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Abstract Synchronous languages like Esterel have been widely adopted for
designing reactive systems in safety-critical domains such as avionics. Specifi-
cations written in Esterel are based on the underlying “synchrony hypothesis”,
which needs to be validated when Esterel specifications get compiled to real
implementations (such as C code). In this work, we present a model-driven and
architecture-aware timing analysis framework for C code generated from FEs-
terel and executed on general-purpose processors. By integrating model-level
information into the traditional timing analysis, we can efficiently compute
accurate time estimates via systematically eliminating a large number of in-
feasible paths in the generated code. Experimental results show that with
our proposed intermediate representation level infeasible path analysis in the
model compilation, we obtain up to 16.1% tighter WCET estimates compared
to the traditional assembly code level infeasible path detection with substan-
tially less analysis time. Furthermore, by maintaining the traceability links
between Esterel specifications and the generated C code, we are able to map
the time-critical computations at the C-level back to the Esterel-level.
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1 Introduction

For safety-critical domains, synchronous programming [4,34] has always been
considered a clean formalism for programming reactive systems, which exhibit
a high degree of concurrency but call for deterministic and predictable exe-
cution. Languages based on this paradigm — such as Esterel [10], Lustre [20]
and Signal [5] — assume that time is partitioned into discrete instants or clock
ticks and the computation/communication for processing all events that occur
within one clock tick happen instantaneously (i.e. in zero time). The resulting
semantics — with concurrent threads running in lockstep — take care of all
scheduling issues, thereby simplifying the task of programming and making
such specifications amenable to formal verification/certification. Generating
implementations directly from synchronous language specifications is widely
practiced in safety-critical domains such as avionics where certification of the
generated implementation is essential.

A real-life implementation generated from a high-level synchronous pro-
gram can be said to follow the synchrony hypothesis if all events that are log-
ically assumed to be processed instantaneously are processed before the next
set of events arrive. Verifying the synchrony hypothesis when a synchronous
language program is compiled into hardware is relatively straightforward. As
a result, compiling synchronous language specifications directly into hardware
is currently the most popular design flow ([7]).

On the other hand, when synchronous languages are compiled into soft-
ware — e.g., into a sequential C code — validation of the synchrony hypothesis
is more complicated and depends both on the generated code, as well as on
the micro-architecture of the platform executing this code. For the synchrony
hypothesis to hold, the estimated Worst-case Execution Time (WCET) associ-
ated with the processing of events should be less than the minimum separation
time between the arrival of sets of events (that are assumed to be processed
instantaneously). Currently, such a systematic design process is missing in the
context of software implementation of synchronous languages when the target
platform is a general-purpose processor. This has primarily been due to the
lack of mature software timing analysis techniques for general-purpose proces-
sor architectures. However, recent advances in WCET analysis techniques and
the availability of industry-strength tools ([17,44]) has renewed the interest in
synchronous language-based design flows targeting general-purpose platforms.
Existing WCET analysis methods and tools can be directly applied to the
C/assembly code generated from a high-level model for WCET computation.
However, they can be customized to capture the characteristics of the mod-
eling language and model-to-C compilation technique, which results in more
efficient and accurate WCET estimation.

Our Contributions: The ultimate goals of this work include

— enabling software execution of Esterel specification on general-purpose pro-
cessors. We apply WCET analysis techniques to validate the “synchrony
hypothesis” of the generated C program from an Esterel specification.
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Fig. 1 Timing analysis framework for Esterel specifications.

— obtaining tight WCET estimates by exploiting model-level information in
the code-level WCET analysis. Tighter WCET estimates clearly lead to
more cost-effective and resource-saving designs, which is of considerable
interest in the cost-sensitive application domains, such as automobiles.

— providing timing feedback to system designer for performance debugging
and WCET refinement. By analyzing the results from WCET analysis,
potential performance bottlenecks are identified and better resource di-
mensioning can be achieved.

In this paper, we propose comprehensive timing analysis techniques for
general-purpose single-processor execution of C programs generated from Fs-
terel specifications. Figure 1 presents an overview of our timing analysis frame-
work. We build a bi-directional C-Esterel mapping by instrumenting the well-
known Columbia Esterel Compiler (CEC) [13], which provides traceability
between Esterel specifications and generated C programs. As a result, we
can automatically feed model-level information to code-level WCET analy-
sis for tighter WCET estimation. Furthermore, it allows us to highlight the
Esterel-level critical path (statements executed in the single tick that result
in WCET). Based on such timing feedbacks, system designer can either opti-
mize the Esterel specification, modify the system configuration, or refine the
WCET analysis by providing Esterel-level user constraints (e.g., environment
constraints on input signal relationship) if the critical path is found to be an
infeasible execution.

We extend existing WCET analysis techniques for general C programs to
obtain WCET estimates on the C programs generated from high-level Esterel
specification. The main novelty of our model-driven WCET analysis stems
from two observations. First, the identification and removal of infeasible paths
in the generated code can exploit the syntax and the semantics of the source
Esterel specification. In particular, in our model-driven timing analysis frame-
work, the infeasible path detection is performed during the Esterel-to-C com-
pilation, instead of the assembly code level detection in traditional WCET



analysis. This simplifies the problem to a large extent, especially when the au-
tomatically generated code usually contains huge number of infeasible paths
compared to hand-written programs. Second, performing the analysis at a
higher level allows us to easily identify infeasible paths resulting from the
context-sensitive tick transition execution, which can be hardly done in the
low-level analysis where the control flow information is encoded by data manip-
ulation across function boundaries. Our experimental results show that up to
32% tighter WCET estimation can be achieved with our proposed infeasible
path elimination, which improves the accuracy of the synchrony hypothesis
validation, and provides system engineers with more flexibility in terms of
design choices. Furthermore, comparing to traditional WCET analysis with
assembly code level infeasible path detection, our proposed framework obtains
up to 16.1% tighter WCET estimation with substantially less analysis time.

In this paper, we focus on timing analysis of HEsterel specifications on
general-purpose processor architectures. We rely on the traditional analysis
techniques for WCET calculation, including program control flow analysis
(i.e., the implicit path enumeration technique, or IPET [27]), and complex
microarchitectural modeling (e.g., the cache persistence analysis [16], and out-
of-order pipeline modeling [25]). On top of the traditional WCET analysis,
our proposed timing analysis framework introduces additional model-level and
model-to-C compilation information for a more efficient and effective WCET
estimation. As a result, our proposed framework is not restricted to a par-
ticular micro-architecture. Furthermore, the infeasible path patterns and exe-
cution context information in the Esterel specification with CEC compilation
can also be observed in many other concurrent finite state modeling languages
and control flow graph-based model compilation (e.g., the MATLAB Stateflow
model), which suggests a wider applicability of our proposed model-driven tim-
ing analysis framework.

2 Related Work

The synchrony hypothesis provides strong semantic soundness and ensures de-
terministic behavior. As a result, it is widely used in in practical embedded
system design. Examples of programming models based on the synchrony hy-
pothesis are Esterel [10], Lustre [20], Signal [5], and SyncCharts [2]. Recently,
there are proposals for synchronous extensions of C language, including the
Precision Timed C (PRET-C) [37,23] and SyncCharts in C (SC) [43]. In order
to enable software execution of synchronous programs (or low-level executables
compiled from synchronous programs), timing analysis must be performed to
ensure the synchrony hypothesis holds in the real implementation. In this sec-
tion, we briefly summarize the existing work on timing analysis of synchronous
programs.



2.1 High-level WCET analysis

Architecture independent high-level timing analysis of Esterel (or Esterel-
like) programs have been studied in [8,39,29]. For example, [29] employs
model checking techniques to perform a high-level WCET analysis for the syn-
chronous language Quartz, which is similar to Esterel. Given a synchronous
language specification, the task of a high-level WCET analysis is to compute
the worst case computation time for a particular input event (or all allowed
inputs), in terms of the number of clock ticks required. This is usually done
by translating the synchronous specification into a finite-state machine whose
transitions correspond to clock ticks in the model. In other words, the high-
level WCET analysis problem is concerned with the number of Esterel clock
ticks, rather than the execution time of code within a clock tick.

The timing analysis problem where the states of the automata have been
annotated with WCET estimates has been discussed in [31]. Again, the focus
here was not to obtain tight WCET estimates, but to analyze high-level timing
properties of an Esterel specification, assuming that platform-level WCET
estimates are already available.

2.2 Code-level WCET analysis

Code-level WCET analysis for the synchronous models aims to find architec-
ture dependent execution time for computation within a single clock tick in
the generated low-level executable code (e.g., C or assembly). [30] performs
the low level WCET analysis for the synchronous language Quartz by building
a formal transition model on the statements in the generated executable code.
Transitions are labeled with the physical execution time of corresponding state-
ments, and symbolic model checking is applied to search the “longest” WCET
path. However, the presented technique is only applicable to automata-based
code generation, which does not scale well for large Esterel programs.

The problem addressed in [36] is the closest to what we study in this work.
Here, the problem of infeasible paths in the generated code is mentioned and
timing analysis of the whole Esterel program is studied. Though the work can
also be used for estimating the maximum computation in a clock tick, the
methodology is restricted, since it requires two separate codes to be generated
from the synchronous program — one on which the WCET analysis is per-
formed, and one which guides the analysis. The approach in [36] is only feasible
for the generation of circuit code, which tends to be slow for large-scale ap-
plication specifications. Furthermore, the problem of bidirectional traceability
or performance debugging of Esterel specifications — even though mentioned
— was not studied on non-trivial Esterel benchmarks by including traceability
links in an Esterel compiler.

[40] reports practical experiment results on WCET analysis of avionics
programs, including a program that is automatically generated from a syn-
chronous language SCADE ([38]). A WCET analysis framework that integrates



the SCADE development environment from Esterel Technologies with the aiT
WCET analyzer from AbsInt GmbH [1], targeting general-purpose processors,
was presented in [21]. In [21], the WCET analysis is ignorant to the fact that
the executable code is compiled from a high-level modeling language. On the
other hand, our proposed model-driven timing analysis framework automati-
cally utilizes model-level information in low-level WCET analysis, which leads
to more efficient and tighter WCET estimation. Very recently, [42] proposes a
technique to improve timing analysis for MATLAB Simulink/Stateflow model,
by incorporating model-level flow information into WCET analysis. However,
the model-level flow constraints are manually identified and translated into
code-level flow constraints for WCET calculation.

2.3 Timing analysis for special-purpose architectures

Special-purpose reactive processors have been developed to support concurrent
execution of Esterel specification, where instead of compiling into C code,
the Esterel specification is mapped to a concurrent reactive processing ISA.
Example architectures include EMPEROR [45], STARPro [46] and Kiel Esterel
processor (KEP) [26]. Timing analysis for execution of Esterel specifications
on the special-purpose reactive processors have been studied in [24,45,9,32].
Recently, timing analysis techniques based on model checking and reachability
analysis have been proposed for a synchronous version of C, called Precision
Timed C (PRET-C), to be implemented on special precision timed or PRET
architectures ([37,23]).

Compared to timing analysis of general-purpose processors, architectural
modeling for such special-purpose processors is simplified to a large extent.
For example, order-of-order execution and caches are usually not integrated in
these special-purpose processors. Furthermore, special-purpose reactive pro-
cessors implement hardware supports for handling tick-based execution, con-
currency, thread scheduling, and other Esterel semantics (e.g, preemption and
event broadcasting). As a result, timing analysis designed for these architec-
tures can not be applied to the general-purpose processor setting.

3 Overview of Esterel

Synchronous languages like Esterel have been widely adopted for designing
reactive systems in safety-critical domains such as avionics and automobiles.
Specifications written in Esterel are based on the underlying “synchrony hy-
pothesis”, where all computation and communication, unless explicitly paused
(using a pause statement), happen instantaneously. A run of a program typi-
cally consists of steps or reactions in response to ticks of a global clock. With
each clock tick, a reaction computes the values of output signals and a new
state from the input signals and the current state of the program. Such a reac-
tion completes (in zero time) if it does not contain any pause, or else it delays
the instructions following the pause until the next clock tick.



trap FIN in

[ loop
await IN; pause;
present A then emit B; end present;

end loop; [
[
loop [ 59=1 ] [ 59=0
emit A; term(1) term(2)
present B then exit FIN; end present; | |
pause;
end loop;
] end trap;
logical ticks
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Fig. 2 An example Esterel program and its SCFG

For example, the program “emit A; emit B; pause; emit C; pause;
emit D” emits the signals A and B at the first tick, C at the second tick, and D
at the third tick. If p and q are Esterel statements, then p || q is the parallel
composition where p and q are executed concurrently with signals between p
and q being transmitted instantaneously. We use a toy Esterel program with
two concurrent threads shown in Figure 2 as the running example in this paper.
The first thread blocks till the input signal I N appears, and passes the control
to the “present A” statement in the next clock tick (after the “pause” clause).
The second threads emits a signal A in each clock tick, and passes the control
to the end of the “trap” block if signal B presents. A sample execution trace
is shown in the Figure 2, where the input signal I /N appears in the second
tick, and the “trap” block terminates in the third tick. Further details of the
syntax and semantics of Esterel may be found in [10] (or from the references
in [4]).

Compiling FEsterel. Esterel programs can be compiled into C programs to be
simulated/executed on general processor architectures. In principle, the gen-
erated C code should preserve the semantics of original Esterel program by

— implementing a tick function, such that one complete execution of the
function (between its entry and exit) represents Esterel computation and
communication required to be instantaneously executed within one clock
tick. The tick function is loop-free, since Esterel allows no loops within a
clock tick.

— encoding the automata of tick transitions within the tick function, which
preserves the context information of the clock tick, and determines the
path to be executed in the tick function.



— sequentializing the concurrent execution within a tick, based on the control
dependencies (e.g., clock tick boundary, preemption) and communication
dependencies (between set and test of signals) defined in the Esterel pro-
gram.

Various techniques exist for compiling Esterel into C programs [35]. Based
on the intermediate representation used, they can be categorized into automata-
based, netlist-based, and control flow graph (CFG) based approaches. An
automata-based Esterel compiler usually generates a separate branch for each
possible state (representing a clock tick) in the specification. The generated
code is very fast to run, with very small overhead to determine the state to
be executed. However, the size of generated code grows exponentially with
the number of concurrent threads in the specification. Netlist-based approach
translates each Esterel statement into a netlist of boolean logic gates. No state-
ment duplication is required in the generated code, which leads to much more
compact code. However, the main drawback is the significant increase in ex-
ecution time. In this paper, we will focus our discussion on the control flow
graph-based Esterel compilation, which normally produces fast and small C
code. Instead of doing a comparison of various compilation techniques, in this
paper we study how to compute a tight WCET estimation if the CFG-based
compiler is adopted for a particular application. CFG-based compilation com-
plicates the WCET estimation to a large extent, due to the complex control
flow in the generated code. Our ultimate goal is to utilize the model-level and
compilation information to guide the low-level analysis for an efficient and
effective WCET estimation.

As mentioned before, we have integrated our work into the control flow
graph-based code generation of the Columbia Esterel Compiler (CEC) [13].
CEC first parses an Esterel program to build an abstract syntax tree (AST),
which is then used to generate a variant of the so-called Graph Code (GRC)
[35] through a syntax directed translation. GRC represents a concurrent struc-
ture of the desired cycle function and uses a selection tree to encode the tran-
sition between cycles. It is an elegant way to represent the Esterel program,
which allows optimizations to be performed prior to C code generation. The
GRC is then transformed into a sequential control flow graph (SCFG), via a
set of intermediate representations like the program dependence graph (PDG),
and the concurrent control flow graph (CCFG). In CEC, these intermediate
steps ensure that the concurrent control flow in GRC is sequentialized with
the minimum number of context switches, while obeying the control/data de-
pendencies in the original Esterel program. Finally, sequential C code can be
directly generated from the SCFG.

The SCFG generated by CEC for our running example is also shown in
Figure 2 (with some minor modification to make it compact). In the SCFG,
multiple outgoing edges from a source node represent conditional branches,
and the value for the branch to be taken is also labeled. It is common to have
the following types of variables in the SCFG:

— signal variables, e.g., IN, A and B.



— variables to control the context switches between concurrent threads, e.g.,
VAR2.

— guard variables which handles the termination/preemption constructs in
the Esterel, e.g., term.

— state variables which encodes the control flow of tick transitions, e.g., s1,
s6, and 9.

The signal variables are usually of boolean type, representing the absence or
presence of the signal in a particular tick. The last three types of variables
are introduced by the CEC compiler to handle the control flow of the Esterel
execution, which usually have finite integer values depending on the Esterel
program structure.

The SCFG can be directly used to generate a C program with very similar
control flow. One complete path in the SCFG and the corresponding C code
(from the “test s1” to any of the sink node in our example) represents the
execution of a possible Esterel tick. We will show that there can be a large
number of infeasible execution path in the generated C program later in Section
5. By identifying the common infeasible path patterns, we are able to perform
an efficient and effective SCFG-level infeasible path detection. Furthermore,
as one can see that in the CFG-based Esterel compilation (similarly for CFG-
based compilation of other finite state languages), it is not a trivial task for
a programmer to map a C program path back to its corresponding Esterel
tick execution. In Section 6, we will present a framework which automatically
provides bi-directional traceability between the Esterel specification and the
generated C program.

4 Overview of WCET Analysis

Static worst-case execution time (WCET) analysis computes the maximum
execution time of a program on a micro-architecture for all possible inputs.
We now give a brief overview of WCET analysis techniques for sequential pro-
grams. WCET analysis of a program involves finding the “longest” execution
trace in the program’s control flow graph (CFG). Recall that the nodes of a
CFG are the basic blocks (maximal code fragments which are executed without
control transfer), and the edges denote control transfer between basic blocks.
Thus, a path in a control flow graph is simply a sequence of basic blocks, and
an execution trace is a path executed for some program input. WCET analysis
tries to find the maximum time the program takes to execute for any input.
Figure 3(a) shows an example program and its control-flow graph.

Finding the weighted longest execution trace in a program can be done
by running all possible inputs. However, this is not practical since (a) the
number of inputs may be large, and (b) the program execution time for the
same input may be different on different processors. WCET analysis methods
typically solve this problem by developing a static analysis framework which
takes as inputs (i) the program P being analyzed and (ii) a processor platform
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Fig. 3 Two example control flow graphs.

description Proc, and produces as output an overestimate of the WCET of
program P on processor Proc.

Static analysis based WCET estimation proceeds by finding the longest
path in the program’s (assembly code level) control flow graph, satisfying
certain loop bounds (e.g., in the example of Figure 3(a) the loop bound for the
only loop is 10). There many existing static WCET analysis methods and tools
for general programs and processor architectures (refer to [44] for a survey). In
particular, the Integer Linear Programming (ILP) formulation can be used in
low-level (e.g., assembly code level) WCET analysis, so that no explicit path
enumeration is required (which is not feasible for complex program structure).
In this work, we adopt an ILP-based WCET analysis framework, and take
advantage of its flexibility to extend the framework for our language-specific
performance analysis.

In an ILP-based WCET analyzer, the execution time estimate of each ba-
sic block is found by micro-architectural modeling where we develop timing
models of the processor micro-architecture (e.g., pipeline, cache, branch pre-
diction) to find the WCET of a sequence of instructions. Note that the WCET
estimate of the instruction sequence corresponding to a basic block B is an
upper bound on the execution time of B under all possible execution contexts.

With the knowledge of WCET of the basic blocks, finding the WCET of
the whole program is reduced to an optimization problem. Here, we maximize
the program execution time without enumerating the execution traces of the
program. This is done by expressing linear constraints on the execution counts
of any node/edge of the assembly code level control flow graph. We then max-
imize an objective function representing the program execution time subject
to these linear constraints. Since the execution counts of control flow graph
nodes/edges are integers, we can employ the ILP technology. Formally, let B
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be the set of basic blocks of a program. The program’s WCET is given as:

maximize E Np *cp
BeB

where Np is an ILP variable denoting the execution count of a basic block B
and cp is a constant denoting the WCET estimate of the basic block B. The
linear constraints on Np are developed from the flow equations based on the
control flow graph. Thus for basic block B,

Z Ep ,p=Np= Z Ep_.pn

B'—B B—B"

where Ep/,p (Ep_p~) is an ILP variable denoting the number of times con-
trol flows through the control flow graph edge B’ — B (B — B”). Additional
linear constraints capture the loop-bounds (e.g., in Figure 3(a) we need to add
the constraint Ej5_,o < 10).

4.1 Infeasible Path Detection

The core WCET estimation method outlined in the preceding is neither accu-
rate nor automated. The cause of imprecision comes from the fact that many
paths in the control flow graph might be infeasible, that is not appearing in
the execution trace for any input. For example in the acyclic CFG shown in
Figure 3(b), the execution path (B0 — B2 — B3 — B4) cannot be taken for
any program input, due to conflict between the assignment z = 0 (in B0) and
the conditional branch B3 — B4 (which can be taken only if z # 0). It is
clear that undue WCET overestimation is introduced if an infeasible path is
considered to be the longest path in WCET analysis.

Many techniques have been proposed to detect and eliminate infeasible
paths at source/assembly code level for WCET analysis (e.g., [41,19]). In this
work, we adopt a light-weight infeasible path detection technique based on
the notion of conflicting pairs [41] — pairs of (assignment, branch) or (branch,
branch) statements which may not appear together in an execution trace.
Simply put, an assignment a on a variable x conflicts with a branch edge e
(a branch edge refers to a branch condition being evaluated to either true or
false) testing the same variable x if and only if (i) the test on x in e never
succeeds with the value assigned in a, and (ii) there exists at least one path
in the control flow graph between a and e which does not modify variable x.
Similarly, a branch edge el testing a variable x conflicts with another branch
edge e2 testing the same variable x if and only if (i) the conditions on x
in el and e2 can never succeed together, and (ii) there exists at least one
path in the control flow graph between el and e2 which does not modify
variable x. Note that infeasible paths spanning across loop iterations are not
captured by the definition of conflicting pair. Thus, [41] considers the control
flow graph (CFQG) to be a directed acyclic graph (DAG), representing the body
of a loop. However, as we have discussed in Section 3, code generated from
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Esterel specification (the tick function) contains no loop within execution of a
single clock tick. Thus, we do not detect infeasible paths spanning across loop
iterations.

The notion of conflicting pair is extensively used in this paper. To help
readers have a better understanding the concept, we borrow the following
formal definition of conflicting pairs from [41].

Definition 1 (Effect constraint) The effect constraint of an assignment
var := expression is var == expression. The effect constraint of a branch-
edge e in the CFG for a branch condition ¢ is ¢ (—¢) if e denotes that the
branch is taken (not taken).

Definition 2 (Conflicting pair) A branch-edge (or assignment) x has a
(branch, branch) (or an (assignment, branch)) conflict with a subsequent!
branch-edge e if and only if

— there exists at least one path from x to e in the CFG, and
— conjunction of the effect constraints of x and e is unsatisfiable,

In Figure 3(b), we list the (assignment, branch) and (branch, branch) con-
flicting pairs in the example acyclic CFG. A conflicting pair captures a pair of
statements which cannot be executed together provided the variable resulting
in the conflict is not modified in between the execution of these two statements.
In other words, a conflicting pair gets “invalidated” (no longer conflicting) if
the effect constraint is modified in between of the two statements. For example,
to exclude all possible infeasible paths that execute basic block B0 and branch
B3 — B4 without modifying «’s value in between (basic block B1) from being
considered as the critical path, we can add the following ILP constraint in the
ILP-based WCET formulation

No+E3 54— N1 <1

where Ny, N1 and Fs5_.4 are the 0-1 execution counts of basic block B0, Bl
and branch B3 — B4, respectively.

In general, conflicting pairs capture only pairwise conflicts, which cannot
detect (and exploit) arbitrary infeasible path information. However, we will
show that conflicting pair based infeasible path detection technique is efficient
and effective for analyzing compiler generated code from high-level control-
intensive models like Esterel.

5 WCET of a Single Tick

In this section, we propose a timing analysis technique for WCET estimation of
a single Esterel tick. Such estimates can validate Esterel-level assumptions on
the instantaneous processing of signals or events that occur together (Section
3).

1 Subsequent in the sense of the topological order of the control flow DAG.
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Fig. 4 WCET analysis of a single Esterel tick.

Definition 3 [Single tick WCET:] For an Esterel specification to be com-
piled into a C program (the tick function) and executed on a given general
purpose single-processor architecture, the maximum amount of computation
and communication of the Esterel specification in any logical clock tick is
bounded by the WCET of one single complete execution of the tick function
(between its entry and exit).

Please note that in this paper, we focus on the CFG-based Esterel compi-
lation ([13]). On the other hand, as described in Section 3, other compilation
techniques generate code with much simpler control flow structure (at the
cost of larger code size or slower execution), where the control flow analysis in
WCET is straight forward. Furthermore, our motivation is to utilize model-
level information for fast and accurate WCET analysis. Hence, we consider
only the Esterel statements, and their corresponding C code. WCET estima-
tion of the host functions written in general C programs can be done via the
traditional analysis. For C code generated from Esterel specifications, the user
can largely avoid the problems related to automation of the WCET analysis
(refer to Section 4). In particular, since the tick function is loop-free (Esterel
allows no loops within a clock tick), this leads to an acyclic control flow graph
and hence there is no need to provide loop bounds to the WCET analyzer.
Since each basic block is executed at most once in one execution of the tick
function, an ILP-based WCET analysis produces a 0-1 assignment for the
execution count of each basic block. However, compiler generated programs,
especially from high-level control-intensive specifications, usually contain a
huge number of infeasible execution paths compared to hand-written code. As
a result, WCET overestimation due to infeasible execution paths is largely
amplified in timing analysis of compiler generated programs.

Figure 4 gives an overview of our WCET analysis framework. We use the
Columbia Esterel Compiler [13]) to compile a given Esterel program into C,
and calculate the WCET of the C code via an ILP-based platform-aware
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WCET analyzer. We can validate that the synchrony hypothesis assumed at
model level indeed holds in the real implementation, if the WCET of the gen-
erated tick function is guaranteed to be less than the minimum separation time
between the arrival of sets of input events. We propose a comprehensive and
light-weight infeasible path detection and elimination technique for WCET
estimation of programs generated from Esterel specification. Our proposed in-
feasible path detection is performed at sequential control-flow graph (SCFG)
level, which is a standard intermediate representation used in control-flow
graph-based Esterel compilation. The computed SCFG-level infeasible path
constraints are translated into assembly-level infeasible path constraints, via
our Esterel-C mapping (obtained by instrumenting the CEC compiler) and
the C-assembly mapping (obtained by disassembling the compiled C code).
Finally, we integrate the assembly-level infeasible path constraints (as addi-
tion constraints) into the ILP formulation generated by Chronos ([15]), an
ILP-based WCET analyzer. The WCET value and corresponding critical path
for a single tick execution of the Esterel specification on a specific platform
can be obtained by solving the resulting ILP formulation. In summary, we
use the Esterel-level information and pattern of the generated tick function
to identify infeasible path patterns, which are then taken into account during
the timing analysis. Again, any C host functions in the Esterel specification,
as well as the micro-architectural modeling, are handled via the traditional
WCET analysis methodologies.

5.1 Infeasible Path Patterns

We observe that the automatically generated C code (from Esterel) often con-
tains certain infeasible path patterns which may be less frequent in hand-
written C code. Thus, low-overhead automatic methods for detecting/exploiting
infeasible path information can substantially reduce the WCET of such auto-
matically generated C code. Based on our study of the C programs generated
via CDF-based Esterel compilation, we find the following four common sources
of infeasible paths. We adopt the notion of conflicting pairs which has been
presented in Section 4.1 in our discussion of infeasible path patterns. In Figure
5, we show the SCFG and the infeasible paths of the example Esterel spec-
ification in Figure 2. The four infeasible path pattern categorizations are as
follows.

1. Emit and test signals. For example, the conflicts due to emit (set) the signal
A (in SCFG node n3) and test absence of A (branch n5 — n8). Besides, in
an Esterel clock tick, the same signal may be tested in different concurrent
threads. As a result, in the generated C program, multiple identical tests on
the same signal variable will result in paths with (branch, branch) conflicts.

2. Sequentialization of concurrency in a tick. To generate sequential C code
from a concurrent Esterel program, communication dependencies (between
emit and test of a signal) and context switches between concurrent threads
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Fig. 5 Example infeasible path patterns in generated C code.

must be captured. In CEC, this is handled by inserting new control vari-
ables and corresponding test nodes in the generated C code, when the
concurrent control flow graph CCFG is translated into sequential control
flow graph SCFG. In our example shown in Figure 5, the variable VAR2
captures the state of a thread before a context switch (by setting its value
to 1 in node n3), and serves as a conditional guard and gets tested when
the thread resumes execution at n8. Such assignments and tests (may be at
multiple places in the same clock tick) on the guard will introduce possible

infeasible paths.

3. Termination and preemption. The multi-threaded Esterel program follows
the “wait for all threads to terminate” and “winner takes all” behaviors
for thread completion and thrown exceptions ([13]). In the C code gener-
ated from CEC, this is handled by setting and testing the values of newly
introduced guard variables (e.g. variable term as in the third example in
Figure 5). These guard variables are assigned to non-negative integer values
during the execution of each thread (0 for thread terminating, 1 for paus-
ing, 2 and higher for throwing an exception). Such pairs of assignments

and tests on these variables (e.g.,

infeasible paths.

(n10,n11 — nl2) introduces possible

4. Encoding tick transitions. In Esterel, a global automaton is defined on the
sequence of ticks to be executed in each thread, via the use of “pause” and
“await” statements. In the generated C code, this automaton is encoded
through a set of state variables. Setting and testing these state variables in-
troduce infeasible paths since certain combinations of states are not allowed
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in the automaton. In our example shown in Figure 5, given the initial value
of sl to be 2, it is possible to have the value combinations of [s1, s6, s9]
to be [2, L, 1] (L represents a undefined value), [1,1,1], or [1,0, 1] before
a feasible tick execution. On the other hand, [1,1,0] is not a feasible state
before any tick execution. As a result, corresponding paths are considered
to be infeasible paths.

5.2 SCFG-level Infeasible Path Detection

In traditional WCET analysis, infeasible path detection is usually done via
flow analysis at assembly code level [41,18]. In our previous work [22], we per-
form infeasible path elimination on C code generated from Esterel by capturing
conflicting pairs at assembly code level. However, our previous experimental
results in [22] show that due to large number of infeasible paths in the gener-
ated C code (several thousands of detected conflicting pairs), the analysis is
complex and takes up to 15 minutes for the mca200 benchmark from Estbench
Esterel Benchmark Suite ([12]).

In this section, we propose a light-weight infeasible path detection at higher
level during Esterel compilation. By maintaining a traceability link between
model-level statements and compiled executables (the details will be discussed
in Section 6), we automatically translate the high-level infeasible path infor-
mation captured via conflicting pairs into assembly code level ILP constraints,
which can be used in code-level WCET analysis to obtain tighter estimation
results.

There are many levels of intermediate representations (IRs) while compiling
an Esterel specification into assembly code for WCET estimate. For example,
the control-flow graph based CEC compilation produces IRs including AST,
GRC, PDG, CCFG and SCFG. In our work, we perform our infeasible path
detection at SCFG level because of the following reasons.

— Any intermediate representations at higher level than SCFG does not con-
tain all the infeasible path patterns. For example, the second type of infea-
sible path pattern due to sequentialization is only introduced when CCFG
is translated into SCFG.

— C (assembly) code level analysis is incomplete without additional instru-
mented code. For example, the third type of infeasible path patterns will
often produce many switch-cases constructs in the generated C code. The
switch is translated into a register indirect jump (jr) in some ISAs [11], i.e.
the branch target can not be determined statically.

— It improves the efficiency of conflicting pair detection. There are substan-
tially fewer nodes in SCFG comparing to the number of assembly instruc-
tions. Moreover, no register /memory tracing or pointer analysis is required.
Thus, the infeasible path analysis takes much less time at SCFG-level.

— As we will discuss in detail later, the state automaton construction for
detecting the fourth type of infeasible path is obviously easier to perform
at SCFG level than at any other lower levels (C or assembly).
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Detection of infeasible paths type 1-3. The first three categorizations of
infeasible paths listed in Section 5.1 are between pair-wise assignments and
branches. To capture them in the SCFG, we adopt the notion of conflicting
pairs [41] — pairs of (assignment, branch) or (branch, branch) statements
which may not appear together in an execution trace (refer to Section 4.1).
For example in Figure 5, node n3 (which assigns A = 1) and branch n5 — n8
(to be taken when A == 0) is a (assignment, branch) conflict.

Conflicting pairs are easy-to-compute at SCFG-level. In Esterel seman-
tics, a signal is either emitted or absent throughout any tick execution, cor-
responding to value 1 or 0 in the generated C code. Furthermore, domains of
all compiler-introduced variables are statically known. We use the following
notations in our discussion:

— DM, is the domain of all possible values a variable x can be assigned to.
— ASg ., is the set of all nodes n in SCFG that contain assignment of z to

value v.
— BR; , be the set of all branch edges e : n; = n; in SCFG that are taken
when z == v.

The (assignment, branch) and (branch, branch) conflicts on value v of
variable x are represented as 4-tuple (n,e,z,v) and (el, e2, z,v). We compute
the set of all conflicting pairs as follows.

AB = U, yepm, {(n,nl = n2,z,v)|n € AS; , A (nl = n2) € BR, .
Areach(n,nl) ANv #v'}

BB = Uy yepum,{(nl = n2,n3 = nd,z,v)|(nl — n2) € BR,,
An3 — nd € BR, , Areach(n2,n3) ANv #v'}

(1)

where reach(nl,n2) is true if and only if there is a path from node nl to
n2 in the SCFG. For each (assignment, branch) conflict (n,nl — n2,z,v) in
AB and (branch, branch) conflict (nl — n2,n3 — n4,z,v) in BB, we also
compute the set of nodes in SCFG that may “invalidate” the conflicting pair
through assigning a different value to x. In other words, if x is assigned to a
different value in between, the conflict between the assignment (test) on z in
n (nl — n2) and the test on z in n1 — n2 (n3 — n4d) is no longer valid. We
compute the set of nodes that invalidate each conflicting pair as follows.

invalid(n,nl — n2, x,v) = {n/|reach(n,n’) A reach(n’,nl)
An' € ASy o ANv# '}
invalid(nl — n2,n3 — nd, z,v) = {n'|reach(n2,n’) A reach(n’,n3)
An' € AS, v ANv#v'}
(2)
Computation of the above-mentioned sets AB and BB can be done in a
single DFS traversal of the acyclic SCFG in O(|N|+|E|) time. For each assign-
ment of variable x visited, it will be pushed onto a stack SA,. For each branch
on x visited, it will be pushed onto another stack SB,., and used to form pairs
of (assignment, branch) and (branch, branch) conflicts with existing elements
in SA, and SB,. During the backtracking, corresponding assignments and
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State State variable values Next State(s)
sto [s1==2,56 == 1,59 == 1] sty
sty sl==1,s6 ==1,59==1 st1, sto, sts, sty
sto s1==1,s6 ==0,s9==1 st1, sta
st3 s1==0,s6 ==0,s9==1
sta s1==0,s6 ==1,s9==1

Table 1 Feasible States of the example SCFG shown in Figure 5.

branches will be popped off from the stacks. For each conflicting pair in AB
or BB on variable z, finding the set of nodes that may invalidate it requires
time O(|N| x |E|) to perform a reachability test for each node that updates
value of = (captured in set AS). The set of conflicting pairs and correspond-
ing “invalidating” nodes will be used to generate ILP constraints for infeasi-
ble path elimination (refer to Section 5.3). Compared to traditional low-level
(e.g., assembly-code level) infeasible path detection, the proposed SCFG-level
analysis is light-weight and much more efficient, due to the simplicity of the
high-level abstraction. Associated experimental results are presented in Table
3, Section 5.4.

Detection of infeasible paths type 4. When an Esterel specification is
compiled into C code, a set of state variables are introduced to encode the
program execution context. Let’s define a global state as a value combina-
tion of all the state variables. The number of state variables introduced in a
control-flow graph based Esterel compilation (such as in CEC) usually depends
on the number of concurrent threads in the Esterel specification, where each
state variable captures the current tick of its corresponding thread (by having
different values for each tick). For example, three state variables [s1, s6, s9] are
used in the SCFG shown in Figure 5.

Given the initial state and allowed finite state transitions defined by Es-
terel, certain value combinations of the state variables are not reachable. Our
type 4 infeasible path pattern due to such unreachable combinations cannot
be simply captured by the above-mentioned conflicting pairs, since (i) an in-
feasible path of this kind consists of many branches on state variable tests;
and (i) this type of the infeasible path patterns is “context-sensitive”, i.e., a
state variable’s value in current tick depends on execution in previous tick.

Given a SCFG scfg and its initial state stg, Algorithm 1 shows how to find
an overestimated set of all feasible states F'S (i.e., the set contains all feasible
states with possibly some infeasible ones). For a feasible state st, we compute
feasible states st’ that execute in the next tick after st. We consider all feasible
paths in the SCFG by excluding the infeasible paths captured by conflicting
pairs identified as in Section 5.2 (line 4). For a feasible path p, we first test
whether p corresponds to the execution of the current analyzing state st (line
6-15). If any branch on a state variable s; that can be taken when s; == v for
a different value v from the defined value of s; in st (line 8), the path p will
not be considered when searching st’s next states (line 13 -14).



19

Algorithm 1 computeFeasibleState(scfg, stg) — Compute set of all feasible
states F'S, where st is the known initial state for SCFG scfyg.

1: FS.add(sto); Queue.insert(sto);
2: while !Queue.empty() do

3 st = Queue.remove();

4 for each feasible path p € scfg do

5 st’ = st;

6: curFlag = true;

7 for each branch e on p do

8 if e € BRs,,v A st[i] # L A st[i] # v then
9: curFlag = false; /*path p is not in current state st*/
10: break;

11: end if

12: end for

13: if lcurFlag then

14: break; /*search next path*/

15: end if

16: for each assignment node n on p do
17: if n € ASs, 0 Ast[i] #v then
18: st'[i] = v;

19: end if

20: end for

21: if st’ ¢ F'S then

22: FS.add(st');

23: Queue.insert(st’);

24: end if

25: end for
26: end while

Otherwise, for each assignment that updates state variable s; to a new
value v (in the set AS;, ) on p, we set the value in st’ correspondingly (line
16-20). Finally, if the newly computed feasible state st’ has not been visited
before, we add it into the set of feasible state F'S, as well as the workspace
Queue so that states reachable from it will be computed in the future (line
21-24). Table 1 shows the list of all feasible states that are reachable from the
initial state [s1 == 2,56 == 1,s9 == 1] (where s6 and s9 are undefined)
given the example SCFG in Figure 5.

Let S be the set of all possible value combinations on all the state variables
< S81,...,8p >,

s= ][] DM,
i€{l,...,n}
The set of all infeasible state IS can be obtained by

IS=S—FS (3)

where F'S contains the set of all value combinations for reachable states as
calculated in Algorithm 1. Note that we perform a conservative static simu-
lation for reachable state calculation, which reports a superset of the “real”
reachable states. We utilize the computed reachable states to obtain a safe
subset of unreachable state variables’ value combinations, and generate ILP
constraints to eliminate the corresponding infeasible paths (see Section 5.3).
The conservative simulation ensures that the WCET analysis never prunes
any feasible program path and under-estimates the program execution time.
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5.3 Infeasible Path Elimination

We now discuss methods to eliminate infeasible paths given the conflicting
pairs and feasible state variables’ value combinations. We generate an ILP
constraint for each conflicting pair and infeasible value combination detected
at SCFG level. As shown in Figure 4, we maintain an Esterel-C mapping
which provides traceability between corresponding Esterel statements, SCFG
nodes, and generated C statements. Together with the C-assembly mapping
between C statements and basic blocks/edges in the CFG of the generated
C code, we can automatically translate the SCFG-level ILP constraints into
assembly code level ILP constraints. These assembly code level ILP constraints
are utilized in an ILP-based WCET analyzer to prevent infeasible paths from
being considered as the WCET critical path (thereby leading to a tighter
WCET estimate).

Let (n;,n; = ng,z,v) € AB (or (n; = nj,np — ny,x,v) € BB) on vari-
able = and its value v be a conflicting pair (Equation 1), and invalid(n,,n; —
ng, x,v) (or invalid(n; — nj,ni — ng,x,v)) be the set of nodes that invali-
date it (Equation 2). Formally, we can encode this conflicting pair as a linear
constraint

N;i + EJH’V - ZnPGinvalid(ni,nj%nk,m,v) NP <1 (4)

Ei—’j + Ek—ﬂ - aneinvalid(ni%nj,nk%nl,J;,v) NP < 1

where N; (E;_y) is the 0-1 execution count of SCFG node n; (edge nj; — ny).

For the fourth type of infeasible path pattern, we generate the following

ILP constraints for each infeasible state st : [s; == vy,...,8, == v,] in IS
(refer to Equation 3).

Ei+...+E, <n,Ve; € BRy, ,,

where E; is the 0-1 execution count of edge e;, for all e; € BRy, ,, that can be
taken if state variable s; == v; in the infeasible state st. In other words, we
prevent the longest path to contain state variable evaluation corresponding
to an infeasible state st. Hence, not all branches that can be taken in the
infeasible state st are allowed to execute in a single tick.

Given the example in Figure 5, the ILP constraint

Ey 1 +E4 6+ E12<3

will be generated to eliminate the infeasible path containing edges n0 — nl,
nd — n6, and nl — n2, which corresponds to an infeasible control state [s1 ==
1,56 == 1,59 == 0]. Given the one-to-one mapping between nodes/edges in
SCFG and basic blocks/edges in assembly code level CFG, the above con-
straints can be automatically translated into assembly code level ILP con-
straints for infeasible path elimination in WCET analysis.
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benchmark # of lines [conflictin WCET (cycles) sim. overest
(Esterel/C) pairs w/o inf. | w/ inf. | reduction | (cycles)
runner 55/253 42 3905 3781 3.2% 3589 5.4%
reflex 96/378 105 5197 4971 4.4% 4649 6.9%
abcd 101/827 1796 10335 8463 18.1% 8099 4.5%
mejia 555/2598 5328 25983 23343 10.2% 18834 23.9%
tcint 687/3031 2848 13497 10949 18.9% 8869 23.5%
wristwatch 1088/1755 3307 40862 27773 32% 22300 24.5%
mca200 7269/10894 3402 129038 99396 23% 89541 11%

Table 2 WCET analysis results.

5.4 Experimental Results

We now present some implementation details and experimental results to eval-
uate our proposed WCET analysis for a single Esterel tick execution. We
compiled Esterel programs into C using the default (control-flow graph based)
code generation mechanism in the Columbia Esterel Compiler (CEC) [13]. We
instrumented CEC so that during the compilation a C-Esterel mapping is cre-
ated. We used Chronos [15], an ILP-based WCET analyzer, to calculate the
WCET of the tick function in the generated C code. For the WCET analysis,
the default architectural configuration of the tool was used, which assumes a
direct mapped L1 instruction cache with 8-byte block size, dynamic 2-level
branch predictor, 5-staged pipeline, and an instruction dispatch queue size
of 4. We assume no data cache and the instruction cache miss penalty is 30
cycles.

We used benchmarks from Estbench Esterel Benchmark Suite [12], in-
cluding a runner’s behavioral description (runner), a simple combination lock
(abed), a shock absorber (mca200), and a wristwatch example.

Table 2 summarizes our WCET analysis results. For each program, we show
the code size of the Esterel specification and the generated C program. The
number of conflicting pairs automatically detected by our infeasible path detec-
tion algorithm are also listed. Comparing to normal hand-written programs,
huge number of conflicts (infeasible paths) exist in automatically generated
code. The analysis time spent on finding these conflicting pairs takes less than
1 second for each of the benchmarks. The calculated WCET values without and
with the infeasible path detection for each benchmark are presented in column
“w/o inf.” and “w/ inf.”. We can see 3.2% to 32% tighter WCET estimates
can be obtained with our automatical infeasible path elimination technique. A
tighter WCET value improves the accuracy of the synchrony hypothesis vali-
dation, and provides system engineers with more flexibility in term of design
choices. Finally, we compare our WCET estimation (in “w/ inf”) with the
SimpleScalar ([3]) simulation results shown in column “sim.” using the same
architecture configuration. The potential WCET overestimation is presented
in “overest”. However, the simulation results are usually an under-estimation
of the real WCET values. C programs generated from Esterel specifications
are control-intensive programs that handle many concurrent input events in a
single tick execution and have complex internal control states. Hence, worst-
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Benchmark | asm-level analysis in Chronos V3 our SCFG-level analysis
WCET (cycle) analysis time WCET WCET analysis
(cycle) | reduction time
runner 3905 6.9s 3781 3.2% 0.008s
reflex 5197 11.8s 4971 4.4% 0.003s
abed 8463 41.2s 8463 0% 0.02s
mejia 25238 2m15s 23343 7.5% 0.2s
tcint 13057 3mlbs 10949 16.1% 0.5s
wristwatch 31278 2ma34s 27773 11.2% 0.12s
mca200 113519 15m18s 99396 12.4% 0.82s

Table 3 Comparison with assembly code level infeasible path detection.

case inputs and program control flow contexts are difficult to identify in the
simulation. As a result, the presented ratio only serves as an upper bound of
the overestimation between our estimated WCET and the real WCET.

Assembly-level infeasible path detection. We have also compared our
SCFG-level infeasible path detection with the built-in assembly code level
infeasible detection in Chronos V3 (which is also based on the notion of con-
flicting pairs). The WCET results and infeasible path analysis time are shown
under “SCFG-level” and “asm-level” in Table 3, respectively. As one can see,
our proposed SCFG-level analysis outperforms the assembly code level infea-
sible path detection in terms of both accuracy and analysis time.

Compiler optimization. The above-mentioned experiments are based on
WCET analysis of non-optimized assembly code (i.e., with -O0 option in gcc
compilation). The control-flow structure of a non-optimized assembly code is
very close to that of SCFG in Esterel compilation. On the other hand, modern
C compilers support optimizations to increase the performance of compiled
code. For example, the gcc -0O3 option performs optimization techniques in-
cluding dead code elimination, code-block reordering, function inlining, and
register renaming. However, such optimizations may potentially increase the
binary code size.

If the C code is compiled with optimizations, there may be large differences
in the control-flow structures between the optimized assembly code and SCFG.
As a result, (i) infeasible paths identified at SCFG level may not exist in the
optimized assembly code, and (ii) the optimization may introduce additional
infeasible paths which are not presented at SCFG level. However, any infeasible
path detection must be sound, but may be incomplete. In other words, by
simply discarding the SCFG-level infeasible path constraints that cannot be
matched in assembly code level, we are still able to obtain a safe (but probably
less accurate) WCET estimation.

Table 4 shows our experimental results with C compiler optimization. We
show the number of infeasible path constraints obtained at SCFG level. We
discard SCFG level constraints that cannot be matched at assembly code level
(due to missing statements and/or branches). The number of “survived” con-
straints are shown in Table 4 for both -O0 and -O8& optimizations. In par-
ticular, the “asm(-00)” column shows the number of SCFG-level infeasible
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Benchmark | # of infeasible path constraints -03 WCET (cycle)
SCFG | asm(-00) | asm(-O3) | w/oinf. | w/ inf. sim
runner 12 12 7 2681 2557 2304
reflex 41 28 13 4329 4171 3054
abcd 437 384 114 7605 6189 5395
wristwatch 2831 2278 512 28476 21925 13631

Table 4 WCET results with C compiler optimization.

path constraints that are successfully translated into assembly code level con-
straints when no optimization is used in C compilation. These constraints are
used to produce the WCET results with SCFG level infeasible path constraints
as shown in Table 2 and Table 3. On the other hand, the “asm(-03)” column
shows the number of SCFG-level constraints that can be translated into as-
sembly code level constraints when -O3 is used for gce compilation. Finally,
in column “-0% WCET (cycle)”, we present the WCET estimations for -08
optimized assembly code, without and with the SCFG level infeasible path
constraints, as well as the simulated WCET for each benchmark.

Compiler optimization can also be presented during Esterel-to-C compila-
tion. However, since our infeasible path detection is performed at the SCFG
level (usually the bottom-level representation where C code can be directly
printed), model compiler optimization will not affect our proposed analysis.

6 Performance Debugging and WCET Refinement

In this section, we discuss how to achieve the bi-directional traceability and use
it for performance debugging and WCET refinement of Esterel specifications,
as shown in Figure 1. If the WCET estimate produced for the C-level tick
function is greater than a pre-defined clock tick length, we have a violation of
the synchrony hypothesis. It is then useful to show the programmer the Esterel
statements executed corresponding to the WCET estimate. To provide such
backwards traceability, a C-Esterel mapping is built during code compilation.
This mapping is used to generate the Esterel-level critical path (statements ex-
ecuted when the WCET is realized) from the C-level critical path produced by
the WCET analyzer. By visualizing these Esterel statements, the programmer
can perform optimization/modification of the Esterel specification.

6.1 Building the Traceability

Assembly to C mapping. State-of-the-art WCET analysis tools typically
perform the analysis on assembly code (which obtained by disassembling the
program binary) rather than source code. This is to take into account the effect
of compiler optimizations for accurate timing estimation. For an ILP-based
WCET analyzer, the WCET estimate is given via basic block counts, where
each basic block is a sequence of assembly instructions. Our first step towards
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maintaining backwards traceability is to provide a mapping from assembly to
C code. This can be easily achieved by disassembling the C object file using
the objdump command, which produces the link between assembly instructions
and the corresponding C code.

C to Esterel mapping. To enable a mapping from the C-level WCET path
back to the Esterel level, we maintain traceability links while compiling Esterel
to C. In order to impose minimum overheads on the Esterel to C compilation,
we only need to maintain C to Esterel mapping for a subset of Esterel state-
ments. We only trace the Esterel statements that are eventually translated
into C statements (such as data and signal processing, conditional statement,
preemption statements, etc.) and affect the execution time of the generated C
program. For Esterel statements that only affect the control flow of the C code
and produce no explicit execution costs, we do not need to monitor them dur-
ing the compilation process. In particular, we classify the Esterel statements
into following four categories.

— Data and signal processing statements (e.g. expressions, assign, procedural
call, emit). These statements need to be traced, because they are directly
translated into C statements, and will explicitly affect the execution time
of both the Esterel and C programs.

— Conditional and preemption statements (e.g. if-then-else, present-then-else,
abort-when, trap-exit). We trace the predicate signal /expressions for these
statements, which are translated into conditional tests in the C code. This
is to reflect the time taken to evaluate and test these predicates. Further-
more, tracing these predicates helps to automatically generate constraints
in WCET analysis, based on programmer’s annotation given at Esterel
level. We will discuss the details in Section 6.2.

— Other control flow statements (e.g. ||, ;, loop, pause). These statements
are translated into control flow in the generated C program. There are no
explicit C statements which correspond to them. As a result, we do not
trace these statements.

— Variable/signal declaration statements (e.g. signal, var, input, output).
These statements are not traced since they are compiled into variable dec-
larations in the C program.

When an Esterel program is compiled to C, it is first translated to an
intermediate representation (IR), e.g., the abstract syntax tree (AST). During
the AST construction, we maintain a mapping from Esterel line numbers to
the IR node ids. Subsequently the AST is transformed into a sequential control
flow graph (SCFG) which sequentializes Esterel’s concurrency. However, the
computation/predicate nodes of the AST that we trace are retained in the
SCFG. Hence, we can map the AST nodes to SCFG nodes. A mapping between
IR node ids and C line number is created when SCFG is translated into C
program. As shown in Figure 6, by combing all above-mentioned mappings, we
can construct a mapping between the assembly code and Esterel specification.
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Esterel
specification

Esterel
==
mapping R
representations *
---------- -
mapping mapping

Assembly-C line# /
mapping

@——)[ C compiler ]

Fig. 6 Construction of the assembly-Esterel mapping in Figure 1.

’

Mapping back the longest path. Recall that the ILP-based WCET analy-
sis (as discussed in the preceding section) only reports the WCET estimate; it
does not produce the corresponding longest path (also called the critical path).
However, the control flow graph of the Esterel tick function is a directed acyclic
graph or DAG and each basic block is executed at most once. C statements ex-
ecuted in the critical path of the tick function can be reconstructed easily from
the 0-1 assignments of the basic block counts via the assembly to C mapping
(any C statement appearing in a basic block with execution count 1 must lie on
the critical path). Finally, via our C to Esterel mapping, the Esterel statements
corresponding to the WCET can be obtained. However, since infeasible path
detection methods are incomplete, the reported critical path may, in principle,
still be an infeasible path. Hence, we allow the programmer to provide infeasi-
ble path annotations at the Esterel level. These are automatically translated
into ILP constraints on the execution counts of the C program’s basic blocks
via our traceability links between Esterel, C and the assembly code.

What kind of infeasible path annotations can be provided at the Esterel
level? Esterel allows the programmer to explicitly define # (exclusion) and =>
(implication) relations on signals. These are constraints on the environment
of the Esterel specification (e.g., signals 2 and y never happen in the same
tick) which are automatically translated to ILP constraints for tighter WCET
analysis. We have also extended the #, => relations to Esterel statements
and predicates. In particular, we have defined two relational operators, ##
(conflict) and <=> (coezist), between Esterel statements/predicates (repre-
sented using their line numbers) that we trace when building the C-Esterel
mapping. These annotations can be automatically translated into ILP con-
straints as follows. A conflict annotation A#+#B is translated into the linear
constraint N4+ Np < 1 and a coerist annotation A <=> B is translated into
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1 module reflex_game 55 TIME:=TIME+1

56 end
7 relation ..., READY # STOP 57 upto STOP;

58 emit DISPLAY;
14 every COIN do 59 emit INC_AVE(TIME)

60 watching LIMIT_TIME MS
22 [ 61 time out exit ERROR end;
23 copymodule AVERAGE 62 emit GO_OFF;
24 Il 63 exit END_MEASURE

64 ] %trap END_MEASURE
38 trap END_MEASURE in
39 [
40 every READY do 87 module AVERAGE
41 emit RING_BELL
42 end 91  every immediate INC_AVE do
43 Il 92 TOTAL := TOTAL + ?INC_AVE
93 NUM := NUM +1;

52 do 94 emit AVE_VALUE (TOTAL/NUM)
53 do 95 end
54 every MS do

Fig. 7 The reflex game Esterel specification and highlighted critical path.

b35 b35: if (READY){

b36: RING_BELL =1;
A/: b36: }
b36 | b37: ...
037 b58: if (STOP) {
b59: DISPLAY =1;
b59: GO_OFF =1;
b58 b59: _term &=-(1 << 2);

b59: (INC_AVE v = TIME),

a (INC_AVE = 1);

b59: }
bS9 b60 b60: else{...

Fig. 8 C-level critical path (in solid lines) of the reflex game.

the linear constraint N4y = Np, where N4(Np) is the execution count of the
basic block that contains A(B) if A(B) is a statement, or the execution count
of the corresponding branch edge (evaluating to true) if A(B) is a predicate.

6.2 Case Study in Performance Debugging

We illustrate our timing analysis framework using the well-known reflex game
example [6]. A user can start a game session by inserting one COIN to a ma-
chine. To test his reflex time, once the user is ready (by pressing the READY
button), he needs to press STOP as quickly as possible after the machine
generates a GO_ON signal to turn on a light. This is repeated three times and
finally the average reflex time will be calculated and displayed before game is
over. Figure 7 shows an Esterel fragment of the game controller. The complete
Esterel specification of the game can be found in [6] (game version 1).
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We used CEC to compile the reflex game program. We instrumented CEC
to produce a C-Esterel mapping as discussed earlier. Automated infeasible
path detection and ILP-based WCET analysis were performed on the gener-
ated C code. Once the critical path was computed at the C level, we identified
the critical path at the Esterel level via backwards traceability. Figure 8 shows
a CFG fragment of the reflex game example, where assembly code level ba-
sic blocks in the critical path (blocks which have an execution count of 1)
computed by our WCET analyzer are highlighted. Figure 8 also shows the
corresponding C code fragment, through the assembly to C mapping. Finally,
via the C to Esterel mapping, the corresponding Esterel statements executed
in the worst case path are obtained. Thus, the C code fragment shown in
Figure 8 corresponds to Esterel lines 40-42, 58-63 in Figure 7. The gener-
ated C tick function is acyclic, where signal emissions are translated to as-
signments of corresponding variables. Note that exception handling (e.g., trap
END_MEASURE) are translated into the manipulation of compiler-introduced
variables in CEC, which are not shown in the generated C code in Figure 8.

The entire Esterel level critical path is highlighted using shaded lines in
Figure 7. It corresponds to the user pressing READY and STOP buttons
simultaneously after the machine generates a GO_ON signal. In such a case,
the machine rings a bell (emit RING_BELL) to indicate that the READY
button is pressed wrongly (it should only be pressed before each time the
user wants to start a reflex time measurement). At the same time, to handle
the STOP button, the machine calculates and displays the average reflex
time, generates a GO_OFF signal to turn off the light, exits from the current
measurement and enters the next measurement (or finishes after three runs).
Now, in the Esterel specification, we find the user annotation that the input
signals READY and STOP cannot happen within the same tick (line 7).
Hence our reported critical path is not a feasible one. Using the mechanism
discussed in this section, such user annotations are automatically converted
to (branch, branch) conflicting pair information, i.e., tests on READY and
STOP cannot both be true. Naturally, this yields a tighter WCET estimate.

7 Inter-tick Micro-architectural Contexts

In this paper, we have taken advantage of the proposed program control flow
analysis to obtain tighter WCET estimation and backwards traceability for
performance debugging of Esterel specifications. As discussed in Section 4,
micro-architecture modeling is used for accurate computation of the execution
time of individual basic blocks, which is also a key component in WCET analy-
sis, especially for general-purpose processors with complex micro-architecture.
In this section, we will present a brief overview on how micro-architectural ef-
fects, the instruction cache in particular, can be integrated into our framework
for a even more accurate timing analysis.

As discussed in previous sections, progress of a single Esterel tick corre-
sponds to one complete execution of the compiled tick function. Thus, micro-
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architectural effects (including pipelining, cache, branch prediction, etc) can
be automatically captured by the WCET analyzer for WCET calculation of
the tick function. For example, [28] introduces an ILP-based WCET analysis
framework integrating path analysis and instruction cache modeling, which
has been extended and implemented in the Chronos WCET analyzer ([15]).
As a result, the WCET values for any single Esterel tick on a given general-
purpose processor (as presented in Table 2) have fully considered the intra-tick
micro-architectural effects.

In a real application modeled in synchronous language, it is common for the
response of an event to span across multiple clock ticks. Moreover, some micro-
architecture components also make timing impacts when the tick function get
executed repeatedly (corresponding to consecutive Esterel ticks), which will
be referred as the inter-tick micro-architectural context in this paper. Con-
sider the execution of the tick function for our example Esterel specification
shown in Figure 2. Even though there is no inter-tick instruction reuse at the
Esterel specification level, instructions in the generated C level tick function
(and corresponding assembly code) may be reused across ticks. When some
instructions are executed in the first tick and loaded into the instruction cache
(e.g., test of the state variable sl), it is possible for them to remain in the
cache and get executed again in the subsequent ticks. The inter-tick instruc-
tion cache reuses result in additional cache hits, and a smaller execution time.
By considering these inter-tick contexts, accuracy of the WCET estimation can
be further improved. However, such inter-tick micro-architectural contexts are
not captured in the off-the-shelf WCET tools for general programs.

Timing effects of cache sharing from different program fragments have been
well-studied in the literature on the cache-related preemption delay (CRPD)
problem [14]. Given a preempted task T and a preempting task T’ the cache-
related preemption delay is an upper bound on the delay due to additional
cache misses caused by preemption of T by T’. Hence, the works on CRPD
analysis estimate the cache pollution (i.e., loss in execution time) due to prior
execution of other program fragments.

Our problem with inter-tick cache contexts is somewhat different, but a
similar cache analysis model can be adopted (e.g., the CRPD analysis pre-
sented in [33]). In particular, we want to estimate the worst-case cache reuse
(i.e., the guaranteed gain in execution time) due to prior execution of the tick
function. We need to compute all possible cache states at the beginning and
end of the tick function. Let S be the set of all possible cache states resulted
from previous tick execution, and S’ be the set of cache states that contain
the possible first memory references to cache blocks in the current tick. Via a
pairwise comparison of the elements in S and S’, we are able to locate a cache
state s; € S and a cache state s; € ', with minimum number of common
memory blocks. It gives the worst-case guaranteed cache reuse for the current
tick from previous tick execution, from which the WCET of the current tick
can be further tightened. A comprehensive framework that integrates the pro-
gram control flow contexts and inter-tick architectural contexts will be studied
in our future work.
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8 Concluding Remarks

In this paper, we have presented a model-driven timing analysis framework for
the single-processor execution of the Esterel specification. WCET estimation of
a single Esterel tick allows validation of the synchrony hypothesis, and enables
software implementation of synchronous languages on general-purpose proces-
sors. Moreover, our proposed model-driven timing analysis technique yields
tighter WCET estimation, which leads to more cost-effective and resource-
saving designs. By maintaining traceability between model elements (Esterel
statements) and corresponding generated C (binary) instructions, the criti-
cal path reported in our WCET analysis can be mapped back to the Esterel
model, which facilitates the system designer for performance debugging and
further WCET refinement.

In our model-driven timing analysis, we extract information from the high-
level model and Esterel-to-C compilation, which are used to provide additional
program path and micro-architecture constraints to a stand-alone WCET an-
alyzer. In particular, our analysis systematically identifies common infeasi-
ble path patterns in the generated C code from the Esterel specification. A
light-weight infeasible path detection technique is proposed to automatically
eliminate infeasible paths in our WCET analysis.

Comparing with our preliminary publication along this line of work ([22]),
substantial improvements have been presented in this paper, including the
SCFG-level infeasible path analysis, elimination of context-sensitive infeasible
paths due to tick transition, and the related experimental results. In the future,
we are interested in applying our model-driven timing analysis framework to
other synchronous languages and extending it for the multi-core domain.
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