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ABSTRACT ing correct program behaviors is to use logical assertions at spe-

Localizing the cause(s) of an observable error lies at the heart of Cific control locations of the program, often given as pre- and post-

program debugging. Fault localization often proceeds by com- condmpns of program methods. Thqs, a program is correst #s .
paring the failing program run with some “successful” run (a run execution traces satisfy each assertion whenever the corresponding

which does not demonstrate the error). An issue here is to generatecgntrOI Itc))lcatlon is visited. Cra;lvelpfan e_leec_utlonftrace shfovr\:lng an
or choose a “suitable” successful run; this task is often left to the OPS€rvable error, one can check for violation of some of the user-

programmer. In this paper, we present an efficient technique Whelreprovided assertions to localize the error. However, developing these

the construction of the successful run as well its comparison with assertions is usually a difficult tagk. . .
the failing run is automated. Our method constructs a successful. Another approach to fault localization, which has been explored

program run which is close to the failing run in terms of a distance in th_e recent times [5, 9, 12, 15, 16, .17’ 24], considers gertain ex-
metric capturing control flow. The distance metric takes into ac- ecution traces of the buggy program itself as representative correct

count the sequence of statements executed in the two runs, and nopehavior. Fault localization progresses by comparing the failing ex-
just the set of statements executed. We use the distance metric tc;ecution run, which exhibits the observable error, with one that does
locate “similar” branch instances which appear in the failing and not. Most of the research in this I_me of Work_has focused on how
successful run with different outcomes. The program statements [0 compare the supcessful apd fglllng execution runs. They use the
for such branches are returned as bug report. In our experimentsSUccessful run to find out points in the failing run which may be re-
with the Siemens benchmark suite we found that the quality of our sponsible for the_ error, and for each of those points which varlablgs
bug report compares well with those produced by existing fault lo- may be responsible for the error. However, these works do not dis-

calization approaches where the programmer manually provides orc‘:SS how ths sucfcessful rlfml is obtained. _Lleblfa”y' éf}(ﬁy assume that
ch00SES 8 SuCCessful run. alarge number of successful runs are available and the programmer

chooses one of them.
In this paper, we automate the process of constructing one suc-
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cessful run from a program'’s failing run. We construct a successful
Program Understanding, Automated Debugging, Fault Localiza- run from the failing run by changing the outcomes of some of the

tion conditional branch instances in the failing run. This, indeed, is the
key idea of our approach. By evaluating some branch instances
1. INTRODUCTION in the failing run differently, certain faulty statements may not be

executed, leading to a successful run. Branch statements whose
instances have been evaluated differently are submitted to the pro-
grammer as bug reporin this paper, whenever we refer to evalu-
ating branch statement instances differently, we mean changing the
outcome of the branch condition evaluation.

Program debugging is an age-old software engineering activity.
Many programmers still use a source-level debugger, which origi-
nated in the 1970s, to localize the cause of a program bug. They
use these tools to iteratively check program behaviors and hypoth-
esize/confirm the error cause. To improve the state of debugging ; D .
tools, we need to develop methods where the error cause can be Consider the program fragment in Figure 1 wher@ walue is

identified from the observable error with a higher degree of automa- printed in line 10 ct:)orresptfl)nqlng tc’)’ InVQ/mO, deem?d bty the pro- ful
tion. The work done in this paper contributes to such a research grammer as an observable “error . We can construct a successiu

perspective — we seek to further automate the task of localizing run by altering th_e_ outcome of_the braretr0) ; such arun corre-
software faults. sponds to a positive value of inpxt Now, by comparing the suc-

An important challenge in automated debugging is in charac- cessful run with t-he failing run we_report the brarit!”(x_>0)_ to
terizing the desired correct behaviors. One approach for describ-_the programmer, he_/she may hotice that the bug fix lies in weaken-
ing the branch condition tid (x>=0)

In the preceding, we have illustrated a simple example where the
bug fix gets pinpointed straightaway from the bug report. In reality,
there can be various scenarios of the bug report matching or not
matching the actual source of bug. If the bug fix involves changing
the value assigned toat line 1 of Figure 1, our bug report will not
be equally helpful.

In general, given a prograr®? and a failing execution rum,
there exist many runs d? which do not exhibit the error observed



v=0; Using assertions for program debugging/testing has long been
f 0 studied. Assertion processing has been integrated into program-
Iu—(SX ) { ming languages and environments [14, 18]. There is a rich body of

work on this topic and we do not discuss it here since it is orthog-
onal to our approach. There has also been intense research on the

} topic of input/test case generation based on various coverage crite-
else  { ria. The aim of these methods is to expose more program behaviors
u=v for the purpose of testing. This is somewhat different from our goal
since we generate a program input/execution-run for localizing the
error cause in apecificfailing run.

Recently, there has been a lot of interest in program error lo-
calization by comparing successful and failing runs of the buggy
program [3, 5, 9, 12, 15, 16, 17, 24]. These techniques often differ
in which characteristic of execution runs is used for comparison.
The characteristic can be acyclic paths [17], potential invariants
[15], executed statements [3, 12], transitions [9], basic block pro-
files [16] or program states [5, 24]. Jones et al. [12] and Ruthruff et
al. [20] have proposed to mine a set of successful and failing runs,
. and color statements according to the likelihood that the statement
program.P, our method automatically generates a successul run is faulty. Liblit et al.'s technique [13] discovers abnormal return

, . . .
m of P Wh.ose contro! flow is glose t as per our distance metric. value of methods from many runs. Unlike our method, these works
Data flow is not considered since we want to generate the success-

ful run efficiently. Our distance metric is sensitive to $egfjuence gl(,:lllltjlli;)i;}‘l]ii;?g;h failing and successful runs are available before
of statements executfe_d in the two runs, notjust the set .Of statements e \work of Rénieris and Reiss [16] is related to ours. They have
gﬁ?ecijr:eeds-a(r;\:\(leege? I)aflllsl?a%eﬂri]me?]?sdt?ufu%(;i?t?ru'ir:ﬁﬁvg?el(;]? (?r)ijee-r Ourdemonstrated through empirical evidence that the successful run
dist i i the diff pOSS yI i d f t, te- which is “closest” to the failing run can be more helpful for fault lo-
Istance metrc captures the ditierence in relative order of staté- .7 a4 than a randomly selected successful run. However, [16]
ments_by report_lng s?quence of branch instances Wh'Ch. are evalu'does not automaticallgeneratethe closest successful run from a
ated differently i, 7. The statements for these branch instances failing run. Instead, they choose the successful run which is closest

arigﬁ”&gg?u?;%uu% reaf')[ﬁrt.eneration method and the resultant bu to the failing run from a large number of available successful runs.
path g 9 Thus, evenif a large set of representative program inputs is avail-

Lip?srtgf j[rr?eegiaehrjr?;ﬁ:l;)retrlecchhr::]rieét\:;/ti hfge gnglsq[);%(ljisith? dlzzziitlézgfable, one has to first classify a subset of these inputs as successful
9 [19], for anygivenfaulty run.

programs with injected faults. Experiments show that our approach Moreover, [16] compares two runs (and measures how close they
can automatically generate successful executions and bug reportsdre) by com’paring theet of basic block& executed in each run
within tolerable time. The quality of our bug report compares well Thus, they cannot distinguish between runs which execute the éame
with those by previous approaches [5. 16] which requires the pro- stateénents but in different order. We considerdbguencef state-
grammer to manually provide/choose a successful run. ments executed in each run for determining proximity of two runs.
L . . Clearly, even if for a faulty run, the programmer has a number of
Summary of Contributionsthe main results of this paper  gyccessful runs at his disposak( automated generation of one
are as follows. We develop a fault localization method based on g,ccessful run is unnecessary), our sequence based distance metric

comparing a failing program run with a successful program run. can pe used for accurately comparing the control flow of two runs.
We take the view that theistancebetween two runs can be sum- oy gistance metric bears some similarities to the notion of prox-

ma_rized by the seguence of cor_nparable branch statement _inst_ance§nity between execution runs in [5], where [5] compares program
which are evaluated differently in the two runs. Based on this view, giates with similar contexts for fault localization. Detailed exper-
we automatically generate a feasible sggcessﬂﬂ wdrich is close imental results comparing our method with [5] and [16] appear in
to, that is, hadittle distancewith, the failing run. We return the Section 6.
sequence of branch instances evaluated differently in the two runs  gofiware fault localization via model checking has also been
as bug report. We experimentally evaluate the quality of our bug re- gy gjied [4, 8]. These works seek to explain the counter-example
port,_the_ size of our bug report and the time overheads of our fault produced by model checking by invoking an optimization problem.
localization method. The optimization generates a successful run which is “closest” to
. o the counter-example; this is typically accomplished by an external
Section OrganizationThe rest of this paper is organized as constraint solver. Note that for these approaches, either the pro-
follows. The next section introduces related work on fault local- gram model needs to closely reflect the behaviors of the actual pro-
ization. Our distance metric and path generation algorithm are pre- gram, or the approaches risk generating a spurious successful run
sented in Sections 3, 4. Sections 5, 6 discuss our experimental setugnot corresponding to any program execution) which necessitates
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}
0. printf(*%d",u);

Figure 1: A simple example.

in 7. Certain works [16] have shown empirically that successful
executions which are “similar” to the failing execution run can be
more useful for fault localization. In this paper, we systematically
generate a successful run from the failing run with the help of a
distance metric capturing control flow. Given a failing rarof

and experimental results. Section 7 concludes the paper. further refinement of the optimization problem.
Zeller et al. present theelta debugginglgorithm to automat-
2 RELATED WORK ically simplify the erroneous input by removing part of this input

) ) ) o [25]. The reduced input usually corresponds to a shorter execution,
In this section, we discuss work on localizing software errors.

2Actually a sorted sequence of the basic blocks based on execu-
! A feasible successful run is an execution run which is exercised by tion counts is used; this is of course different from the execution
some program input and does not exhibit the bug being localized. sequence of the basic blocks in the failing run.




which may be easier to debug. Simplifying/reducing the erroneous dependent in the execution ran We are now ready to present our

input can also lead to a successful program input. However, the definition of event alignment.

approach is more suitable for debugging language/text processing

programs like compilers or web-browsers where we can get pro- DEFINITION 2 (ALIGNMENT). We define alignment between

gram inputs by deleting parts of a program input. For programs two execution runs, 7" as a binary relation

with integer inputs this approach may be problemate: consider

the situation where the failing input of a programi#2 and the

only successful input is=3 . whereFEvents, (Fvents,/) denotes the set of events appearing in
Program slicing [23], especially dynamic slicing [1], can facil- the execution rumr ('). In particular,

itate debugging by ruling out statements which do not affect the

observable error via control and/or data flow, because such state-

ments are likely to be irrelevant to the cause of the error. However, 1. stmt(e) = stmt(e’), and

the dynamic slice is not always useful for accurate fault localiza-

align,  C Events, x Events

Ve € Events. Ve' € Events,: (e,e') € aligny . iff

tion e.g. consider an assignmext0 which is wrongly written as 2. eithere, ¢’ are the first events appearing in =" or
y=0 thereby leading to an erroneous valuedéter on. (dep(e, ), dep(e’, ")) € align .
In the past, various interactive approaches for error localization
h_ave also been'studied.g. [21]). We do'not discuss them here, Thus, when a branch eveeff cannot be aligned with any event
since our focus is on automated debugging. from the executionr’, this should only affect alignments of those
events inr which belong to the chain of events dynamically control
3. PROXIMITY BETWEEN RUNS dependent om; . Note that the beginning of thih iteration of a

Our approach for generating a feasible successful run is based!oOp in the executionr is aligned with the beginning of thah

on a notion of “proximity” between runs. Given a failing ranof iteration of the same loop in the executinh in order to properly

programP, our approach attempts to find a feasible successful run compare _events from d_|fferent I_oop lterations. . .
of P which is close tar based on aistance metric The intuition According to the notion of alignment presented in Definition 2,

. . Pt
is that, if we can findr’, the feasible successful run closestito Iﬁr tany f/sventell'n 4 ther_cle_hex:;ts?tnmoito&le ever:z |,n g nsutcr;
then we can localize the error in by comparingr and«’. We at(e, e') € alignx . The distance betweenandr’ (denote

. ; A
elaborate the distance metric used for comparing execution runsggsrf(gé gl'))rnc:cfl)ttl:)gi 1" grr]?r.;?ha%e(qt) %;cirrde.rf}gtre:;:m hlf:o%)es
in this section. In the next section, we present a path generation '9 v ) have di u

algorithm which takes in a failing run and produces a “similar” in 7 and~’. Formally, the distance metric between two execution
successful runife., similar based on our distance metric). runs can be defined as follows.

We consider each execution run of a program to be a sequence DEFINITION 3
of events{eg, e1, ..., en—1) Wheree; refers to theith event during
execution. Each evenk; represents a control location or a line
number in the programthe program statement corresponding to
this line number is denoted agmnt(e;). To distinguish events from
different execution runs, we denote tiie event in an execution run dist(m, ') = (ef,.--,€el)
 ase; , that is, the execution run appears as a superscript. We will
drop the superscript when it is obvious from the context.

Our distance metric measures the difference between two execu- 1. eache in dist(w,7’) is a branch event occurrence drawn

(DisTANCE METRIC). Consider two execution
runs w, 7’ of a program. The distance betweenn’, denoted
dist(m, ') is a subsequence of the event sequence represented by
w. We define

such that

tion runsm and=’ of a program, by comparing behaviors of “cor- from execution runr.
responding” branch statement instances froemdr’. The branch
statement instances with differing outcomes jm’ are captured in 2. for eache in dist(m, '), there exists another branch occur-
dist(m, ") — the distance between execution ruand execution rencee’ in execution runt’ such that(e, e’) € aligny
run=’. How do we find out the “corresponding” branch statement (i.e. e ande’ can be aligned). Furthermore, the outcome of
instances? For this purpose, we have defined a notiafigsfiment e in 7 is different from the outcome ef in 7" (sincee, ¢’
to relate statement instances of two execution runs. Our alignment can be aligned, they denote occurrences of the same branch
is based omlynamic control dependence statement).

DEFINITION 1 (DYNAMIC CONTROL DEPENDENCH. Given 3 sl!!ste(\/:n;,s)lm satisfying criteria (1) and (2) are included in
an execution rurr of a program, an event] is dynamically con- T
trol dependent on another evettt if €7 is the last event before] 4. the events irist(r, ') appear in the same order as in
in = wherestmit(el) is statically control dependehon stmt(e]). thatis, foralll < j < k, ¢; < 4;41 (evente;, appears

before event  in ).

Ti41
Note that any method entry event is dynamically control depen- ) _H ) ,

dent on the corresponding method invocation event. According to AS & Special case, if executllon rungnd’ have the same control

the above definition, any evenf in an execution runr (except flow, then we definéist(, ') = (eg).

the first one which denotes entry to the main method) is dynami-

cally control dependent on exactly one event. We use the notation

dep(ef , ) to denote the event on whieff is dynamically control

Clearly we can see that in genetdilst(m, 7') # dist(n’, 7).
The reason for making a special casefandn’ having the same
control flow will be explained later in the section when we discuss

3A statementstmt is statically control dependent on a statement comparis_on of _distanc_es. ) _ _
stmt’ if stmt’ evaluates a conditional branch which can control ~ As a simple illustration of our distance metric, consider the pro-
whetherstmt will subsequently be executed [7]. gram in Figure 2 and the following runs =’ in the program




if (a)
i=i+1;
if (b)
=+
if (c)
if (d)
k=k+1;
else
k=k+2;
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Figure 2: A program segment.

s
!
s

The distance metric between these two rurig(r, ') = (3, 6).
This is because branchass are aligned in rung and=’ and their
outcomes are different in, 7’. If the branches at lines, 6 are
evaluated differently we get’ from .

Why do we define the distance metwdést(w, ) to contain
branch event occurrences nfwhich evaluate differently inr’ ?

m w o« dist(m,7) dist(m,7")
1 1 1 *
2
3 3 3 o
4
5 5 5
6 6 6 o *
7
9
10 10 10

Table 1: Comparison of distance metrics. The first three
columns show the event sequences of execution runsz’ and
7. The last two columns show distance metrics.

e Fewer branches af need to be evaluated differently to get
7’ as compared to the number of branches dfiat need to
be evaluated differently to get”. This is reflected in the
condition K’ = n > m of Definition 4.

To illustrate our comparison of distances, take the program seg-

Recall that we want to generate a successful run for purposes ofment in Figure 2 as an example. Consider the following execution

fault localization. Ifr is the failing run andr’ is a successful run,
thendist(m, 7') tells us which branches in the failing rameed to
be evaluated differently to produce the successfutrurClearly, if

we have a choice of successful runs we would like to make minimal
changes to the failing run to produce a successful run. Thus, given

a failing runz and two successful rung, 7"/ we would chooser’
overr” if dist(m,n") < dist(w, 7). This requires us toompare
distances. How we do so is elaborated in the following.

DEFINITION 4 (COMPARISON OFDISTANCES). Letw, 7/, 7"
be three execution runs of a program. Let

dist(m, ') = (€3, €iny---,ei,) and

dist(m,7") = (€], €],y ..., €] )

We define thatlist(m, ') < dist(m,7"") iff there exists a non-
negative integef such that

1. K<mandK <n

2. thelastK eventsindist(w, ') anddist(w, ") are the same,
thatis,0 < z < K in—z = jm—z-

3. one of the following two conditions hold

e either K = n < m, thatis,dist(r, ') is a suffix of
dist(m, "),

e or the (K + 1)th event from the end idist(m, ') ap-
pears later inT as compared to theK + 1)th event
from the end indist(m, ©"'), that is,in—x > jm—k-

It should be noted that given a failing runand two success-
ful runs#’, =" we say thatist(r,7') < dist(w,7"") based on a
careful combination of the following criteria.

e The branches ofr that need to be evaluated differently to
getw’ appear closer to the end af(where the error is ob-
served), as compared to the branchesrdhat need to be
evaluated differently to get” . This is reflected in the con-
dition ip,— x > jm-—x Of Definition 4.

runst, ', 7",

= (1,3,5,6,7,10)
1,3,4,5,6,9,1
1,2,3,5,6,9,1

<

0)
0)

™ (
=
= |

)y Yy Yy Iy

In Table 1, the first three columns show the event sequences (in
terms of line number) of execution runs 7’ andr”’, respectively.
Events along the same horizontal line are aligned. Brang8hés
behave differently inr and=’, sodist(r,7') = (3,6), as indi-
cated by the " in Table 1. Similarly,dist(w,7"”) = (1,6), as
indicated by the #” in Table 1. Comparing3, 6) with (1,6) we
see that3, 6) < (1, 6) since line3 occurs after lind in execution
run . It should be noted that in this simple example all the exe-
cution runs have only a single occurrence of a program statement;
this is for simplicity of illustration. Of course, if there are multi-
ple occurrences we will distinguish these occurrences through our
notion of alignment.

Comparing runs with identical control flowJsing Def-
initions 3 and 4 we can see thatiifis the failing run,msqme IS a
successful run with same control flow as thatrofi.e. same se-
guence of statements executed by a different input) and; is

a successful run with control flow different fromwe will have
dist(m,mairs) < dist(m, Tsame). AS @ result, our path generation
algorithm which tries to find the successful run with minimal dis-
tance to the failing run will avoid successful runs with same control
flow as that of the failing run. Indeed this choice is deliberate, since
we want to find a successful run with minimal difference in control
flow from the failing run, but not with zero difference. This is be-
cause we construct our bug report by comparing the control-flow
(not data flow) of the generated successful run with the failing run.
If the two runs have the same control flow, the bug report is null
and hence useless to the programmer.

4. PATH GENERATION ALGORITHM

In this section, we discuss our technique for generating a feasi-
ble successful run from a failing run of a program. Recall that a
“failing” run is an execution trace which exhibits a specific behav-
ior which the programmer deems as a “bug”; a successful run is



Distance with failing run  Execution run some of the branches in lings3, 5, 6 differently from the failing
runmy, thereby constructing new execution runs.

2?6} g’ g’ Z’ g’ 2’ éoim .Table 2 shows the orderin Whlich the branches pf failingryn

<17 3,6) <1’ 2’ 3’ 4’ 5’ 6’ 9,10) will be evaluated differently leading tc_) new executlon runs. Let us
(17 65 <17 23560 1b> assume that none of the new execution runs is a feasible success-
<5; <1’3’5’ 1b>’ : ful run, SO that we can elaborate all possible runs construgted by
(3,5) <1’3’4’ 5,10) our algorithm. We first evaluate differently the branch at line 6,
<17 3,5) <1’ 2’ 3’ 4’ 5,10) since thls_ brar_1ch is the last one in _the failing run. In the next _step,
<17 55 <1’ 235 16> the algorithm intends to evaluate differently a branch before line 6
<3; <1, 3,47 57 6,7.10) as well as the branch at line 6. Accordmg_to the distance metrlc,
(1,3) <1:2:3:4:5:6: 7.10) \|/_|ve ShOU|dthn0W| ch;;cr)lse the brtanhch wh:_ch |§ trt]fh'CIOt'SESt tolt::ne ?1
1) 1,2,3,5,6,7,10) owever, the algorithm cannot choose line 5 at this time, althoug

line 5 is the closest. This is because line 6 is control dependent
on line 5. If line 5 is evaluated differently, line 6 cannot be exe-
Table 2: Order in which candidate execution runs are tried out cuted. Instead, line 3 is chosen, and the second run is constructed
for the failing run (1, 3,5, 6, 7, 10) in Figure 2 by ev_aluating differently bre_lnches at line 3 and 6. Af_ter this, the
algorithm tries to evaluate differently a branch before line 3 as well
as branches at line 3,6. Thus, line 1 is selected, and branches at

an execution trace (for a different program input) which does not line 1,3,6 are evaluated differently. Now all branches before line 3
demonstrate this bug. A feasible run of a program is a path in the and 6 have been considered, and no feasible successful run can be

program’s control flow graph from start to end which is executed constructed. This means that line 3 and 6 might not be related to
for some program input. the error cause at the same time. The algorithm continues trying to

Our path generation algorithm tries to generate the closest suc-€évaluate differently branches before line 6 as well as the branch at
cessful run from the failing run;, according to the distance metric i€ 6. After branches at lines 1, 6 have been evaluated differently,
in Definition 3. In other words, given a failing run;, we seek to all branches before line 6 have been evaluated differently together

generate a successful rahsuch that there does not exist any other With the branch at line 6. Corresponding runs have been shown

successful rum” with dist(rr, ") < dist(ns, ') (see Defini- in the first segment of the Table 2 (the segments are separated by
tion 4). The distance betweer and=’ consists of the branches in horizontal lines). Thus, at this point the algorithm concludes that
the failing runr; which need to be evaluated differently to gét the branch at line 6 might have little bearing with the actual error

These branches are presented to the programmer as “bug report€2use. The algorithm g_ives up line 6, and evaluates differgntly the

from which the programmer will try to isolate the bug. second_ last branch at line 5 as well as branches_ before Ilne_5, as
How do we construct the closest successful run from the failing shown in the second segment of Table 2. After this, our algorithm

run ? Of course, we will not generate all the possible runs and cOnsiders the third last branch at line 3, and so on.

then find out the closest. Instead, we seek to generate the “closest” .

program run from the failing run by exploiting our understanding INcremental Path generatiorso far, we have clarified the

of the distance metric. If this turns out to be a feasible successful order in which the execution runs will be generated in our search

run then our search stops; otherwise we try for the next closest runfor the closest successful run. In Table 2 we have shown the or-

and so on. Our notion of proximity in Definition 4 ensures that a der of the generated execution runs for a given failing run and the

run 7' is close to a failing runr; (i.e., distance between;, ' is distances of these runs from the failing run. However, our algo-

small) if the branches af ; which need to be evaluated differently rithm will notgenerate the distances and then find out the execution

are near the end eff (where the error is observed). Furthermore, run(s) for each distance. This would be inefficient since all execu-

the number of branches af; that need to be evaluated differently ~ tion runs will have to be generated from scratch by modifying the

should be small. Thus, given a failing rary, we will first try to failing runm¢. Let us consider the first two execution runs tried out
evaluate differently the last branch occurrence (caldt;) in 7y in Table 2. They are
to construct a runr;. Among all the branch occurrencesit, m = (1,3,5,6,9,10) dist(ns,m1) = (6)
clearly biqs¢ is nearest to the end afy. If 71 is a successful and _ . _

. - T2 =(1,3,4,5,6,9,10) dist(ns,m2) = (3,6)
feasible run, we returm; as the closest successful run. Otherwise
we successively construct other runs by evaluaking as well as Recall that the failing run ig; = (1, 3,5, 6,7, 10) and the buggy
other branch occurrences of differently. If none of these runs  program is shown in Figure 2. The run shares a common suf-
is a feasible successful run, this indicates that the branéh, at fix with run m; — the subpath5, 6, 9, 10); the runs also share a

might have little relationship with the error cause. So, there is no common prefix — the subpaifl, 3). Runm, can be obtained by

pointin evaluating,.: differently. Instead, we evaluate the second evaluating the branch at liredifferently over and above;. In-

last branch occurrence iny differently and carry out the above deed, our algorithm generates the execution runs in this incremental

steps again. This process goes on until a feasible successful run igashion. Thus, runr; is constructed by modifying failing rum

obtained. at line 6 (the last branch occurrencemf). Runms is then con-
structed by incrementally modifying rury in the branch at line 3,

Example.Let us take the program segment in Figure 2 as an ex- that is, we do not construct run, from scratch by modifying the

ample. Assume that the failing rury = (1,3,5,6,7,10). The failing run 7, at lines3 and6. This incremental path construction

branch occurrences appearing in this run are at lingss, 6. Note is crucial for constructing our bug report efficiently.

that the execution runr; does not contain multiple occurrences of

any program statement; so we do not need to worry about distin- Complications due to nested branch statementse

guishing between occurrences of the same statement in a path ashat when a branch in the failing run is evaluated differently, sev-

far as this example is concerned. Now, our method tries to evaluateeral execution runs may be obtained due to nested branch state-



Global Variable:

sop, the program’s initial event

eop, the program’s event after which
the erroneous state is observable

m¢, the program’s failing run to debug

generatePathqpaths, last, distance)
Input: paths, a set of execution runs

last, a branch event
distance, distance between; and runs irpaths

Output: a feasible successful run, or Null

begin

1.

br= branch event just prior thust in 7y;

2. while (br is defined)

3. if (no event indistance is dynamically
control dependent obr)

4, newpaths={}; I* empty set */

5. for eachr in paths do

6. de = pde(br, T);

7. subpaths = get_all(br, de, 7);

8. 1 = sub-path ofr from sop to br;

9. w2 = sub-path ofr from de to eop;

10. for eachr’ in subpaths do

11. if (' 072 is infeasible)

12. continue;

13. Tw =71 07 072,

14. if (7, is feasible and successful)

15. returnm,;

16. else

17. insertr,, into newpaths;

18. if (newpaths is not empty set)

19. distance'= (br) o distance;

20. m, = generatePathséwpaths, br,

distance’);

21. if (7 1= Null)

22. returnm,;

23. else

24, for eachr in paths do

25. 73 = sub-path ofr from br to eop;

26. if (73 is infeasible)

27. remover from paths;

28. if (paths is empty set)

29. return Null;

30. br= branch event just prior thr in 7¢;

31. return Null;

end

Figure 3: Algorithm to generate a successful run from the fail-
ing run

ments. For example, for the program in Figure 2 if the failing run
is (1,2,3,4,5,10), our algorithm will first try to evaluate branch

5 differently since it is the last branch in the failing run. How-
ever, this produces two execution rufis 2, 3, 4,5,6,7,10) and
(1,2,3,4,5,6,9,10) due to the nested branch statement at line 6.
Our algorithm will check whetheainy of these two runs is feasible

sop
m
Ty
br T
subpaths N
de .
T
€op

Figure 4: Explanation of algorithm in Figure 3.

Algorithm Description.oOur path generation algorithm is pre-
sented in Figure 3. Some of the variables used in the algorithm are
pictorially explained in Figure 4. The algorithm proceeds by em-
ploying a recursive procedugeneratePaths . This procedure
is invoked at the top level with the parametgrs; }, eas: and (),
wherer; refers to the failing rung;q.: refers to the last event in
ther ¢, and() stands for the empty sequence.

As shown in Figure 3, the three parameterg@fieratePaths
are paths last and distance The generatePaths  procedure
constructs new execution runs from the runs capturediins by
evaluating branch events before the event differently. All runs
in paths have been constructed by evaluating differently events
in the distance metridistance w.r.t. the failing runms. These
runs have the same distance w.r.t. the failing run. Let us re-visit
the example in Table 2 which shows the order of path genera-
tion for the program in Figure 2 corresponding to the failing run
7wy =(1,3,5,6,7,10). The left column shows thé& stance for all
invocations ofeneratePaths  procedure except the first (where
distance is the empty sequence). The right column shows the
value ofpaths for each invocation ofjeneratePaths  except
the first (wherepaths only contains the failing run). In this exam-
ple, for every invocation ofieneratePaths , paths contains a
single run.

Thewhile loop inthegeneratePaths  procedure iteratively
retrieves a branch event prior to the evémtt in failing run
and assigns it tér (at line 30 of the algorithm). If there are no
more branch eventdy is undefined, andjeneratePaths  re-
turns Null (.e. we cannot find a successful run). Each loop iter-
ation ofgeneratePaths tries to evaluate brandir differently
along with other branch occurrences priobtan failing runy.

In each iteration of thevhile loop of generatePaths , we
first check whether any event ifistance is dynamically control
dependent orbr. If it is so, the branches ibr as well as the
branches indistance cannot all be evaluated differently from the
failing run 7. To illustrate this point, let us look at the path gen-
eration example presented in Table 2; this table shows the order
of path generation for the program in Figure 2 corresponding to

and successful before proceeding to construct any other executionthe failing runt; = (1,3,5,6,7,10). Lines5 and6 of Figure 2
runs. This is part of our attempt to generate the closest successtannot be evaluated differently together w.r.t. the failing run.

ful run according to the distance metric of Definition 3. We now
explain our path generation algorithm in details.

If no event indistance is dynamically control dependent én,
the algorithm generates new runs by evaluating differentlybthe



event over and above the branches capturedibyunce. Thus, 5. EXPERIMENTAL SETUP

distance is updated talistance’ by addingbr to distance. Re- In order to validate our method experimentally, we developed
call that the path-setaths captures the set of paths obtained by 5 prototype implementation of our path generation algorithm. We
evaluating branches idistance differently w.rt. failing runm;.  employed the prototype on the Siemens test suite [11] and used the
Thus, to find the set of paths obtained by evaluating branches in eyajuation framework of [16] to quantitatively measure the quality
distance’ differently w.r.t. failing runm;, we exploit the relation-  of generated bug reports. We have chosen the Siemens test suite
ship distance’ = (br) o distance to simply evaluater differ- and the evaluation framework of [16] because previous approaches
ently for all runs inpaths. The resultant set of paths is captured |5 16] have also conducted experiments with the same subject pro-
in newpaths. Thus, our algorithm constructgzwpaths by incre- grams and evaluation framework. Thus, we can compare our ap-
mentally modifyingpaths instead of directly constructing it from  proach with these works. In this section, we first introduce the
the failing runm. _ _ subject programs (Section 5.1) and the evaluation framework (Sec-

We now explain the functions used in tigeneratePaths tion 5.2). We then present important details about the prototype
procedure (lines 6,7 of Figure 3). The functipde(br, 7) called at implementation of our approach (Section 5.3).

line 6 returngde, the first event which is not (transitively) dynami-
cally control dependent obr in the execution rumr. The function 5.1 Subject programs
get_all(br, de, ) called at line 7 of Figure 3 retrieves all acyclic The subject programs used in our experiments are 109 buggy C
paths where programs from the Siemens test suite [11], as modified by Rother-
e each acyclic path starts fromc(br) (the control location of ~ mel and Harrold [19]. Each buggy program has been created from
the branch everit) and ends afoc(de) (the control location ~ one of six programs by manually injecting one defect. The six pro-

of the eventde), and grams range in size from 170 to 560 lines, including comments.
. ) ) ) Table 3 shows descriptions of these programs. The third column
* bris evaluated differently fromr in each acyclic path. in Table 3 shows the number of buggy programs created from each

We choose to consider acyclic paths to avoid enumerating too manyof the six programs. The injected defects include code omissions,

paths. However, this may cause us to miss the closest successful rutielaxing or tightening conditions of branch statements, superfluous

since all possible program paths are not considered. code and wrong values for assignment statements. Some defects
In order to improve the performance of our algorithm, we have span multiple lines or even functions. Although the benchmarks

exploited the following property: if a path is infeasible, all exten- are simple, and cannot reflect all possible errors in real life, they

sions of the path are also infeasible. In particular, line 11 of the help us gain valuable experience in debugging.

algorithm checks the feasibility of a subpatho 2. If it is infea- We slightly changed two of the subject programs in our experi-

sible, all execution runs with’ o > as suffix are also infeasible, ments. In particular, we rewrote tisehedule andschedule2

and there is no need to check them. Similarly, when some eventprograms which read a floating point number and round it to an in-

in distance is dynamically control dependent n, line 26 of the teger value to directly read an integer. We also excluded the floating

algorithm checks the feasibility of a subpathand prunes any ex- point calculation progranot _info in the Siemens suite from our

ecution runs withrs as suffix if 73 is infeasible. Figure 4 shows  experiments. This is because our prototype implementation uses

the relation between various patfesd. 7/, 72, 73) used in Figure ~ the Simplify theorem-prover [6] to check the feasibility of an ex-

3, the algorithm’s pseudo-code. ecution run, and Simplify does not work well with floating-point
Recall that we want the path generation algorithm in Figure 3 to variables.

construct execution runs monotonically w.r.t. the distance metric in

Definition 3, so that it can return a successful run which is close to Subject Pgm,| Description # Buggy versiong
the failing run. This is stated in Theorem 1 whose proof is omitted schedule | priority scheduler 9
due to lack of space. schedule2 | priority scheduler 10
o ) ) replace pattern replacement 32
_ THEORE_M 1. [Proximity of Successful Run]/C_onsnder the fail- print tokens | lexical analyzer 7
ing execution runzrf”for a program. If a runz’ is const.ruct.ed printtokens2| lexical analyzer 10
before another runt” by thegeneratePaths ~ method in Fig- tcas altitude separation i1

ure 3, thendist(ms, ') < dist(ns, 7") (as per Definition 4) or

. N o - "
dist(my,m') = dist(ms, 7). Table 3: Description of the Siemens suite

The above theorem does not claim that we generate the closest
successful run from the failing ruhis reflects the reality, where
we can, but choose not to generate the closest successful run for .
reasons of efficiencyOur method does not generate certain pro- 5.2 Evaluation framework
gram paths and one of these can be the closest successful run. Renieris and Reiss have proposed an evaluation framework to
Our path generation algorithm requires checking whether an ex- evaluate the quality of a defect localizer [16]. Each error report
ecution run is feasible and successful (line 14 of Figure 3). We is assigned a score to show the quality of this report. The score
have used the automated theorem prover Simplify [6] to check for indicates the amount of code that an ideal programmer can ignore
feasibility. This feasibility check returns the possible inputs under for debugging. Clearly, higher score indicates better quality bug
which the execution run is executed. We then check whether the report. We now discuss the score computation mechanism.
execution run is successfuld. absence of the fault being local- To compute the score of a bug report, [16] requires a correct
ized) by checking the execution run fany oneof these possible version of the buggy program, where the defect has been fixed.
inputs. Clearly, for the same execution run, some inputs may lead to Erroneous statements refer to the difference between the two pro-
successful executions, while others lead to failing executions. Our grams {.e. the statements which have been fixed in the correct ver-
implementation chooses any one of the feasible inputs and checkssion). The score computation works on the program dependence
whether the corresponding execution run is successful. graph (PDG) [10] for the buggy program. Nodes in a PDG repre-



sent statements in the program, and edges represent data or contrabtype traverses the execution run from the beginning till the end
dependencies between statements. We have used the Codesurféo generate a constraigit over program input and variables. We
[2] to construct the PDG. Erroneous statements are marked as “de-then invoked the Simplify theorem-prover [6] to prove the validity
fect” in the PDG; statements included in the bug report are marked of the formula—¢. If Simplify succeeds, we infer that the path is
as “blamed” in the PDG. LeDS(n) be the set of nodes that can infeasible; otherwise we deem the path as feasible.

reach or be reached from blamed nodes by traversing atnmdist The use of the Simplify theorem prover requires us to consider
rected edges in the PDG. For examgl&§(0) is the set of blamed the power of its decision procedures for inferencing. Simplify is
nodes, and>.S(1) include blamed nodes and all nodes which have sound but incomplete, that is, any formula it proves as valid is valid

directed edges to or from blamed nodes. We definefihst is the but it may fail to prove the validity of a valid formula. Thus,gf;
DS(n) with the smallest, which contains at least one erroneous is the constraint for a path, —¢- is valid (i.e. the path is actually
statement. The score is then computed by the formula: infeasible) and Simplify fails to prove the validity efp, we will
actually treatr as feasible when it is not. However, this unlikely
|DS.| L : - ; . . .
score = 1 — PG| (1) situation did not occur in our experiments with the Siemens suite.

As a special case, we define the score to be zero for an emptyFailing Run. One issue in our experiments is the choice of the
report, since an empty report is useless to the programmer. Thisfailing input (and hence the failing run) for each buggy program.
framework assumes that the programmer can find the error whenWe first chose a failing input which can observe the error for each
he/she reads the erroneous statements, and he/she performs a breaoitiggy program from the Siemens test suite. We then used Zeller
first search for defect localization starting from statements in the and Hildebrandt's approach [25] to further simplify the input for
error report. ThusD .S, reflects the amount of code in the program  producing a failing run. This was particularly useful for the buggy
that the programmer has to examine for defect localization using versions of text-processing programs in the Siemens test stite (
the bug report, and the score indicates the amount of code whichreplace , print _tokens ).
can be ignored.

Note that the edges in the PDG can also be considered as undi-
rected; this should increas®S, and hence decrease the score. 6. EXPERIMENTAL RESULTS
When we ran experiments, we found that this change hardly had We employed the prototype implementation of our method to
any effect on the scores for bug reports generated by our approach109 buggy programs from the Siemens suite. Two out of the 109

. programs had to be ruled out because there is no input whose ex-
5.3 Implementatlon ecution run observes the error. In fact, these two buggy programs

We have built an experimental prototype for evaluation. The pro- are syntactically different from, but semantically the same as the
totype is implemented in C and includes two coupled components: original correct programAll reported distributions for our APG
aninstrumentation componerand arpath generation component  (abbreviation for Automated Path Generation) method are in per-
The instrumentation component uses the GNU debugger (GDB) to centage of 107 buggy programs, unless mentioned otheriitse
trace the execution path of the failing run. The path generation results from our experiments are elaborated in this section. We
component implements our path generation algorithm in Figure 3 compare our method with existing fault localization approaches [5,
and uses an external theorem-prover Simplify to check the feasibil- 16] in terms of quality of bug reports produced. We also report
ity of an execution. We now discuss a few important implementa- our time overheads of our approach and discuss some experience
tion issues. gained from our experiments.

Renieris and Reiss have proposed the nearest neighbor query
Trade-off. In order to improve the efficiency of our prototype, we  method (“NN/Perm”) in [16]. The NN/Perm method compares
have made some trade-offs in the implementation. These trade-offsdetailed code coverage between a failing run and the nearest suc-
have reduced the time overheads of our path generation algorithm,cessful run assuming that a set of successful runs is available. Re-
but they may cause our prototype implementation to miss the suc- cently, Cleve and Zeller have proposed the cause transition methods
cessful run which is the closest to the failing run according to the “CT/relevance” and “CT/infected” [5] for software fault localiza-
distance metric. tion. Both CT/relevance and CT/infected methods analyze cause

In our initial implementation, we decreased, but did not increase transitions in the failing run to generate a bug report. They differ
the number of iterations when generating a successful run from in usage of the bug report for fault localization — CT/relevance uses
a failing run. That is, if a branch event exits a loop, we did not the knowledge of control/data dependencies, while CT/infected uses
consider evaluating it differently. However, experiments showed the knowledge of which program states are infected.
that there were still too many paths to construct and check. There-
fore we decided to not evaluagmyloop branch events differently.  Quality of Bug ReportTable 4 shows the distribution of scores
Thus, the successful execution run returned by our implementationfor four methods. The data for NN/Perm is taken from [16], and
always has exactly the same number of loop iterations as in the fail- the data for CT/relevance and CT/infected are taken from [5]. Our
ing run. This can dramatically reduce the number of constructed method is shown as APG, an abbreviation for Automated Path Gen-
execution runs. Also, when we evaluate a branch event differently, eration. From this table, we can see that our method’s scores are
there can be many possible paths because of nested branch stateomparable with those of the cause transition methods, and a lit-
ments. Our prototype stops when the number of runs constructedtle better than the scores for nearest neighbor method. Bug re-
by evaluating differently the same set of branch events has reachedyorts returned by APG, CT/relevance and CT/infected methods all
a threshold. achieved a score of 80% or better for more than 41% of all the

buggy programs, while the NN/Perm method achieved at least 80%
Feasibility check.One important problem in the implementa-  score for about 26% of the programs. Note that our method achieved
tion is how to check the feasibility of an execution run or a subpath, these scores with automatic generation of successful run, while the
as required by the path generation algorithm in Figure 3. Our pro- NN/Perm, CT/relevance and CT/infected methods all required the



programmer to provide/choose a successful run. In other words, by 70003

automating the successful run construction, we have not compro- | 2 o008 T
mised on the bug report quality. g co 00s | WAPG with scores >80%
Score| NN/Perm| CT/relevance] CT/infected| APG B 00T
100% 0.00 5.43 455| 0.93 & 30,008
90-99% 16.51 30.23 26.36 | 34.58 8 20.00%
80-89% 9.17 6.20 1091| 8.41 " 10,008
70-79% 11.93 6.20 13.64| 8.41 0.00%
60-69% 13.76 9.30 455 5.61 < 1min 1-10min  10-20min  20-40min > 40min
50-59% 19.27 10.08 6.36| 4.67 rine overheads
40-49% 3.67 3.88 1.82| 7.48
30-39% 6.42 10.08 3.64| 4.67 Figure 6: Time overheads of our method.
20-29% 1.83 3.10 7.27| 9.35
10-19% 0.00 10.85 0.00| 1.87
0-9% 17.43 4.65 20.91| 14.02

is successful (since we cannot even observe the behavior of infea-
sible runs). Still the overall time overheads are tolerable for most
programs in the Siemens suite.

Table 4: Distribution of scores for four methods.

Size of Bug Reportapart from using the scores to describe Remaining Manual Interventiorour path generation algo-

the quality of bug reports, the size of a bug repog. the number rithm generates execution runs close to the failing run and checks
of statements in a bug report) can be of practical importance. If a whether they are feasible and successful. As mentioned earlier, the
bug report contains too many statements, the programmer can becheck for feasibility is done automatically by the Simplify theo-
overwhelmed with the bug report. We present the distribution of rem prover. Checking whether a run is successful is however done
sizes of bug reports in Figure 5. We can see that 71% of our 107 manually in our experiments. The time for this manual check is
bug reports contain at most seven branch statements. This indicate§0t included in the time overheads reported in Figure 6. In our

that the bug reports produced by our method are not voluminous €xperiments, the first feasible run constructed by the path gener-
and overwhelming. ation algorithm was a successful one for most buggy programs.

In the worst case, we had to manually examinteasible failing
runs for success before the algorithm found a feasible successful

30.00% run. Moreover, manual intervention in checking whether a run is
o . successful is in some sense unavoidable. Otherwise the program-
g 200t f\ mer has to precisely characterize the properties of a successful run,
% 20.00% possibly as assertions; this eases our task of fault localization but
. / places an additional burden on the programmer. It is important to
3 15-00% / \.L note that methods which require the programmer to choose a suc-
o 10,003 .\ cessful run from a pool of available successful runs (such as [16])
. \-—-/\/‘ will first require a classification of available program runs as fail-
5.00% ing or successful. This will typically require even more checks for
0.00% i = each buggy program (one check classifies a given program run as
o 1 2 3 4 5 € 7 8 o 10 11 12 failing/successful) than the 1 — 5 manual checks required in our
Size of a bug report experiments.

Experience.After generating the bug reports, we have studied
Figure 5: Size of bug reports produced by our method. these reports to understand what kind of errors can be easily lo-

calized by our approach. We found that many buggy programs of

the Siemens suite have errors in branch statements. The erroneous

branch statements are often correlated with later branch statements.
Time OverheadsFigure 6 shows the time overheads of our If those later branch statements are evaluated differently during
method. We cannot compare the time overheads with [5, 16] since path enumeration, the erroneous branch statements also have to be
these works did not report time overheads. The left bars (in lighter evaluated differently, and are thus included into our bug report.
shade) present the distribution of time overheads for all 107 pro- Our approach can also help effectively locate erroneous assign-
grams, and right bars (in darker shade) show the distribution of time ment statements, if branch statements which guard these assign-
overheads for programs whose bug reports can achieve scores 80%ments are included in the bug report. In addition, our method may
or better (47 of the 107 buggy programs achieve a bug report scoreeffectively locate errors due to code omission from the program
of 80% or better). Our method found the successful run within 10 text; these errors cannot be localized by conventional methods like
minutes for 75% of all 107 buggy programs, and for 83% of buggy dynamic or relevant slicing (see [22]). In our method, the suc-
programs which had high quality bug repori®( score of 80% cessful run may be constructed by evaluating differently the branch
or above). Most of the time overheads for our method is due to statement which the missing code is control dependent on. In the
the feasibility check by the external theorem prover Simplify. The successful run, the missing code is not intended to be executed and
feasibility check enables the following check to find whether a run hence we can locate the error.
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