also been
studied [4, 8]. These works seek to explain the counter-example
produced by model checking by invoking an optimization problem.
The optimization generates a successful run which is “closest” to
the counter-example; this is typically accomplished by an external
constraint solver. Note that for these approaches, either the pro-
gram model needs to closely reflect the behaviors of the actual pro-
gram, or the approaches risk generating a spurious successful run
(not corresponding to any program execution) which necessitates
further refinement of the optimization problem.

Zeller et al. present thedelta debuggingalgorithm to automat-
ically simplify the erroneous input by removing part of this input
[25]. The reduced input usually corresponds to a shorter execution,

2Actually a sorted sequence of the basic blocks based on execu-
tion counts is used; this is of course different from the execution
sequence of the basic blocks in the failing run.

which may be easier to debug. Simplifying/reducing the erroneous
input can also lead to a successful program input. However, the
approach is more suitable for debugging language/text processing
programs like compilers or web-browsers where we can get pro-
gram inputs by deleting parts of a program input. For programs
with integer inputs this approach may be problematice.g.consider
the situation where the failing input of a program isi=2 and the
only successful input isi=3 .

Program slicing [23], especially dynamic slicing [1], can facil-
itate debugging by ruling out statements which do not affect the
observable error via control and/or data flow, because such state-
ments are likely to be irrelevant to the cause of the error. However,
the dynamic slice is not always useful for accurate fault localiza-
tion e.g. consider an assignmentx=0 which is wrongly written as
y=0 thereby leading to an erroneous value ofx later on.

In the past, various interactive approaches for error localization
have also been studied (e.g. [21]). We do not discuss them here,
since our focus is on automated debugging.

3. PROXIMITY BETWEEN RUNS
Our approach for generating a feasible successful run is based

on a notion of “proximity” between runs. Given a failing runπ of
programP , our approach attempts to find a feasible successful run
of P which is close toπ based on adistance metric. The intuition
is that, if we can findπ′, the feasible successful run closest toπ,
then we can localize the error inπ by comparingπ andπ′. We
elaborate the distance metric used for comparing execution runs
in this section. In the next section, we present a path generation
algorithm which takes in a failing run and produces a “similar”
successful run (i.e., similar based on our distance metric).

We consider each execution run of a program to be a sequence
of events〈e0, e1, ..., en−1〉 whereei refers to theith event during
execution. Each eventei represents a control location or a line
number in the program; the program statement corresponding to
this line number is denoted asstmt(ei). To distinguish events from
different execution runs, we denote theith event in an execution run
π aseπ

i , that is, the execution run appears as a superscript. We will
drop the superscript when it is obvious from the context.

Our distance metric measures the difference between two execu-
tion runsπ andπ′ of a program, by comparing behaviors of “cor-
responding” branch statement instances fromπ andπ′. The branch
statement instances with differing outcomes inπ, π′ are captured in
dist(π, π′) – the distance between execution runπ and execution
run π′. How do we find out the “corresponding” branch statement
instances? For this purpose, we have defined a notion ofalignment
to relate statement instances of two execution runs. Our alignment
is based ondynamic control dependence.

DEFINITION 1 (DYNAMIC CONTROL DEPENDENCE). Given
an execution runπ of a program, an eventeπ

i is dynamically con-
trol dependent on another eventeπ

j if eπ
j is the last event beforeeπ

i

in π wherestmt(eπ
i) is statically control dependent3 onstmt(eπ

j).

Note that any method entry event is dynamically control depen-
dent on the corresponding method invocation event. According to
the above definition, any eventeπ

i in an execution runπ (except
the first one which denotes entry to the main method) is dynami-
cally control dependent on exactly one event. We use the notation
dep(eπ

i , π) to denote the event on whicheπ
i is dynamically control

3A statementstmt is statically control dependent on a statement
stmt′ if stmt′ evaluates a conditional branch which can control
whetherstmt will subsequently be executed [7].

dependent in the execution runπ. We are now ready to present our
definition of event alignment.

DEFINITION 2 (ALIGNMENT). We define alignment between
two execution runsπ, π′ as a binary relation

alignπ,π′ ⊆ Eventsπ × Eventsπ′

whereEventsπ (Eventsπ′) denotes the set of events appearing in
the execution runπ (π′). In particular,

∀e ∈ Eventsπ ∀e′ ∈ Eventsπ′ (e, e′) ∈ alignπ,π′ iff

1. stmt(e) = stmt(e′), and

2. eithere, e′ are the first events appearing inπ, π′ or
(dep(e, π), dep(e′, π′)) ∈ alignπ,π′ .

Thus, when a branch eventeπ
i cannot be aligned with any event

from the executionπ′, this should only affect alignments of those
events inπ which belong to the chain of events dynamically control
dependent oneπ

i . Note that the beginning of theith iteration of a
loop in the executionπ is aligned with the beginning of theith
iteration of the same loop in the executionπ′, in order to properly
compare events from different loop iterations.

According to the notion of alignment presented in Definition 2,
for any evente in π there existsat mostone evente′ in π′ such
that(e, e′) ∈ alignπ,π′ . The distance betweenπ andπ′ (denoted
dist(π, π′)) captures all branch event occurrences inπ which (i)
can be aligned to an event inπ′ and (ii) have different outcomes
in π andπ′. Formally, the distance metric between two execution
runs can be defined as follows.

DEFINITION 3 (DISTANCE METRIC). Consider two execution
runs π, π′ of a program. The distance betweenπ, π′, denoted
dist(π, π′) is a subsequence of the event sequence represented by
π. We define

dist(π, π′) = 〈eπ
i1 , . . . , eπ

ik
〉

such that

1. eache in dist(π, π′) is a branch event occurrence drawn
from execution runπ.

2. for eache in dist(π, π′), there exists another branch occur-
rencee′ in execution runπ′ such that(e, e′) ∈ alignπ,π′

(i.e. e ande′ can be aligned). Furthermore, the outcome of
e in π is different from the outcome ofe′ in π′ (sincee, e′

can be aligned, they denote occurrences of the same branch
statement).

3. all events inπ satisfying criteria (1) and (2) are included in
dist(π, π′).

4. the events indist(π, π′) appear in the same order as inπ,
that is, for all 1 ≤ j < k, ij < ij+1 (eventeπ

ij
appears

before eventeπ
ij+1 in π).

As a special case, if execution runsπ andπ′ have the same control
flow, then we definedist(π, π′) = 〈eπ

0 〉.

Clearly we can see that in generaldist(π, π′) 6= dist(π′, π).
The reason for making a special case forπ andπ′ having the same
control flow will be explained later in the section when we discuss
comparison of distances.

As a simple illustration of our distance metric, consider the pro-
gram in Figure 2 and the following runsπ, π′ in the program

1. if (a)
2. i=i+1;
3. if (b)
4. j=j+1;
5. if (c)
6. if (d)
7. k=k+1;
8. else
9. k=k+2;
10.

Figure 2: A program segment.

π = 〈1, 3, 5, 6, 7, 10〉
π′ = 〈1, 3, 4, 5, 6, 9, 10〉

The distance metric between these two runs isdist(π, π′) = 〈3, 6〉.
This is because branches3, 6 are aligned in runsπ andπ′ and their
outcomes are different inπ, π′. If the branches at lines3, 6 are
evaluated differently we getπ′ from π.

Why do we define the distance metricdist(π, π′) to contain
branch event occurrences ofπ which evaluate differently inπ′ ?
Recall that we want to generate a successful run for purposes of
fault localization. Ifπ is the failing run andπ′ is a successful run,
thendist(π, π′) tells us which branches in the failing runπ need to
be evaluated differently to produce the successful runπ′. Clearly, if
we have a choice of successful runs we would like to make minimal
changes to the failing run to produce a successful run. Thus, given
a failing runπ and two successful runsπ′, π′′ we would chooseπ′

overπ′′ if dist(π, π′) < dist(π, π′′). This requires us tocompare
distances. How we do so is elaborated in the following.

DEFINITION 4 (COMPARISON OFDISTANCES). Letπ, π′, π′′

be three execution runs of a program. Let

dist(π, π′) = 〈eπ
i1 , eπ

i2 , . . . , eπ
in
〉 and

dist(π, π′′) = 〈eπ
j1 , eπ

j2 , . . . , eπ
jm
〉

We define thatdist(π, π′) < dist(π, π′′) iff there exists a non-
negative integerK such that

1. K ≤ m andK ≤ n

2. the lastK events indist(π, π′) anddist(π, π′′) are the same,
that is,0 ≤ x < K in−x = jm−x.

3. one of the following two conditions hold

• eitherK = n < m, that is,dist(π, π′) is a suffix of
dist(π, π′′),

• or the (K + 1)th event from the end indist(π, π′) ap-
pears later inπ as compared to the (K + 1)th event
from the end indist(π, π′′), that is,in−K > jm−K .

It should be noted that given a failing runπ and two success-
ful runsπ′, π′′ we say thatdist(π, π′) < dist(π, π′′) based on a
careful combination of the following criteria.

• The branches ofπ that need to be evaluated differently to
getπ′ appear closer to the end ofπ (where the error is ob-
served), as compared to the branches ofπ that need to be
evaluated differently to getπ′′ . This is reflected in the con-
dition in−K > jm−K of Definition 4.

π π′ π′′ dist(π, π′) dist(π, π′′)
1 1 1 ?

2
3 3 3 ◦

4
5 5 5
6 6 6 ◦ ?
7

9 9
10 10 10

Table 1: Comparison of distance metrics. The first three
columns show the event sequences of execution runsπ, π′ and
π′′. The last two columns show distance metrics.

• Fewer branches ofπ need to be evaluated differently to get
π′ as compared to the number of branches ofπ that need to
be evaluated differently to getπ′′. This is reflected in the
conditionK = n > m of Definition 4.

To illustrate our comparison of distances, take the program seg-
ment in Figure 2 as an example. Consider the following execution
runsπ, π′, π′′.

π = 〈1, 3, 5, 6, 7, 10〉
π′ = 〈1, 3, 4, 5, 6, 9, 10〉
π′′ = 〈1, 2, 3, 5, 6, 9, 10〉

In Table 1, the first three columns show the event sequences (in
terms of line number) of execution runsπ, π′ andπ′′, respectively.
Events along the same horizontal line are aligned. Branches3, 6
behave differently inπ andπ′, so dist(π, π′) = 〈3, 6〉, as indi-
cated by the “◦” in Table 1. Similarly,dist(π, π′′) = 〈1, 6〉, as
indicated by the “?” in Table 1. Comparing〈3, 6〉 with 〈1, 6〉 we
see that〈3, 6〉 < 〈1, 6〉 since line3 occurs after line1 in execution
run π. It should be noted that in this simple example all the exe-
cution runs have only a single occurrence of a program statement;
this is for simplicity of illustration. Of course, if there are multi-
ple occurrences we will distinguish these occurrences through our
notion of alignment.

Comparing runs with identical control flow.Using Def-
initions 3 and 4 we can see that ifπ is the failing run,πsame is a
successful run with same control flow as that ofπ (i.e. same se-
quence of statements executed by a different input) andπdiff is
a successful run with control flow different fromπ we will have
dist(π, πdiff) < dist(π, πsame). As a result, our path generation
algorithm which tries to find the successful run with minimal dis-
tance to the failing run will avoid successful runs with same control
flow as that of the failing run. Indeed this choice is deliberate, since
we want to find a successful run with minimal difference in control
flow from the failing run, but not with zero difference. This is be-
cause we construct our bug report by comparing the control-flow
(not data flow) of the generated successful run with the failing run.
If the two runs have the same control flow, the bug report is null
and hence useless to the programmer.

4. PATH GENERATION ALGORITHM
In this section, we discuss our technique for generating a feasi-

ble successful run from a failing run of a program. Recall that a
“failing” run is an execution trace which exhibits a specific behav-
ior which the programmer deems as a “bug”; a successful run is

Distance with failing run Execution run

〈6〉 〈1, 3, 5, 6, 9, 10〉
〈3, 6〉 〈1, 3, 4, 5, 6, 9, 10〉
〈1, 3, 6〉 〈1, 2, 3, 4, 5, 6, 9, 10〉
〈1, 6〉 〈1, 2, 3, 5, 6, 9, 10〉
〈5〉 〈1, 3, 5, 10〉
〈3, 5〉 〈1, 3, 4, 5, 10〉
〈1, 3, 5〉 〈1, 2, 3, 4, 5, 10〉
〈1, 5〉 〈1, 2, 3, 5, 10〉
〈3〉 〈1, 3, 4, 5, 6, 7, 10〉
〈1, 3〉 〈1, 2, 3, 4, 5, 6, 7, 10〉
〈1〉 〈1, 2, 3, 5, 6, 7, 10〉

Table 2: Order in which candidate execution runs are tried out
for the failing run 〈1, 3, 5, 6, 7, 10〉 in Figure 2

an execution trace (for a different program input) which does not
demonstrate this bug. A feasible run of a program is a path in the
program’s control flow graph from start to end which is executed
for some program input.

Our path generation algorithm tries to generate the closest suc-
cessful run from the failing runπf , according to the distance metric
in Definition 3. In other words, given a failing runπf , we seek to
generate a successful runπ′ such that there does not exist any other
successful runπ′′ with dist(πf , π′′) < dist(πf , π′) (see Defini-
tion 4). The distance betweenπf andπ′ consists of the branches in
the failing runπf which need to be evaluated differently to getπ′.
These branches are presented to the programmer as “bug report”
from which the programmer will try to isolate the bug.

How do we construct the closest successful run from the failing
run ? Of course, we will not generate all the possible runs and
then find out the closest. Instead, we seek to generate the “closest”
program run from the failing run by exploiting our understanding
of the distance metric. If this turns out to be a feasible successful
run then our search stops; otherwise we try for the next closest run
and so on. Our notion of proximity in Definition 4 ensures that a
run π′ is close to a failing runπf (i.e., distance betweenπf , π′ is
small) if the branches ofπf which need to be evaluated differently
are near the end ofπf (where the error is observed). Furthermore,
the number of branches ofπf that need to be evaluated differently
should be small. Thus, given a failing runπf , we will first try to
evaluate differently the last branch occurrence (call itblast) in πf

to construct a runπ1. Among all the branch occurrences inπf ,
clearly blast is nearest to the end ofπf . If π1 is a successful and
feasible run, we returnπ1 as the closest successful run. Otherwise
we successively construct other runs by evaluatingblast as well as
other branch occurrences ofπf differently. If none of these runs
is a feasible successful run, this indicates that the branch atblast

might have little relationship with the error cause. So, there is no
point in evaluatingblast differently. Instead, we evaluate the second
last branch occurrence inπf differently and carry out the above
steps again. This process goes on until a feasible successful run is
obtained.

Example.Let us take the program segment in Figure 2 as an ex-
ample. Assume that the failing runπf = 〈1, 3, 5, 6, 7, 10〉. The
branch occurrences appearing in this run are at lines1, 3, 5, 6. Note
that the execution runπf does not contain multiple occurrences of
any program statement; so we do not need to worry about distin-
guishing between occurrences of the same statement in a path as
far as this example is concerned. Now, our method tries to evaluate

some of the branches in lines1, 3, 5, 6 differently from the failing
runπf , thereby constructing new execution runs.

Table 2 shows the order in which the branches of failing runπf

will be evaluated differently leading to new execution runs. Let us
assume that none of the new execution runs is a feasible success-
ful run, so that we can elaborate all possible runs constructed by
our algorithm. We first evaluate differently the branch at line 6,
since this branch is the last one in the failing run. In the next step,
the algorithm intends to evaluate differently a branch before line 6
as well as the branch at line 6. According to the distance metric,
we should now choose the branch which is the closest to line 6.
However, the algorithm cannot choose line 5 at this time, although
line 5 is the closest. This is because line 6 is control dependent
on line 5. If line 5 is evaluated differently, line 6 cannot be exe-
cuted. Instead, line 3 is chosen, and the second run is constructed
by evaluating differently branches at line 3 and 6. After this, the
algorithm tries to evaluate differently a branch before line 3 as well
as branches at line 3,6. Thus, line 1 is selected, and branches at
line 1,3,6 are evaluated differently. Now all branches before line 3
and 6 have been considered, and no feasible successful run can be
constructed. This means that line 3 and 6 might not be related to
the error cause at the same time. The algorithm continues trying to
evaluate differently branches before line 6 as well as the branch at
line 6. After branches at lines 1, 6 have been evaluated differently,
all branches before line 6 have been evaluated differently together
with the branch at line 6. Corresponding runs have been shown
in the first segment of the Table 2 (the segments are separated by
horizontal lines). Thus, at this point the algorithm concludes that
the branch at line 6 might have little bearing with the actual error
cause. The algorithm gives up line 6, and evaluates differently the
second last branch at line 5 as well as branches before line 5, as
shown in the second segment of Table 2. After this, our algorithm
considers the third last branch at line 3, and so on.

Incremental Path generation.So far, we have clarified the
order in which the execution runs will be generated in our search
for the closest successful run. In Table 2 we have shown the or-
der of the generated execution runs for a given failing run and the
distances of these runs from the failing run. However, our algo-
rithm will notgenerate the distances and then find out the execution
run(s) for each distance. This would be inefficient since all execu-
tion runs will have to be generated from scratch by modifying the
failing runπf . Let us consider the first two execution runs tried out
in Table 2. They are

π1 = 〈1, 3, 5, 6, 9, 10〉 dist(πf , π1) = 〈6〉
π2 = 〈1, 3, 4, 5, 6, 9, 10〉 dist(πf , π2) = 〈3, 6〉

Recall that the failing run isπf = 〈1, 3, 5, 6, 7, 10〉 and the buggy
program is shown in Figure 2. The runπ2 shares a common suf-
fix with run π1 — the subpath〈5, 6, 9, 10〉; the runs also share a
common prefix – the subpath〈1, 3〉. Runπ2 can be obtained by
evaluating the branch at line3 differently over and aboveπ1. In-
deed, our algorithm generates the execution runs in this incremental
fashion. Thus, runπ1 is constructed by modifying failing runπf

at line 6 (the last branch occurrence ofπf). Runπ2 is then con-
structed by incrementally modifying runπ1 in the branch at line 3,
that is, we do not construct runπ2 from scratch by modifying the
failing run πf at lines3 and6. This incremental path construction
is crucial for constructing our bug report efficiently.

Complications due to nested branch statements.Note
that when a branch in the failing run is evaluated differently, sev-
eral execution runs may be obtained due to nested branch state-

Global Variable: sop, the program’s initial event
eop, the program’s event after which

the erroneous state is observable
πf , the program’s failing run to debug

generatePaths(paths, last, distance)
Input: paths, a set of execution runs

last, a branch event
distance, distance betweenπf and runs inpaths

Output: a feasible successful run, or Null

begin
1. br= branch event just prior tolast in πf ;
2. while (br is defined)
3. if (no event indistance is dynamically

control dependent onbr)
4. newpaths= {}; /* empty set */
5. for eachπ in paths do
6. de = pde(br, π);
7. subpaths = get all(br, de, π);
8. π1 = sub-path ofπ from sop to br;
9. π2 = sub-path ofπ from de to eop;
10. for eachπ′ in subpaths do
11. if (π′ o π2 is infeasible)
12. continue;
13. πw = π1 o π′ o π2;
14. if (πw is feasible and successful)
15. returnπw;
16. else
17. insertπw into newpaths;
18. if (newpaths is not empty set)
19. distance′= 〈br〉 ◦ distance;
20. πr = generatePaths(newpaths, br,

distance′);
21. if (πr != Null)
22. returnπr;
23. else
24. for eachπ in paths do
25. π3 = sub-path ofπ from br to eop;
26. if (π3 is infeasible)
27. removeπ from paths;
28. if (paths is empty set)
29. return Null;
30. br= branch event just prior tobr in πf ;
31. return Null;
end

Figure 3: Algorithm to generate a successful run from the fail-
ing run

ments. For example, for the program in Figure 2 if the failing run
is 〈1, 2, 3, 4, 5, 10〉, our algorithm will first try to evaluate branch
5 differently since it is the last branch in the failing run. How-
ever, this produces two execution runs〈1, 2, 3, 4, 5, 6, 7, 10〉 and
〈1, 2, 3, 4, 5, 6, 9, 10〉 due to the nested branch statement at line 6.
Our algorithm will check whetheranyof these two runs is feasible
and successful before proceeding to construct any other execution
runs. This is part of our attempt to generate the closest success-
ful run according to the distance metric of Definition 3. We now
explain our path generation algorithm in details.

2π

3π

eop

de

br

sop

π

subpaths

2π

1π

wπ

1π

’π

Figure 4: Explanation of algorithm in Figure 3.

Algorithm Description.Our path generation algorithm is pre-
sented in Figure 3. Some of the variables used in the algorithm are
pictorially explained in Figure 4. The algorithm proceeds by em-
ploying a recursive proceduregeneratePaths . This procedure
is invoked at the top level with the parameters{πf}, elast and〈〉,
whereπf refers to the failing run,elast refers to the last event in
theπf , and〈〉 stands for the empty sequence.

As shown in Figure 3, the three parameters ofgeneratePaths
are paths, last and distance. The generatePaths procedure
constructs new execution runs from the runs captured inpaths by
evaluating branch events before the eventlast differently. All runs
in paths have been constructed by evaluating differently events
in the distance metricdistance w.r.t. the failing runπf . These
runs have the same distance w.r.t. the failing run. Let us re-visit
the example in Table 2 which shows the order of path genera-
tion for the program in Figure 2 corresponding to the failing run
πf = 〈1, 3, 5, 6, 7, 10〉. The left column shows thedistance for all
invocations ofgeneratePaths procedure except the first (where
distance is the empty sequence). The right column shows the
value ofpaths for each invocation ofgeneratePaths except
the first (wherepaths only contains the failing run). In this exam-
ple, for every invocation ofgeneratePaths , paths contains a
single run.

Thewhile loop in thegeneratePaths procedure iteratively
retrieves a branch event prior to the eventlast in failing run πf

and assigns it tobr (at line 30 of the algorithm). If there are no
more branch events,br is undefined, andgeneratePaths re-
turns Null (i.e. we cannot find a successful run). Each loop iter-
ation ofgeneratePaths tries to evaluate branchbr differently
along with other branch occurrences prior tobr in failing runπf .

In each iteration of thewhile loop of generatePaths , we
first check whether any event indistance is dynamically control
dependent onbr. If it is so, the branches inbr as well as the
branches indistance cannot all be evaluated differently from the
failing run πf . To illustrate this point, let us look at the path gen-
eration example presented in Table 2; this table shows the order
of path generation for the program in Figure 2 corresponding to
the failing runπf = 〈1, 3, 5, 6, 7, 10〉. Lines5 and6 of Figure 2
cannot be evaluated differently together w.r.t. the failing run.

If no event indistance is dynamically control dependent onbr,
the algorithm generates new runs by evaluating differently thebr

event over and above the branches captured bydistance. Thus,
distance is updated todistance′ by addingbr to distance. Re-
call that the path-setpaths captures the set of paths obtained by
evaluating branches indistance differently w.r.t. failing runπf .
Thus, to find the set of paths obtained by evaluating branches in
distance′ differently w.r.t. failing runπf , we exploit the relation-
ship distance′ = 〈br〉 ◦ distance to simply evaluatebr differ-
ently for all runs inpaths. The resultant set of paths is captured
in newpaths. Thus, our algorithm constructsnewpaths by incre-
mentally modifyingpaths instead of directly constructing it from
the failing runπf .

We now explain the functions used in thegeneratePaths
procedure (lines 6,7 of Figure 3). The functionpde(br, π) called at
line 6 returnsde, the first event which is not (transitively) dynami-
cally control dependent onbr in the execution runπ. The function
get all(br, de, π) called at line 7 of Figure 3 retrieves all acyclic
paths where

• each acyclic path starts fromloc(br) (the control location of
the branch eventbr) and ends atloc(de) (the control location
of the eventde), and

• br is evaluated differently fromπ in each acyclic path.

We choose to consider acyclic paths to avoid enumerating too many
paths. However, this may cause us to miss the closest successful run
since all possible program paths are not considered.

In order to improve the performance of our algorithm, we have
exploited the following property: if a path is infeasible, all exten-
sions of the path are also infeasible. In particular, line 11 of the
algorithm checks the feasibility of a subpathπ′ o π2. If it is infea-
sible, all execution runs withπ′ o π2 as suffix are also infeasible,
and there is no need to check them. Similarly, when some event
in distance is dynamically control dependent onbr, line 26 of the
algorithm checks the feasibility of a subpathπ3 and prunes any ex-
ecution runs withπ3 as suffix ifπ3 is infeasible. Figure 4 shows
the relation between various paths (e.g. π′, π2, π3) used in Figure
3, the algorithm’s pseudo-code.

Recall that we want the path generation algorithm in Figure 3 to
construct execution runs monotonically w.r.t. the distance metric in
Definition 3, so that it can return a successful run which is close to
the failing run. This is stated in Theorem 1 whose proof is omitted
due to lack of space.

THEOREM 1. [Proximity of Successful Run] Consider the fail-
ing execution runπf for a program. If a runπ′ is constructed
before another runπ′′ by thegeneratePaths method in Fig-
ure 3, thendist(πf , π′) < dist(πf , π′′) (as per Definition 4) or
dist(πf , π′) = dist(πf , π′′).

The above theorem does not claim that we generate the closest
successful run from the failing run.This reflects the reality, where
we can, but choose not to generate the closest successful run for
reasons of efficiency.Our method does not generate certain pro-
gram paths and one of these can be the closest successful run.

Our path generation algorithm requires checking whether an ex-
ecution run is feasible and successful (line 14 of Figure 3). We
have used the automated theorem prover Simplify [6] to check for
feasibility. This feasibility check returns the possible inputs under
which the execution run is executed. We then check whether the
execution run is successful (i.e. absence of the fault being local-
ized) by checking the execution run forany oneof these possible
inputs. Clearly, for the same execution run, some inputs may lead to
successful executions, while others lead to failing executions. Our
implementation chooses any one of the feasible inputs and checks
whether the corresponding execution run is successful.

5. EXPERIMENTAL SETUP
In order to validate our method experimentally, we developed

a prototype implementation of our path generation algorithm. We
employed the prototype on the Siemens test suite [11] and used the
evaluation framework of [16] to quantitatively measure the quality
of generated bug reports. We have chosen the Siemens test suite
and the evaluation framework of [16] because previous approaches
[5, 16] have also conducted experiments with the same subject pro-
grams and evaluation framework. Thus, we can compare our ap-
proach with these works. In this section, we first introduce the
subject programs (Section 5.1) and the evaluation framework (Sec-
tion 5.2). We then present important details about the prototype
implementation of our approach (Section 5.3).

5.1 Subject programs
The subject programs used in our experiments are 109 buggy C

programs from the Siemens test suite [11], as modified by Rother-
mel and Harrold [19]. Each buggy program has been created from
one of six programs by manually injecting one defect. The six pro-
grams range in size from 170 to 560 lines, including comments.
Table 3 shows descriptions of these programs. The third column
in Table 3 shows the number of buggy programs created from each
of the six programs. The injected defects include code omissions,
relaxing or tightening conditions of branch statements, superfluous
code and wrong values for assignment statements. Some defects
span multiple lines or even functions. Although the benchmarks
are simple, and cannot reflect all possible errors in real life, they
help us gain valuable experience in debugging.

We slightly changed two of the subject programs in our experi-
ments. In particular, we rewrote theschedule andschedule2
programs which read a floating point number and round it to an in-
teger value to directly read an integer. We also excluded the floating
point calculation programtot info in the Siemens suite from our
experiments. This is because our prototype implementation uses
the Simplify theorem-prover [6] to check the feasibility of an ex-
ecution run, and Simplify does not work well with floating-point
variables.

Subject Pgm. Description # Buggy versions
schedule priority scheduler 9
schedule2 priority scheduler 10

replace pattern replacement 32
print tokens lexical analyzer 7
print tokens2 lexical analyzer 10

tcas altitude separation 41

Table 3: Description of the Siemens suite

5.2 Evaluation framework
Renieris and Reiss have proposed an evaluation framework to

evaluate the quality of a defect localizer [16]. Each error report
is assigned a score to show the quality of this report. The score
indicates the amount of code that an ideal programmer can ignore
for debugging. Clearly, higher score indicates better quality bug
report. We now discuss the score computation mechanism.

To compute the score of a bug report, [16] requires a correct
version of the buggy program, where the defect has been fixed.
Erroneous statements refer to the difference between the two pro-
grams (i.e. the statements which have been fixed in the correct ver-
sion). The score computation works on the program dependence
graph (PDG) [10] for the buggy program. Nodes in a PDG repre-

sent statements in the program, and edges represent data or control
dependencies between statements. We have used the Codesurfer
[2] to construct the PDG. Erroneous statements are marked as “de-
fect” in the PDG; statements included in the bug report are marked
as “blamed” in the PDG. LetDS(n) be the set of nodes that can
reach or be reached from blamed nodes by traversing at mostn di-
rected edges in the PDG. For example,DS(0) is the set of blamed
nodes, andDS(1) include blamed nodes and all nodes which have
directed edges to or from blamed nodes. We define thatDS∗ is the
DS(n) with the smallestn, which contains at least one erroneous
statement. The score is then computed by the formula:

score = 1− |DS∗|
|PDG| (1)

As a special case, we define the score to be zero for an empty
report, since an empty report is useless to the programmer. This
framework assumes that the programmer can find the error when
he/she reads the erroneous statements, and he/she performs a breadth-
first search for defect localization starting from statements in the
error report. Thus,DS∗ reflects the amount of code in the program
that the programmer has to examine for defect localization using
the bug report, and the score indicates the amount of code which
can be ignored.

Note that the edges in the PDG can also be considered as undi-
rected; this should increaseDS∗ and hence decrease the score.
When we ran experiments, we found that this change hardly had
any effect on the scores for bug reports generated by our approach.

5.3 Implementation
We have built an experimental prototype for evaluation. The pro-

totype is implemented in C and includes two coupled components:
aninstrumentation component, and anpath generation component.
The instrumentation component uses the GNU debugger (GDB) to
trace the execution path of the failing run. The path generation
component implements our path generation algorithm in Figure 3
and uses an external theorem-prover Simplify to check the feasibil-
ity of an execution. We now discuss a few important implementa-
tion issues.

Trade-off. In order to improve the efficiency of our prototype, we
have made some trade-offs in the implementation. These trade-offs
have reduced the time overheads of our path generation algorithm,
but they may cause our prototype implementation to miss the suc-
cessful run which is the closest to the failing run according to the
distance metric.

In our initial implementation, we decreased, but did not increase
the number of iterations when generating a successful run from
a failing run. That is, if a branch event exits a loop, we did not
consider evaluating it differently. However, experiments showed
that there were still too many paths to construct and check. There-
fore we decided to not evaluateany loop branch events differently.
Thus, the successful execution run returned by our implementation
always has exactly the same number of loop iterations as in the fail-
ing run. This can dramatically reduce the number of constructed
execution runs. Also, when we evaluate a branch event differently,
there can be many possible paths because of nested branch state-
ments. Our prototype stops when the number of runs constructed
by evaluating differently the same set of branch events has reached
a threshold.

Feasibility check.One important problem in the implementa-
tion is how to check the feasibility of an execution run or a subpath,
as required by the path generation algorithm in Figure 3. Our pro-

totype traverses the execution run from the beginning till the end
to generate a constraintφ over program input and variables. We
then invoked the Simplify theorem-prover [6] to prove the validity
of the formula¬φ. If Simplify succeeds, we infer that the path is
infeasible; otherwise we deem the path as feasible.

The use of the Simplify theorem prover requires us to consider
the power of its decision procedures for inferencing. Simplify is
sound but incomplete, that is, any formula it proves as valid is valid
but it may fail to prove the validity of a valid formula. Thus, ifφπ

is the constraint for a pathπ, ¬φπ is valid (i.e. the path is actually
infeasible) and Simplify fails to prove the validity of¬φπ, we will
actually treatπ as feasible when it is not. However, this unlikely
situation did not occur in our experiments with the Siemens suite.

Failing Run. One issue in our experiments is the choice of the
failing input (and hence the failing run) for each buggy program.
We first chose a failing input which can observe the error for each
buggy program from the Siemens test suite. We then used Zeller
and Hildebrandt’s approach [25] to further simplify the input for
producing a failing run. This was particularly useful for the buggy
versions of text-processing programs in the Siemens test suite (e.g.,
replace , print tokens).

6. EXPERIMENTAL RESULTS
We employed the prototype implementation of our method to

109 buggy programs from the Siemens suite. Two out of the 109
programs had to be ruled out because there is no input whose ex-
ecution run observes the error. In fact, these two buggy programs
are syntactically different from, but semantically the same as the
original correct program.All reported distributions for our APG
(abbreviation for Automated Path Generation) method are in per-
centage of 107 buggy programs, unless mentioned otherwise. The
results from our experiments are elaborated in this section. We
compare our method with existing fault localization approaches [5,
16] in terms of quality of bug reports produced. We also report
our time overheads of our approach and discuss some experience
gained from our experiments.

Renieris and Reiss have proposed the nearest neighbor query
method (“NN/Perm”) in [16]. The NN/Perm method compares
detailed code coverage between a failing run and the nearest suc-
cessful run assuming that a set of successful runs is available. Re-
cently, Cleve and Zeller have proposed the cause transition methods
“CT/relevance” and “CT/infected” [5] for software fault localiza-
tion. Both CT/relevance and CT/infected methods analyze cause
transitions in the failing run to generate a bug report. They differ
in usage of the bug report for fault localization – CT/relevance uses
the knowledge of control/data dependencies, while CT/infected uses
the knowledge of which program states are infected.

Quality of Bug Report.Table 4 shows the distribution of scores
for four methods. The data for NN/Perm is taken from [16], and
the data for CT/relevance and CT/infected are taken from [5]. Our
method is shown as APG, an abbreviation for Automated Path Gen-
eration. From this table, we can see that our method’s scores are
comparable with those of the cause transition methods, and a lit-
tle better than the scores for nearest neighbor method. Bug re-
ports returned by APG, CT/relevance and CT/infected methods all
achieved a score of 80% or better for more than 41% of all the
buggy programs, while the NN/Perm method achieved at least 80%
score for about 26% of the programs. Note that our method achieved
these scores with automatic generation of successful run, while the
NN/Perm, CT/relevance and CT/infected methods all required the

programmer to provide/choose a successful run. In other words, by
automating the successful run construction, we have not compro-
mised on the bug report quality.

Score NN/Perm CT/relevance CT/infected APG
100% 0.00 5.43 4.55 0.93

90-99% 16.51 30.23 26.36 34.58
80-89% 9.17 6.20 10.91 8.41
70-79% 11.93 6.20 13.64 8.41
60-69% 13.76 9.30 4.55 5.61
50-59% 19.27 10.08 6.36 4.67
40-49% 3.67 3.88 1.82 7.48
30-39% 6.42 10.08 3.64 4.67
20-29% 1.83 3.10 7.27 9.35
10-19% 0.00 10.85 0.00 1.87

0-9% 17.43 4.65 20.91 14.02

Table 4: Distribution of scores for four methods.

Size of Bug Report.Apart from using the scores to describe
the quality of bug reports, the size of a bug report (i.e. the number
of statements in a bug report) can be of practical importance. If a
bug report contains too many statements, the programmer can be
overwhelmed with the bug report. We present the distribution of
sizes of bug reports in Figure 5. We can see that 71% of our 107
bug reports contain at most seven branch statements. This indicates
that the bug reports produced by our method are not voluminous
and overwhelming.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 1 2 3 4 5 6 7 8 9 10 11 12

Size of a bug report

%

o
f

b
u
g
g
y

p
r
o
g
r
a
m
s

Figure 5: Size of bug reports produced by our method.

Time Overheads.Figure 6 shows the time overheads of our
method. We cannot compare the time overheads with [5, 16] since
these works did not report time overheads. The left bars (in lighter
shade) present the distribution of time overheads for all 107 pro-
grams, and right bars (in darker shade) show the distribution of time
overheads for programs whose bug reports can achieve scores 80%
or better (47 of the 107 buggy programs achieve a bug report score
of 80% or better). Our method found the successful run within 10
minutes for 75% of all 107 buggy programs, and for 83% of buggy
programs which had high quality bug reports (i.e., score of 80%
or above). Most of the time overheads for our method is due to
the feasibility check by the external theorem prover Simplify. The
feasibility check enables the following check to find whether a run

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

< 1min 1-10min 10-20min 20-40min > 40min

Time overheads

%

o
f

b
u
g
g
y

p
r
o
g
r
a
m
s

APG
APG with scores >80%

Figure 6: Time overheads of our method.

is successful (since we cannot even observe the behavior of infea-
sible runs). Still the overall time overheads are tolerable for most
programs in the Siemens suite.

Remaining Manual Intervention.Our path generation algo-
rithm generates execution runs close to the failing run and checks
whether they are feasible and successful. As mentioned earlier, the
check for feasibility is done automatically by the Simplify theo-
rem prover. Checking whether a run is successful is however done
manually in our experiments. The time for this manual check is
not included in the time overheads reported in Figure 6. In our
experiments, the first feasible run constructed by the path gener-
ation algorithm was a successful one for most buggy programs.
In the worst case, we had to manually examine5 feasible failing
runs for success before the algorithm found a feasible successful
run. Moreover, manual intervention in checking whether a run is
successful is in some sense unavoidable. Otherwise the program-
mer has to precisely characterize the properties of a successful run,
possibly as assertions; this eases our task of fault localization but
places an additional burden on the programmer. It is important to
note that methods which require the programmer to choose a suc-
cessful run from a pool of available successful runs (such as [16])
will first require a classification of available program runs as fail-
ing or successful. This will typically require even more checks for
each buggy program (one check classifies a given program run as
failing/successful) than the 1 – 5 manual checks required in our
experiments.

Experience.After generating the bug reports, we have studied
these reports to understand what kind of errors can be easily lo-
calized by our approach. We found that many buggy programs of
the Siemens suite have errors in branch statements. The erroneous
branch statements are often correlated with later branch statements.
If those later branch statements are evaluated differently during
path enumeration, the erroneous branch statements also have to be
evaluated differently, and are thus included into our bug report.

Our approach can also help effectively locate erroneous assign-
ment statements, if branch statements which guard these assign-
ments are included in the bug report. In addition, our method may
effectively locate errors due to code omission from the program
text; these errors cannot be localized by conventional methods like
dynamic or relevant slicing (see [22]). In our method, the suc-
cessful run may be constructed by evaluating differently the branch
statement which the missing code is control dependent on. In the
successful run, the missing code is not intended to be executed and
hence we can locate the error.

Our method cannot effectively locate errors due to wrong ini-
tialization of global variables. These statements are not guarded
by any branch statements. In such cases, our method often con-
structs a successful run by evaluating differently irrelevant branch
statements. For example, several buggy programs of thetcas pro-
gram in the Siemens benchmark suite contain such errors. For such
buggy programs, our method obtains a low score (less than 30%).

7. DISCUSSION
In this paper, we have investigated the problem of software fault

localization, that is, localizing the error cause(s) from an observable
program error (as seen in a failing program run). We automatically
generate a successful execution close to the failing execution, and
then compare the two execution runs to discover the likely defects
in the buggy program. Through this comparison, we highlight the
sequence of branches in the failing run which are evaluated differ-
ently in the successful run. Our approach does not require the user
to provide successful executions for debugging as in previous ap-
proaches. Using the Siemens benchmark suite, we have conducted
experiments to evaluate the quality/size of our bug reports as well
as the time required to construct the bug reports.

We are currently extending our approach to report not only con-
trol locations, but also relevant program variables in these control
locations (“searching in space” in Zeller’s terminology [5]). One
potential solution is to perform post-mortem analysis at the branch
events which are evaluated differently in the successful execution.
We can use dynamic slicing [1] to compute a set of relevant vari-
ablesV at these branch events w.r.t. the variables whose values are
observably erroneous. We can then employ the Delta Debugging
technique of [24] to simplify the variable setV . Such information
may help the programmer to better understand the wrong program
execution.

8. REFERENCES
[1] H. Agrawal and J. Horgan. Dynamic program slicing. In

ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1990.

[2] P. Anderson and T. Teitelbaum. Software inspection using
codesurfer. Inthe 1st Workshop on Inspection in Software
Engineering, 2001.

[3] T. Ball, M. Naik, and S. K. Rajamani. From symptom to
cause: localizing errors in counterexample traces. InACM
SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL), pages 97–105, 2003.

[4] S. Chaki, A. Groce, and O. Strichman. Explaining abstract
counterexamples. InACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), 2004.

[5] H. Cleve and A. Zeller. Locating causes of program failures.
In ACM/IEEE International Conference on Software
Engineering (ICSE), 2005.

[6] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem
prover for program checking. Technical report, HP Labs,
Palo Alto, CA, 2003.http://research.compaq.
com/SRC/esc/Simplify.html .

[7] J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization.ACM
Transactions on Programming Languages and Systems,
9(3):319–349, 1987.

[8] A. Groce. Error explanation with distance metrics. InTools
and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 108–122, 2004.

[9] A. Groce and W. Visser. What went wrong: Explaining
counterexamples. InSPIN Workshop on Model Checking of
Software, pages 121–135, 2003.

[10] S. Horwitz and T. Reps. The use of program dependence
graphs in software engineering. InACM/IEEE International
Conference on Software Engineering (ICSE), pages
392–411, 1992.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. InACM/IEEE
International Conference on Software Engineering (ICSE),
pages 191–200, 1994.

[12] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. InACM/IEEE
International Conference on Software Engineering (ICSE),
pages 467–477, 2002.

[13] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2003.

[14] B. Meyer.Object-oriented Software Construction.
Prentice-Hall, 1988.

[15] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss.
Automated fault localization using potential invariants.
CoRR, cs.SE/0310040, Oct, 2003.

[16] M. Renieris and S. P. Reiss. Fault localization with nearest
neighbor queries. InAutomated Software Engineering (ASE),
pages 30–39, 2003.

[17] T. W. Reps, T. Ball, M. Das, and J. R. Larus. The use of
program profiling for software maintenance with
applications to the year 2000 problem. InACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE), pages 432–449, 1997.

[18] D. Rosenblum. Towards a method of programming with
assertions. InACM/IEEE International Conference on
Software Engineering (ICSE), 1992.

[19] G. Rothermel and M. J. Harrold. Empirical studies of a safe
regression test selection technique.IEEE Transactions on
Software Engineering, 24, 1998.

[20] J. Ruthruff, E. Creswick, M. Burnett, C. Cook,
S. Prabhakararao, M. F. II, and M. Main. End-user software
visualizations for fault localization. InACM Symposium on
Software Visualization, pages 123–132, 2003.

[21] E. Shapiro.Algorithmic program debugging. PhD thesis,
MIT Press, 1982. ACM Distinguished Dissertation.

[22] T. Wang and A. Roychoudhury. Using compressed bytecode
traces for slicing Java programs. InACM/IEEE International
Conference on Software Engineering (ICSE), pages
512–521, 2004.

[23] M. Weiser. Program slicing.IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

[24] A. Zeller. Isolating cause-effect chains from computer
programs. InACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), pages 1–10, 2002.

[25] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE Transactions on Software
Engineering, 28, 2002.

