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Abstract

Estimating the Worst Case Execution Time (WCET) of a
program on a given processor is important for the schedu-
lability analysis of real-time systems. WCET analysis tech-
niques typically model the timing effects of microarchitec-
tural features in modern processors (such as the pipeline,
caches, branch prediction, etc.) to obtain safe but tight
estimates. In this paper, we model out-of-order processor
pipelines for WCET analysis. This analysis is, in general,
difficult even for a basic block (a sequence of instruc-
tions with single-entry and single-exit points) if some of
the instructions have variable latencies. This is because the
WCET of a basic block on out-of-order pipelines cannot
be obtained by assuming maximum latencies of the indi-
vidual instructions. Our timing estimation technique for a
basic block is inspired by an existing performance analy-
sis technique for tasks with data dependences and resource
contentions in real-time distributed systems. We extend our
analysis by modeling the interaction among consecutive ba-
sic blocks as well as the effect of instruction cache. Finally,
we employ Integer Linear Programming (ILP) to compute
the WCET of an entire program. The accuracy of our anal-
ysis is demonstrated via tight estimates obtained for several
benchmarks.

1. Introduction

Statically analyzing the Worst Case Execution Time
(WCET) of a program is important for real-time soft-
ware. Such timing analysis of software has been studied
extensively [4, 14, 15, 21, 24, 26] due to its inherent im-
portance in schedulability analysis. Usually it involves
path analysis to find out infeasible paths in the pro-
gram’s control flow graph and microarchitectural model-
ing. Note that WCET analysis techniques are conservative,
that is, they compute an upper bound of the program’s ac-
tual worst case execution time. So, it is possible to ignore
the effects of the underlying hardware by introducing pes-
simism. However, ignoring the microarchitectural features

produces extremely loose timing bounds as modern pro-
cessors employ advanced performance enhancing features
such as the pipeline, cache, branch prediction, etc. To ob-
tain a tight (yet safe) WCET estimate, we need to model
the timing effects of microarchitectural features.

In the last decade, researchers have studied the effects
of pipeline, cache and their interaction on program execu-
tion time. Most of these works are based on assumptions
that are only applicable to in-order pipelines, where instruc-
tions are executed in program order. However, current high-
performance processors employ out-of-order execution en-
gines to mask latencies due to pipeline stalls; these stalls
may happen due to resource contentions, cache misses,
branch mispredictions, etc. Even in the embedded domain,
some recent processors employ out-of-order pipeline; ex-
amples include Motorola MPC 7410, PowerPC 755, Pow-
erPC 440GP, AMD-K6 E and NEC VR5500 MIPS.

In this paper, we model the effects of out-of-order
pipelines on the WCET of a program. The main diffi-
culty in modeling such processors is thetiming anomaly
problem [18]. The implication of this problem is that
the overall WCET of a program can exceed the esti-
mate obtained by maximizing latencies of individual
instructions. Consequently, all possible schedules of in-
structions with variable latencies need to be considered for
estimating the WCET of even a single basic block. Re-
cently, Heckman et al. [9] have modeled PowerPC 755
(an out-of-order processor) for timing analysis. We dis-
cuss the relationship of their work with ours in the next
section.

Our aim in this paper is to obtain a safe and tight WCET
estimate for out-of-order pipeline without enumerating all
possible instruction schedules. Our technique is inspired by
an iterative performance analysis technique for real-time
distributed systems proposed by Yen and Wolf [28], which
estimates the execution time of tasks with data dependences
and resource contentions. For estimating the WCET of a ba-
sic block, we exploit and augment their technique by treat-
ing individual instructions as tasks. Clearly, there are data
dependences between instructions in a program; resource
contention is defined in terms of two instructions requir-
ing the same functional unit. We then extend our solution



for estimating the WCET of a basic block to arbitrary pro-
grams with complex control flows. The extension involves
three steps. First, we apply the timing estimation technique
to each basic block. Next, we bound the timing effects of
instructions preceding or succeeding a basic block. Finally,
Integer Linear Programming (ILP) technique is employed
on the control flow graph to estimate the WCET of the en-
tire program. We also extend our technique to include the
effect of instruction cache and branch prediction.

The rest of this paper is organized as follows. Section 2
surveys related work on WCET analysis. Section 3 explains
the technical difficulties in modeling out-of-order execution
engines. The next two sections present our estimation tech-
nique: WCET estimation for a basic block (Section 4) fol-
lowed by the estimation of a complete program (Section 5).
Integration of instruction cache and branch prediction with
our pipeline analysis is discussed in Section 6. Experimen-
tal results are presented in Section 7. Concluding remarks
appear in Section 8.

2. Related work

Research on WCET analysis was initiated more than a
decade ago. Early activities can be traced back to [21, 24].
These works analyzed the program source code but did not
consider hardware features such as cache or pipeline. Cur-
rently, there exist different approaches for combining pro-
gram path analysis with microarchitectural modeling. One
of them is a two-phased approach; it usesabstract interpre-
tation [26] to categorize the execution time of the instruc-
tions and then applies Integer Linear Programming (ILP) to
incorporate path constraints. The other one is an integrated
approach proposed in the context of modeling instruction
caches [15]. It employs an ILP formulation using path con-
straints derived from the control flow graph as well as con-
straints on cache behavior. A major concern with the ILP-
only approach is the scalability of ILP problem size and/or
solution times [27].

Pipelining is the core technique universally employed
in modern processors and has been studied extensively for
WCET analysis. Prior works in this area have successfully
modeled in-order pipelines. Zhang et al. [29] model a sim-
ple pipeline structure with only two stages. Lim et al. [16]
compute the WCET for RISC processors with pipelines and
caches through an extension of Shaw’s timing schema [24].
A case study with this approach for MIPS R3000/R3010
processors has been made by Hur et al. [11]. Their work has
been extended in [17] to model multiple-issue machines.
Healy et al. [7] present an integrated modeling of instruc-
tion cache and pipeline by first categorizing cache behav-
ior of the instructions, and then using the cache information
to analyze the performance of the pipeline. Lundqvist and
Stenstr̈om [18] combine instruction level simulation with

path analysis by allowing symbolic execution of instruc-
tions (whose operands are unknown). Schneider and Ferdi-
nand [23] have applied abstract interpretation to model su-
perscalar processors (SUNSPARC 1).

Recently WCET analysis has been employed on real-life
modern processors. Langenbach et al. [12] has presented a
work based on abstract interpretation for Motorola Cold-
Fire 5307 that has in-order pipeline, cache and branch pre-
diction. A similar approach was employed by Heckman et.
al. [9] to an out-of-order processor – PowerPC 755. Their
modeling defines an abstract pipeline state as a set of con-
crete pipeline states and pipeline states with identical timing
behavior are grouped together. Thus, if the latency of an in-
structionI cannot be statically determined, a pipeline state
will have several successor states (resulting from the exe-
cution ofI) corresponding to the various possible latencies
of I. This style of modeling is used in order to easily inte-
grate pipeline modeling with other microarchitectural fea-
tures such as branch prediction, data cache and instruction
cache.

Our motivation towards studying pipeline model-
ing has come from a different angle. The problem of tim-
ing anomaly [19] makes it difficult to perform pipeline
WCET analysis without an exhaustive enumeration of
pipeline schedules. Thus, we are interested in the follow-
ing question: can we achieve pipeline modeling where the
time at which an instruction I enters/leaves a pipeline stage
S is tightly estimated as an interval (without enumerating
the different clock cycles in which I enters/leaves S). To an-
swer this question, we have considered a limited pipeline
model where the timing anomaly arises from variable la-
tency instructions and instruction cache. Note that we have
also studied how features like branch prediction can be in-
tegrated into our interval-based pipeline analysis frame-
work; however, this feature hasnot been implemented.
Whether or not our integrated interval based model-
ing of all the micro-architectural features will scale up
in timing/precision remains a topic of future investiga-
tion.

3. Difficulty in modeling out-of-order
execution

Modern processors employ out-of-order execution
where the instructions can be scheduled for execu-
tion in an order different from the original program or-
der. In such a processor, an instruction can execute if
its operands are ready and the corresponding functional
unit is available, irrespective of whether earlier instruc-
tions have started execution or not. The out-of-order exe-
cution improves processor’s performance significantly as
it replaces pipeline stalls (due to dependences and/or re-
source contentions) with useful computations. However,
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Figure 1: Out-of-order processor pipeline model

the out-of-order execution mechanism makes WCET anal-
ysis difficult. We first introduce an out-of-order processor
pipeline to illustrate these difficulties.

3.1. An out-of-order processor pipeline

Figure 1(a) shows an example of out-of-order proces-
sor pipeline, which we will use to illustrate our estima-
tion technique later in the paper. This pipeline is a simpli-
fied version of the SimpleScalarsim-outorder simula-
tor pipeline [1], which in turn is based on [25]. The pipeline
consist of five stages as shown in Figure 1(b).

1. Instruction Fetch (IF ). This stage fetches instruc-
tions from the memoryin program orderinto the in-
struction fetch buffer I-buffer. Let us assume a 2-entry
I-buffer for discussion.

2. Instruction Decode & Dispatch (ID ). This stage de-
codes instructions in the I-buffer and dispatches them
into a circular buffer, called the re-order buffer (ROB)
in program order. The ROB, a 4-entry buffer in our dis-
cussion, forms the core of the pipeline. Instructions are
stored in this buffer from the time they are dispatched
to the time they are committed (seeCMstage).

3. Instruction Execute (EX). An instruction in the ROB
is issued to its corresponding functional unit for execu-
tion when all its operands are ready and the functional
unit is available. If more than one instruction corre-
sponding to a function unit are ready for execution, the
earliest instruction is issued for execution. We assume
that the functional units are not pipelined, that is, an in-
struction can be issued to a functional unit F only af-
ter the previous instruction occupying F has completed
execution. We also assume that the number of instruc-
tions issued in a clock cycle is only bounded by the
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Figure 2: Timing anomaly due to variable latency instruc-
tions

number of functional units. TheEXstage exhibits true
out-of-orderbehavior as an instruction can start exe-
cution irrespective of whether earlier instructions have
started execution or not.

4. Write Back (WB). In this stage, instructions that have
finished execution forward their results to awaiting in-
structions, if any, in the ROB. If all the operands of an
awaiting instruction become ready, the instruction will
be among the candidates scheduled for execution in the
next cycle. We assume that there is no contention in the
WBstage, that is, an instruction that has finished exe-
cution can always write back its results immediately.
Clearly, instructions can write back results inout-of-
orderas well.

5. Commit (CM). This is the last stage where the oldest
instruction that has completed theWBstage writes its
output to the register file and frees its ROB entry. Note
that the instructions commitin program order. That
is, even if an instruction has completed itsWBstage,
it still has to wait for the earlier instructions to com-
mit. At most one instruction can commit each cycle.

In summary, in our processor model,EX andWBare the
two pipeline stages where instructions can proceed out-of-
order. There is resource contention only in theEX stage
where instruction may compete for functional units.

3.2. Timing anomaly

The out-of-order execution has a serious impact on
WCET analysis in the form oftiming anomaly ob-
served by Lundqvist and Stenström [19]. Let us consider
a variable latency instructionI with two possible laten-
cies lmin and lmax such thatlmax > lmin. Let us assume
that the execution time of a sequence of instructions con-
taining I is gmax (gmin) if I incurs a latency oflmax
(lmin). The latencies of the other instructions in the se-
quence are fixed. A timing anomaly happens if either
(gmax − gmin) < 0 or (gmax − gmin) > (lmax − lmin).



Figure 2 illustrates timing anomaly with an example. In
the code fragment, instructionB depends onA, instruction
C depends onB, and instructionE depends onD. Instruc-
tions A andE use theMULTUfunctional unit with latency
of 1 ∼ 4 cycles and the other instructions use the single cy-
cle ALU functional unit. We illustrate two possible execu-
tion scenarios. In the first scenario illustrated in Figure 2(c),
instructionA executes for three cycles. Therefore, instruc-
tions B andC execute on cycles3 and4, respectively. In-
structionD is ready for execution in cycle3 itself, but it
can only be scheduled for execution in cycle5 afterB and
C (which appear earlier in program order). The overall ex-
ecution time in this case is10 cycles. In the second sce-
nario as illustrated in Figure 2(d),A executes for four cy-
cles. NowD is the only ready instruction in cycle3 (B and
Care still waiting for their operands). ThereforeDexecutes
in clock cycle3 allowing E to start execution in clock cy-
cle 4. The overall execution time in this case is only eight
cycles. Thus,a longer latency ofA results in a shorter over-
all execution time.

In the presence of timing anomaly, techniques which
generally take the local worst case for WCET estimation no
longer guarantee safe bounds. For example, assuming the
longest latency for variable-latency arithmetic instructions
is not safe for WCET estimation of out-of-order processors.
This prompts the need to consider all possible schedules of
instructions. For a piece of code withN instructions and
each of which hasK possible latencies, a naive approach,
which examines each possible schedule individually, will
perform WCET estimation forKN schedules. To address
this problem, Lundqvist and Stenström[19] propose a pro-
gram modification approach to enable safe local decision
making for WCET analysis with out-of-order processors.
They insert synchronization instructions before and after
every variable-latency instruction in the code. A synchro-
nization instruction flushes the pipeline, thereby enforcing
a predictable pipeline state. However, pipeline flushes waste
many clock cycles and lead to imprecise analysis.

In contrast, Engblom’s framework [4] to model proces-
sor pipeline is based on the concept of pipelinetiming ef-
fects, which reflects the impact of an earlier instruction’s
execution on later instructions. The execution time of a se-
quence of instructions is obtained by only considering its
own execution time and the timing effects from nearby in-
structions. To make sure that there is no under-estimation,
long timing effects (timing effects from remote instructions)
should never be positive. The author discuss the conditions
for the absence of positive long timing effects. The conclu-
sions drawn are in favor of simpler in-order pipelines with
no positive long timing effects.

4. Estimating the execution time of a basic
block

Our effort in this section is to develop an algorithm for
estimating the WCET of a basic block on our out-of-order
processor pipeline. Instructions in a basic block are exe-
cuted sequentially, that is, there is no non-determinism in
terms of control flow transfer. In order to focus on pipeline
modeling, we will initially assume that there are no cache
misses or branch mispredictions. Later, we show how to in-
tegrate cache and branch prediction with our pipeline anal-
ysis. Our approach avoids explicit enumeration of possible
instruction schedules. First, we formulate the problem in
terms of an execution graph where the edges represent the
data dependences as well as dependences among different
pipeline stages. Secondly, we maintain the start and com-
pletion times of the pipeline stages corresponding to each
instruction as conservative intervals. For example, the start
time of a particular pipeline stage for an instruction is es-
timated as[l, u], wherel andu denote the earliest and lat-
est possible start times, respectively. Clearly, the WCET of
an instruction trace is then the latest possible finish time
of the last instruction’s commit stage. Our algorithm starts
with very loose bounds on the intervals and iteratively tight-
ens the bounds.

4.1. Problem formulation

Execution graphGiven a basic block, each node in the cor-
responding execution graph represents a tuple: an in-
struction identifier and a pipeline stage, denoted as
stage(instruction identifier). For example,IF(I) is the
fetch stage of instructionI . If the code containsN instruc-
tions and the pipeline containsP stages, then the number of
nodes in the execution graph isN × P . Each node is asso-
ciated with the latency of the corresponding pipeline stage.
All the pipeline stages, exceptEX, have single cycle la-
tency. If an instructionI has variable latency, thenEX(I)
is annotated with[l, u], wherel andu are lower and up-
per bounds on latency, respectively. Solid edges in the
graph represent dependences among the nodes. A de-
pendence edgeu → v from nodeu to v indicates that
nodev can start only after nodeu completes. There ex-
ists four types of dependences.

• Dependences among pipeline stages of the same in-
struction. This is because an instruction must proceed
from the first stage to the last, for example,ID(I)
must followIF(I) .

• Dependences due to in-order execution inIF , ID , and
CMpipeline stages. Different instructions should pro-
ceed in program order through these pipeline stages,
for example,IF(I+1) can only start afterIF(I) .
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Figure 3: A basic block and the corresponding execution
graph

• Data dependences among instructions. If instructionI
produces a result that instructionJ uses, then we have
an edge fromWB(I) to EX(J) .

• Dependences due to fullI-buffer or ROB. For ex-
ample, assuming that theI-buffer has two entries,
there will be no entry available forIF(I+2) before
ID(I) completes (which frees its entry from theI-
buffer ). Similarly, by assuming a 4-entryROB, there
will be an edge fromCM(I) to ID(I+4) asCM(I)
frees up an entry in theROB. Note that we can draw
these edges as both theI-buffer and theROBare
allocated and freed in program order.

Dashed edges are drawn to reflect functional unit con-
tentions among instructions. Thus, if instructionI can pos-
sibly delay the execution of instructionJ by contending for
a functional unit, then a dashed edge is drawn fromEX(I)
to EX(J) . It is not necessary thatI appears beforeJ in
program order. IfI and J can delay each other, then we
will have a bi-directional dashed edge betweenEX(I) and
EX(J) . In our example pipeline, resource contention hap-
pens only in theEX stage. There cannot be any contention
between instructions with data dependences or between in-
structions that can never coexist in theROB(i.e. their dis-
tance is greater than or equal to the capacity of theROB).

Figure 3 shows an example of execution graph. Edges
WB(1) → EX(3), WB(2) → EX(5), andWB(4) → EX(5)
reflect data dependences. The dashed edges represent con-
tentions for functional units. For example, the bi-directional
dashed edge betweenEX(1) andEX(4) implies: (a) if in-
structions 1 and 4 are both ready to execute and the func-
tional unitMULTUis free, thenEX(1) will have higher pri-
ority, and (b) ifEX(4) has already started beforeEX(1)
is ready, thenEX(4) will be allowed to complete and

thereby delayEX(1) ; there is no preemption ofEX(4)
by EX(1) . Note that the dashed edgeEX(1) → EX(2) is
uni-directional. This is because the source operand regis-
ters of instruction 1 are a subset of those of instruction 2.
This implies that instruction 1 will never be ready after in-
struction 2. Moreover, as instruction 1 has higher priority
than instruction 2 due to program order,EX(2) cannot de-
lay EX(1) .

Our execution graph is similar to the dynamic depen-
dence graph among instructions of Fields et al. [6]. In their
work, the dependence graph is obtained from a concrete
simulation run, that is, a trace of dynamic instructions.
Therefore, the actual resource contentions exercised in that
particular run are known and the nodes are annotated with
the execution latency as well as the wait time for a func-
tional unit. They study how much each instruction can be
delayed (the slack) without increasing the execution time of
the run. Our execution graph is static and all possible re-
source contentions between instructions are represented for
purposes of static analysis.

Problem definitionGiven a basic block consisting of a se-
quence of instructionsI1, I2, . . . , IN and the correspond-
ing execution graph, we need to estimate its WCET, that
is, the maximum completion time of the nodeCM(IN) as-
sumingIF( I1) starts at time zero. Note that this problem
is not equivalent to finding the longest path fromIF( I1)
to CM(IN) in the execution graph (taking the maximum la-
tency of each pipeline stage). The execution time of a path
in the execution graph is not a simple summation of the la-
tencies of the individual nodes because of two reasons.

• The total time spent in making the transition from
ID(I) to EX(I) is dependent on the contentions
from other ready instructions.

• The initiation time of a node is computed as themaxof
the completion times of its immediate predecessors in
the execution graph. This models the effect of depen-
dences, including data dependences.

4.2. A related problem

Given the problem formulation, we use an iterative al-
gorithm to estimate the WCET of a sequence of instruc-
tions. The algorithm is safe, that is, it never produces an
under-estimation. It begins with a very coarse approxima-
tion for the start and completion times of the nodes. These
approximations are refined iteratively until (a) a fixed point
is reached, or (b) a prescribed number of iterations is ex-
ecuted. The basic structure of our algorithm is inspired by
a performance analysis technique for real-time distributed
systems [28].

This technique by Yen and Wolf analyzes a system con-
sisting of several periodic tasks represented by task graphs
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as in Figure 4(a). Each task consists of a partially ordered
set of processes, and each process has lower and upper
bounds on its computation time. The hardware architecture
consists of a set of Processing Elements (PE) connected via
communication edges as in Figure 4(b). Processes are allo-
cated to the PEs and priorities are assigned among the pro-
cesses assigned to the same PE. A processP is scheduled
to execute on a processorE if (1) all of P ’s predecessors
have completed execution, and (2) no higher priority pro-
cess in running onE. P can possibly preempt a lower pri-
ority process to start execution; on the other hand,P may
itself get preempted by higher priority processes during its
execution. The algorithm estimates the worst case comple-
tion time of all the tasks.

The problem addressed by Yen and Wolf’s algorithm is
similar to our analysis problem in some key aspects. For
convenience, let us call their problemP and our problem
P ′, respectively. The similarities are:

• The execution graph ofP ′ is similar to the task graph
of P. InP, processes have variable execution times; In
P ′, EXstages have variable latencies.

• Edges in both graphs represent dependences among
nodes. Moreover, there are resource contentions in
both problems. InP, contending processes are as-
signed fixed priorities by the system designer whereas
in P ′, the program order determines priorities of in-
structions.

The similarities between the two problems render the
framework of the algorithm inP, which iteratively refines
timing bounds of processes, applicable toP ′. However,
there are some significant differences as well.

• In P, tasks are periodic while the execution graph in
P ′ is non-periodic.

• In P, a higher priority processhp may delay a lower
priority processlp by preemption; butlp cannot delay
hp. However, inP ′, it is possible for a lower priority
instruction (appearing later in program order)li to de-
lay the execution of a higher priority instructionhi. As
there is no preemption, ifli is executing whenhi be-
comes ready, thenli is allowed to complete the execu-
tion and it delays the execution ofhi.

These differences make the computation of the response
time of a nodev – the time when all ofv’s predecessors
have completed execution to the timev completes execu-
tion – different for the two problems. InP, one can use the
well-known result by Lehoczky et al. [13] to calculate re-
sponse time, whereas it is not possible to do so inP ′.

4.3. Our approach

As discussed in Section 4.1, our problem is not equiva-
lent to finding the longest path in the execution graph due
to resource contentions and dependences. Dependences are
taken care of by using a modified longest path algorithm
that traverses the nodes in topologically sorted order. This
topological traversal ensures that when a node is visited,
the completion times of all its predecessors are known. To
model the effect of resource contentions, we conservatively
estimate an upper bound on the delay due to contentions for
a functional unit by other instructions. A single pass of the
modified longest path algorithm computes loose bounds on
the lifetime of each node. These bounds are used to iden-
tify nodes with disjoint lifetimes. These nodes are not al-
lowed to contend in the next pass of the longest path search
to get tighter bounds. These two steps repeat till either there
is no change in the bounds or a pre-defined number of iter-
ations have elapsed.

Notations Before we discuss the algorithm, we explain the
notations used.

• treadyi : Ready time of nodei is defined as the time
when all its predecessors have completed execution.

• tstarti : Start time of node ai is defined as the time when
it starts execution. For all the nodes exceptEX(I) ,
tstarti = treadyi . EX(I) may not be able to start execu-
tion when it becomes ready if another instruction is us-
ing the corresponding functional unit, or some higher
priority instructions (earlier thanI in program order)
are also ready. In general,tstarti ≥ treadyi .

• tfinishi : Finish time of a nodei is defined as the time
when it completes execution. Pipeline stages other
than EX need only one cycle to execute. Therefore,
tfinishi = tstarti + 1. For EX stage, we add the min-
imum (maximum) latency of the functional unit to
tstarti when we compute itsearliest(latest) finish time.

• separated(i, j): If the executions of the two nodesi
andj cannot overlap, thenseparated(i, j) is assigned
to true; otherwise, they might overlap and it is assigned
to false.

• early contenders(EX(I) ): This is the set ofEX
nodes s.t.EX(J) ∈ early contenders(EX(I) ) iff
J appears beforeI in program order and there is



a dashed edge denoting resource contention from
EX(J) to EX(I) in the execution graph.

• late contenders(EX(I) ): This is the set ofEXnodes
s.t.EX(J) ∈ late contenders(EX(I) ) iff J appears
afterI in program order and there is a dashed edge de-
noting resource contention fromEX(J) to EX(I) in
the execution graph.

WCET computationFigure 5 presents the algorithm for
computing the WCET given an execution graph. The top
level framework presented in Figure 5 is similar to [28].
However, as mentioned in Section 4.2, computation of latest
times and earliest times (Figures 6 and 7) are different in our
case. The top level algorithm iteratively performs two oper-
ations: timing bounds computation and separations analy-
sis. The first operation is done byLatestTimesandEarliest-
Times, which compute the upper and lower timing bounds
of the nodes. The second operation is done byMaxSepa-
rations, which identifies pairs of nodes whose lifetimes are
separated. The tighter the bounds obtained, the more is the
number of pairs of nodes that can be identified as separated.
On the other hand, the more the number of separated pairs
identified, the tighter are the timing intervals computed in
subsequent iterations due to lesser number of competing
nodes.

Figure 6 computes the latest ready, start, and finish times
for each node of the execution graph. The latest start time
of node i, denoted aslatest[tstarti ], is computed accord-
ing to (a) its latest ready timelatest[treadyi ] (which is
obtained from the latest finish times of its predecessors),
and (b) its contenders. We first consider the delay ofi’s
start time by contenders later in program order, denoted
as late contenders(i). Obviously, a late contenderj can-
not start delayingi after i is ready becausei has higher
priority. Therefore late contenders who do not satisfy the
condition earliest[tstartj ] < latest[treadyi ] are excluded.
We also exclude the contenders who have been identi-
fied by MaxSeparationsto be separated fromi. The de-
lay from a late contenderj is bounded byj’s latest fin-
ish time latest[tfinishj ]. In addition, j cannot delayi by
more than its maximum latency; thus, we have another
bound latest[treadyi ] + MAX LATENCYi − 1 where
MAX LATENCYi = MAX LATENCYj is the max-
imum latency of the contended functional unit. The mini-
mum of the two bounds is taken. Note that the start time of
nodei can be delayed by at most one late contender.

Apart from the delay due to late contenders of nodei,
we also need to estimate the delay ini’s start time due to its
early contenders. Note that the early contenders appear be-
forei in program order. So in the worst case, all of them, ex-
cept those proved to be separated fromi by theMaxSepara-
tionsalgorithm, can contend withi and delay its start time.
This is captured in lines 7–10 of Figure 6. The latest fin-

ish time ofi is obtained by simply adding the maximum la-
tency of the functional unit tolatest[tstarti ] (line 11). This
is because an instruction cannot get preempted once it has
started execution on a functional unit. The immediate suc-
cessors ofi get their latest ready times updated ifi’s lat-
est finish time is higher than the current approximation of
their latest ready times (see lines 12–13 of Figure 6).

Similarly, Figure 7 computes the earliest ready, start, and
finish times of all nodes in the execution graph. The main
difference is that we allow a nodej to contend and thereby
delay the earliest start time of a nodei only if the contention
can be guaranteed.

Separation analysis identifies separated pairs
of nodes. Given a pair of nodesi and j, if
earliest[treadyi ] ≥ latest[tfinishj ], i can never be ready be-
fore j completes execution; therefore,i andj cannot over-
lap. The algorithmMaxSeparationsgiven by Yen and
Wolf [28], which is a modification of [20], can identify
more cases of separated nodes than the obvious ones sat-
isfying the above constraint. In our problem, given two
nodesi and j in the execution graph, we have simply set
separated(i, j) to true ifearliest[treadyi ] ≥ latest[tfinishj ]
or earliest[treadyj ] ≥ latest[tfinishi ]. This simplified def-
inition of separated nodes substantially increases the ef-
ficiency of our analysis. At the same time, experimental
results indicate that the resultant loss of precision is negli-
gible for our problem.

5. Estimating WCET of a complete program

In this section, we discuss how the WCET of a complete
program is computed based on our estimation technique for
basic blocks. First, extensions to the technique are made by
taking into account contexts before and after a basic block.
This is because our estimation technique developed in the
last section is based on assumption that the pipeline is clean
at the beginning of a basic block. Secondly, after WCETs of
basic blocks in the program are obtained, integer linear pro-
gramming (ILP) is used to formulate the WCET of the over-
all program as an objective function to be maximized under
constraints derived from the control flow graph. The pro-
gram’s WCET estimate is then provided by an ILP solver.

5.1. Modeling the impact of contexts

The execution context of a basic blockB is defined in
terms of instructions which are preceding or succeedingB.
Their effects onB are two fold: (1) pipeline stalls due to
data dependences (only instructions precedingB can stall
B in this regard); (2) pipeline stalls due to resource con-
tentions. A question here is: how many context instruc-
tions need to be considered? Assuming a2-entry instruction
buffer and a4-entry re-order buffer, at most5 instructions



1 separated[., .] = false; step = 0;
2 foreach nodei in G do
3 earliest[tstarti ] := 0; latest[tfinishi ] :=∞; latest[tstarti ] :=∞; earliest[tfinishi ] := MIN LATENCYi;

4 repeat
5 LatestTimes( G) ; EarliestTimes( G) ;
6 MaxSeparations( G) ;
7 step := step+ 1 ;

until separated[., .] is unchanged orstep > limit;

8 WCET = latest[tfinish
sink

]; /* sink is node in G representing commit of last instruction */

Figure 5: WCET estimation of execution graphG

1 latest[treadysrc ] := 0; /* src is the root node ofG */
2 foreachnodei in G in topologically sorted orderdo
3 latest[tstarti ] := latest[treadyi ];

4 Slate := late contenders(i)
⋂
{j | ¬separated(i, j)

∧
earliest[tstartj ] < latest[treadyi ]};

5 if Slate 6= φ then
6 latest[tstarti ] := min

(
maxj∈Slate

(
latest[tfinishj ]

)
, latest[treadyi ] +MAX LATENCYi − 1

)
;

7 Searly := early contenders(i)
⋂
{j | ¬separated(i, j)} ;

8 if Searly 6= φ then

9 tmp := min
(
maxj∈Searly

(
latest[tfinishj ]

)
, latest[tstarti ] +

∣∣Searly∣∣×MAX LATENCYi
)

;

10 latest[tstarti ] := max
(
tmp, latest[tstarti ]

)
;

11 latest[tfinishi ] := latest[tstarti ] +MAX LATENCYi ;
12 foreach immediate successork of i do
13 latest[tready

k
] = max(latest[tready

k
], latest[tfinishi ]);

Figure 6: LatestTimes(G)

remain in the pipeline whenB enters the pipeline. Similarly
due to the4-entry reorder buffer, at most3 instructions af-
terB can contend with instructions inB (we only consider
contentions and not dependences because data dependences
betweenB and instructions afterB cannot affect the execu-
tion time ofB). These instructions directly affect the execu-
tion time ofB, and are captured asB’s context. For ease of
discussion, we call context instructions before (after) a ba-
sic blockB prologue(epilogue) of B. Now an execution
graph consisting of three parts is constructed: the prologue,
the basic block (called thebody) and the epilogue.

We conservatively model the contention in theEX stage
faced by instructions in a basic blockB due to instructions
in the prologue and epilogue ofB. Thus, we assume that
(1) all contentions are true while estimating latest times,
and (2) there is no contention in earliest times estimation.
To model the effect of data dependencies between the pro-
logue ofB and the instructions inB, we need to estab-
lish an upper bound on the times at which the instructions
in prologue complete theirWBstage; these can be directly
obtained from upper bounds on their completion times for
the EX stage. Due to the size restriction of the re-order
buffer/instruction buffer and the structure of the execution
graph, we can bound the latest commit time (and hence the
latest time for completingEX) of the first instruction inB’s
prologue w.r.t. the fetch of the first instruction inB. The lat-
est commit time of the first instruction ofB’s prologue in
turn bounds the latest time for startingEXof the second in-

struction inB’s prologue and so on. Details are omitted for
space considerations.

After modeling the contentions/data dependencies of a
basic blockB with its prologue/epilogue, we run theEar-
liestTimesandLatestTimesalgorithm (see Section 4) onB.
These two algorithms iteratively tighten the bounds on the
nodes ofB, always using the contention/dependency infor-
mation about the prologue and the epilogue. This allows us
to safely estimatet′B : the time from the fetch of first instruc-
tion ofB to the commit of its last instruction.

Finally, we note that the execution time of two consecu-
tive basic blocksB1 andB is not equal to the sum of their
execution times in a pipelined processor due to overlapped
execution. It is obvious that the overlapped part should be
considered only once. Therefore the execution time of a ba-
sic block is redefined as the interval between the commit of
the last instruction preceding it to the commit of the last in-
struction of its own. The only exception is the first basic
block in the program, for which we use the old definition;
this is because that block’s execution time is not counted
as part of any other block’s execution time. To conserva-
tively estimatetB (the time from the commit of the last in-
struction ofB’s predecessor (sayB1) to the commit ofB’s
last instruction), we need to estimate the minimum over-
lap betweenB1’s andB’s execution. We omit the details
of the overlap calculation here. The minimum overlap be-
tweenB1 andB is deducted fromt′B (refer last paragraph)
to obtaintB , the execution time estimate ofB.



1 earliest[treadysrc ] := 0; /* src is the root node ofG */
2 foreachnodei in G in topologically sorted orderdo
3 earliest[tstarti ] := earliest[treadyi ];

4 Slate := late contenders(i)
⋂
{j | ¬separated(i, j)

∧
latest[tstartj ] < earliest[treadyi ] < earliest[tfinishj ]};

5 Searly := early contenders(i)
⋂
{j | ¬separated(i, j)

∧
latest[tstartj ] ≤ earliest[treadyi ] < earliest[tfinishj ]};

6 S := Slate
⋃
Searly ;

7 if S 6= φ then
8 earliest[tstarti ] := max

(
maxj∈S

(
earliest[tfinishj ]

)
, earliest[treadyi ]

)
;

9 earliest[tfinishi ] := earliest[tstarti ] +MIN LATENCYi ;
10 foreach immediate successork of i do
11 earliest[tready

k
] = max(earliest[tready

k
], earliest[tfinishi ]);

Figure 7: EarliestTimes(G)

5.2. Using ILP to model control flow

For each basic blockBi, we can estimateBi’s execu-
tion time with all possible contexts. The maximum of these
estimates is taken asBi’s WCET, denotedtBi . After the
WCETs of basic blocks are estimated, the WCET of the
overall program can be conveniently computed by using the
integer linear programming technique. The WCET is for-
mulated as an objective function to be maximized:

Tprog =
N∑
i=1

tBi ∗ ni

wheretBi is a constant (as mentioned in the preceding)
andni is an ILP variable denoting the execution counts of
basic blockBi. The objective function is maximized sub-
ject to a set of constraints formulated from the control flow
graph. These constraints correspond to the flow constraints,
that is, the execution count of any basic block is equal to (a)
the sum of its inflows, and (b) the sum of its outflows. In ad-
dition, the ILP solver is provided bounds on the maximum
number of iterations for loops and maximum depth of re-
cursive invocations for recursive procedures. These bounds
can be user provided, or can be computed offline for cer-
tain programs (see [8]).

6. Integrating other features

In this section, we discuss how to model and integrate
other microarchitectural features in our pipeline analysis
framework. We select two such features for discussion: in-
struction cache and branch prediction.

6.1. Instruction cache

Instruction cache is employed to bridge the gap be-
tween a fast processor and a slow memory system [10].
Our method of integrating instruction cache and pipeline
is a separated approach where instruction cache model-
ing is followed by pipeline modeling. First, we adopt the

method proposed by Ferdinand and Wilhelm [5] for instruc-
tion cache modeling. The instructions are categorized into
four classes:always hit, always miss, persistent(an instruc-
tion is persistent if it is guaranteed to stay in the instruction
cache once it is loaded) andnot classified. Next, we inte-
grate this categorization information into our pipeline anal-
ysis framework.

Without instruction cache modeling we assume that any
IF node in the execution graph needs only one cycle to
execute (perfect instruction cache). With instruction cache
modeling, let us assume that cache hit latency is one cy-
cle and cache miss latency is N cycles. Now, the execution
time of anIF node depends on the categorization of the cor-
responding instruction as follows.

• If an instruction I is classified asalways hit, then
IF(I) node needs one cycle to execute as before.

• If an instruction I is classified asalways miss, then
IF(I) node needs N cycles to execute.

• If an instruction I is classified aspersistent, then the
the latency of the correspondingIF(I) node is N cy-
cles for the first execution and one cycle for the subse-
quent executions.

• If an instruction I isnot classified, thenIF(I) node
needs either one cycle or N cycles to execute. We rep-
resent its latency by an interval [1, N].

This change in the latency ofIF nodes causes minimal
modifications to our WCET estimation algorithm. Note that
as theIF nodes execute in order, there is no contention
among them. Therefore, lines 4–10 in algorithmLatest-
Times(Figure 6) and lines 4–8 in algorithmEarliestTimes
(Figure 7) remain unchanged. The only change is that the
MIN LATENCY andMAX LATENCY used for ex-
ecution latency of a nodeIF(I) should be modified in line
11 and line 9 in Figures 6 and 7 respectively; this modifi-
cation should be done according to the categorization of in-
structionI as discussed above.



IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

IF(b) ID(b) EX(b) WB(b) CM(b)

(a) Original execution graph

IF(I2) ID(I2) EX(I2) WB(I2) CM(I2)

A

B

IF(I1) ID(I1) EX(I1) WB(I1) CM(I1)

IF(b) ID(b) EX(b) WB(b) CM(b)

(b) Modifications due to branch misprediction

IF(I2) ID(I2) EX(I2) WB(I2) CM(I2)

IF(I3) ID(I3) EX(I3) WB(I3)

A

C

B

Figure 8: Execution graph with branch prediction

6.2. Branch prediction

Branch prediction is widely employed in modern pro-
cessors to reduce pipeline stalls due to control hazards [10].
In this section, we discuss the integration of branch predic-
tion modeling with our pipeline analysis. We first catego-
rize each conditional branch asalways correctly predicted,
always mispredicted, or not classified. More refined catego-
rizations of branches are possible as discussed in [2].

Let us now consider the example given in Figure 8(a)
whereA is a basic block at the end of which a branch in-
structionb appears.B is the basic block that is executed ifb
is correctly predicted. For clarity, we have shown only two
instructions corresponding to A and one corresponding to B
in Figure 8. Obviously, ifb is categorized asalways cor-
rectly predicted, then our algorithm requires no changes.
However, if b is categorized asalways mispredicted, then
the instructions along the wrong path may affect the exe-
cution time. We make the following changes to capture its
effect. We note here that the branch instructionb can ap-
pear at the end of a basic block we are currently estimating
or it may appear in the prologue/epilogue. In all the cases,
the modifications to the corresponding portion of the execu-
tion graph remain the same. First, we insert the instructions
along the wrong path afterb, which are labeledC, in the ex-
ecution graph as shown in Figure 8(b) (again for clarity, we
have shown only one instruction ofC in the figure). Note
that the length ofC is bounded byR, the size of the reorder
buffer. However, as we do not know exactly when branchb
will be resolved, we conservatively includeR − 1 instruc-
tions along the wrong path inC (i.e., b might be resolved
as late as possible). The instructions inC cannot commit;
therefore commit nodes, and their successors are excluded
from the execution graph. The edges between nodes inA
and nodes inC are built as usual. However, there is no edge

Program Description
matsum Summation of two 100x100 matrices
fdct Fast Discrete Cosine Transform
fft 1024-point Fast Fourier Transformation
whet Whetstone benchmark
fir FIR filter with Gaussian function
ludcmp LU decomposition algorithm
minver Inversion of a floating point matrix

Table 1: The benchmark programs

betweenC andB because their lifetimes cannot overlap.
Edges betweenA andB are kept unchanged; they are not
affected by insertion ofC. Again, this is because we do not
know whenb will be resolved and so we conservatively as-
sume that it might be resolved as early as possible. Finally,
there is an extra edge connecting the write-back node ofb
with the fetch node of the first instruction inB to reflect
the fact that instructions in the correct path are fetched af-
ter the resolution of the mispredicted branch.

If b is categorized asnot classified, safe estimation of
WCET bound requires that both the correct and incorrect
prediction ofb are considered. This can be done by con-
structing the execution graph as in Figure 8(b) with a sim-
ple modification: all contention edges involving a node from
C are now defined asconditional edges. These conditional
edges are only considered for computing latest times and
are ignored for earliest times calculation of the nodes inA.
The extra edge fromb’s write-back node to the first node in
B is also defined as a conditional edge and is only consid-
ered for latest times calculation of nodes inB. The intuition
behind this approach is to take both possibilities of the pre-
diction of branchb into account so as to compute safe upper
and lower bounds.

7. Experimental evaluation

In this section, we evaluate the accuracy of our estima-
tion technique for seven benchmarks listed in Table 1. These
benchmarks have been widely used for WCET analysis. The
first four benchmarks have been used by Li et al. [15] for
WCET analysis and the other three benchmarks are from
the real-time research group at Seoul National University
[22]. Among themmatsum has no variable-latency instruc-
tions,fdct has a few, and the rest of the benchmarks have
many such instructions.In our experiments, we have inte-
grated instruction cache modeling with pipeline analysis;
however the modeling of branch prediction has not yet been
integrated into our estimation tool.

7.1. Methodology

We use the SimpleScalar architectural simulation
toolset [1] for our experiments. The SimpleScalar instruc-



tion set architecture (ISA) is a superset of MIPS ISA. We
use the compiler provided by SimpleScalar toolset to gener-
ate executables corresponding to the benchmark programs.
We wrote a prototype estimation tool that accepts the Sim-
pleScalar executable annotated with user-provided con-
straints such as loop bounds. It is parameterized with re-
spect to the cache configurations, the latencies of the
functional units as well as the number of entries in the
I-buffer and the ROB. The estimation tool first disas-
sembles the code, identifies the basic blocks, and con-
structs the the control flow graph of the program. It then
performs instruction cache analysis and feeds the cat-
egorization information to the pipeline analysis mod-
ule, which produces WCET for basic blocks. Finally, the
tool generates the ILP constraints and the objective func-
tion for the program’s WCET. The ILP problem is solved
by CPLEX [3], a commercial ILP solver to generate theEs-
timated WCET.

Our processor model has a 4-entry I-buffer and an 8-
entry ROB. It contains the following variable latency func-
tional unit types: (a) an integer multiplication unit with
1 ∼ 4 cycle latency, (b) a floating point add unit with
1 ∼ 2 cycle latency, and (c) a floating point multiplica-
tion unit with 1 ∼ 12 cycle latency. In addition, the pro-
cessor has an integer ALU unit and a load/store unit, each
with one cycle latency. Note that we assume single-cycle la-
tency for load/store unit because we have not modeled data
cache in our tool. We model a 4KB instruction cache with
4-way associativity, 32 byte line size and LRU replacement
policy. Cache hit latency is one cycle and cache miss la-
tency is 10 cycles. We also assume perfect branch predic-
tion as we have not yet integrated branch prediction mod-
eling in our tool. We run all the experiments on a1.3 GHz
Pentium IV machine with1 GB memory. The estimation
tool takes less than1 second for every benchmark. This in-
cludes the time taken by CPLEX solver, which is up to0.1
second.

The detection of actual WCET for comparison purposes
is quite difficult for out-of-order pipelines. We note that
even for a program whose execution path isindependent
of data inputs has many possible execution times due to
variable latency instructions. Since a program usually has
a large set of possible data inputs, an exhaustive simulation
is infeasible to detect the actual WCET. Instead, we use sev-
eral data inputs that are likely to produce longer execution
times for simulation. We call the maximum execution time
produced through simulation asObserved WCETand it is a
lower bound on the actual WCET.

7.2. Results

Table 2 presents the observed WCET (columnObs.
WCET) and the estimated WCET (columnEst. WCET), as

Program Obs. WCET Est. WCET Ratio
matsum 100867 111163 1.10
fdct 10658 12240 1.15
fft 1083416 1270386 1.17
whet 909531 1029380 1.13
fir 44120 59426 1.35
ludcmp 11948 16283 1.36
minver 8235 11053 1.34

Table 2: Accuracy of estimation

well as the ratio of the estimated WCET to the observed
WCET. The estimated WCET is not far from the observed
WCET for most benchmarks specially considering the fact
that the difference between actual and observed WCET is
unknown. The inaccuracy in our estimation comes from
three sources. First, the bounds on execution counts of ba-
sic blocks in the estimation are often higher than the ac-
tual execution counts during simulation. Secondly, the al-
gorithm for estimating the WCET of a basic block and the
impact of execution context introduces some amount of pes-
simism. Finally, some instructions that may hit in or miss in
the cache are categorized asnot classified. Therefore their
execution times are considered as an interval from a single
cycle (hit) to the cache miss penalty (10 cycles in our exper-
iments). This gives rise to additional overestimation.

8. Discussion

Timing anomaly in out-of-order processors complicates
WCET analysis by invalidating the assumption that local
worst cases always lead to global worst case. On the other
hand, an exhaustive enumeration of all possible local cases
is anticipated to be quite inefficient. In this paper, we have
modeled an out-of-order processor pipeline and combined
it with instruction cache modeling for WCET analysis. Our
approach avoids exhaustive enumeration of all cases. We
have implemented our technique and experimentally vali-
dated its estimation accuracy using several standard bench-
mark programs. In future, we plan to implement and inte-
grate the modeling of other microarchitectural features such
as branch prediction in our analysis tool.
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