
Static Analysis Driven Cache Performance Testing

Abhijeet Banerjee Sudipta Chattopadhyay Abhik Roychoudhury

National University of Singapore

{abhijeet,sudiptac,abhik}@comp.nus.edu.sg

Abstract—Real-time, embedded software are constrained by
several non-functional requirements, such as timing. With the
ever increasing performance gap between the processor and the
main memory, the performance of memory subsystems often pose
a significant bottleneck in achieving the desired performance for
a real-time, embedded software. Cache memory plays a key role
in reducing the performance gap between a processor and main
memory. Therefore, analyzing the cache behaviour of a program
is critical for validating the performance of an embedded soft-
ware. In this paper, we propose a novel approach to automatically
generate test inputs that expose the cache performance issues
to the developer. Each such test scenario points to the specific
parts of a program that exhibit anomalous cache behaviour along
with a set of test inputs that lead to such undesirable cache
behaviour. We build a framework that leverages the concepts of
both static cache analysis and dynamic test generation to system-
atically compute the cache-performance stressing test inputs. Our
framework computes a test-suite which does not contain any false
positives. This means that each element in the test-suite points to
a real cache performance issue. Moreover, our test generation
framework provides an assurance of the test coverage via a
well-formed coverage metric. We have implemented our entire
framework using Chronos worst case execution time (WCET)
analyzer and LLVM compiler infrastructure. Several experiments
suggest that our test generation framework quickly converges
towards generating cache-performance stressing test cases. We
also show the application of our generated test-suite in design
space exploration and cache performance optimization.

I. INTRODUCTION

Real-time, embedded software are required to satisfy several

extra-functional properties, such as timing. Therefore, per-

formance validation marks a crucial stage before certifying

such time-critical software. In the absence of appropriate

performance-validation techniques, the deployed software may

suffer from severe performance problems, such as missing

deadlines. For example, in the context of an anti lock brak-

ing systems (ABS), missing a deadline may lead to serious

accidents, causing human lives.

Due to the inherent gap between processor and memory

performances, memory subsystems may significantly affect

the performance of an embedded software. To reduce such

effect, a fast cache memory is often employed between a

processor and main memory. In a modern embedded processor,

cache memories are several magnitudes faster than the main

memory. Therefore, at any point in execution, the content of

the cache memory significantly impacts the performance of

the underlying embedded software. The content of a cache is

managed at runtime and such content depends on the accessed

memory block sequence. Since different inputs to the same

application may follow different execution paths, the sequence

Program
Static cache

analysis

Instrument

assertions

Dynamic assertion

checker

Test input witnessing

cache thrashing

Violation

Program locations

that may exhibit

cache thrashing

Fig. 1: Test generation framework

of accessed memory blocks in an execution critically depends

on the input provided to the application. As a consequence,

the performance of caches (and hence the performance of an

application) critically depends on the input provided to the

underlying embedded software.

In this paper, we propose a novel approach to automati-

cally generate test inputs that expose performance problems

due to memory subsystems. In particular, we generate test

inputs to automatically detect performance stressing memory

access sequences. Such poor memory access sequences are

undesirable, as they may lead to critical cache performance

issues, specifically cache thrashing at runtime. We propose a

test generation framework that aims to report cache thrashing

scenarios that exist in some program execution. Each element

in our report contains a unique cache thrashing scenario and

a symbolic formula capturing the set of inputs that expose the

issue in a program execution.

However, the generation of cache-performance stressing

test inputs requires solving several technical challenges. This

is primarily due to the fact that cache performance issues

cannot be detected solely by monitoring the program execution

(unlike most of the problems in functionality testing). To over-

come this problem, we employ novel strategies to instrument

the original program with a set of assertions at appropriate

locations. Such an instrumentation is entirely automatic. The

violation of any assertion captures a unique cache thrashing

scenario in the original program (and not in the program

instrumented with assertions). Thus, such assertion violations

can be reported to the developer for investigation. We first

carry out static cache analysis on the program to decide

the set of program points that may exhibit cache thrashing.

Subsequently, we systematically generate assertions at such

places to expose cache thrashing in the program itself. In a

broader view, therefore, we reduce the problem of testing cache

performance to an equivalent functionality testing problem.

The required functionality of the software is augmented with

the set of assertions introduced by us.

B0

B1 B2

B3

B4 B5

B6

B7

B8

B9

m1
(NC)

m
(PS)

m1
(NC)

m3
(NC)

m4
(NC)

m2
(NC)

m2
(NC)

m5
(PS)

m7
(PS)

m6
(PS)

y ≤ 10

x ≤ 3

x ≥ 1

x > 3

y > 10

x < 1

m3m1

m

m5

m6

Instrumented code

Instrumented code Instrumented code

Instrumented code

m2m4

m7

m1

m2

Memory blocks

outside loop

are not considered

f (C_m1,C_m2)
1

f (C_m1,C_m2)
2f (C_m3,C_m4)

2

f (C_m3,C_m4)
1

x ≤ 3 x > 3

x < 1 x ≥ 1

y ≤ 10

y > 10

assert (C_m3 ≤ 0 V C_m4 ≤ 0)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

assert (C_m1 ≤ 0 V C_m2 ≤ 0)

assert (C_m3 ≤ 0 V C_m4 ≤ 0)

B0

B1 B2

B3

B4 B5

B6

B7

B8

B9
Violation (cache thrashing between m1 and m2)

Increments C_m2

Increments C_m1

No assertion violation

Test input:

x = 3, y = 0

Symbolic input condition:

Test input:

Symbolic input condition:

x = 4, y = 0

f1(C m1 , C m2)

assert (C m1 ≤ 0 V C m2 ≤ 0)

f2(C m1 , C m2)

assert (C m1 ≤ 0 V C m2 ≤ 0)

f1(C m1 , C m2)

assert (C m1 ≤ 0 V C m2 ≤ 0)

f2(C m1 , C m2)

assert (C m1 ≤ 0 V C m2 ≤ 0)

f2(C m1 , C m2)

assert (C m1 ≤ 0 V C m2 ≤ 0)

f2(C m1 , C m2)

assert (C m1 ≤ 0 V C m2 ≤ 0)

f1(C m3 , C m4)

assert (C m3 ≤ 0 V C m4 ≤ 0)

f1(C m3 , C m4)

assert (C m3 ≤ 0 V C m4 ≤ 0)

x ≤ 3 ^ x ≥ 1 ^ y ≤ 10 x > 3 ^ x ≥ 1 ^ y ≤ 10

(a) (b) (c)

Fig. 2: Overview of test generation (a) program control flow graph with accessed memory blocks shown inside each basic block. The cache

hit-miss classifications (CHMC) are also shown along with each memory block. The branch conditions are shown beside the respective

control flow edges, (b) instrumented program with assertions to expose cache thrashing behaviour, (c) violation of assertion in an execution

trace captures the cache thrashing scenario involving memory blocks m1 and m2

To check the validity of different assertions, we build a dy-

namic path exploration strategy that directs the path searching

process towards the set of instrumented assertions. Each time

an assertion is encountered during execution, its validity is

checked on-the-fly. If an assertion is not satisfied during pro-

gram execution, a cache-performance issue is recorded along

with the respective input state (i.e. the set of inputs that leads to

the violation of the assertion, cf. Figure 1). Primary objective

of the path exploration strategy is to check maximum number

of unique assertions, in a given amount of time. Therefore, to

improve the search efficiency of path exploration, we direct

the search process towards a control flow that has maximum

number of unchecked assertions control dependent on it. Such

a directed search is accomplished by consulting the control

dependency graph of the instrumented program. Finally, since

we dynamically explore the set of assertions, our computed

test-suite does not contain any false positives. Precisely, any

test case included in the computed test-suite captures a cache

performance issue (specifically, a cache thrashing scenario) in

some feasible execution of the software.

Contributions: In summary, we propose a test-generation

framework that exposes the cache performance issues of

an embedded software to the developer. Such a framework

leverages the results obtained from an abstract interpretation

based cache analysis to determine the cache behaviour and

directs a dynamic test generation process to explore only the

relevant portions of a program (i.e. program subparts that

may exhibit cache performance issues). Due to the usage of

dynamic analysis in test generation process, one appealing

nature of our generated test suite is that it does not include

any spurious test cases (i.e. a test-case that does not capture

a cache performance issue in any feasible execution). We

have implemented the entire framework using Chronos [11],

an open source, freely available worst case execution time

(WCET) analyzer. and LLVM [2], an open source, freely

available compiler infrastructure. Specifically, the dynamic

test generation process is implemented on top of LLVM and

the static cache analysis is built on top of Chronos. Our

experience with several open source subject programs suggests

that we can quickly find several cache-performance stressing

test cases. Last but not the least, we show the application of

our test suite in (i) design space exploration and (ii) cache

performance optimization.

II. OVERVIEW

In this section, we shall give an outline of our test generation

process that stresses the cache performance of a program. We

shall walk through a simple example as shown in Figure 2. For

the sake of illustration, let us assume a direct-mapped cache

where memory blocks {m1,m2,m3,m4,m,m5,m6,m7} in

the control flow graph are mapped to different cache sets

{S1,S2,S3,S4,S5,S6} as follows: m1 7→ S1, m2 7→ S1,
m3 7→ S2, m4 7→ S2, m 7→ S3, m5 7→ S4, m6 7→ S5 and

m7 7→ S6. Therefore, m1 and m2, as well as m3 and m4
conflict in the cache.

Figure 3 presents an overview of our test generation frame-

work. Broadly, our approach contains two separate steps: (i)

static cache analysis and (ii) dynamic test generation to expose

different cache thrashing scenarios in the program. The static

cache analysis directs the dynamic test generation process

to explore only the relevant portions of a program. Such

relevant portions capture designated program points that are

more likely to expose cache thrashing behaviour.

Static cache analysis is performed via abstract interpretation

[18]. Memory blocks are categorized as AH (always cache hit),

AM (always cache miss) and PS (persistent or never evicted

2

Program

Instrumented

Program

CHMC
(Cache hit-miss

classification)

Test Suite
All assertions

violated

Timeout /

Cache analysis by

Abstract

Interpretation

Instrumentation

automatically adds

assertions to the program

Report

violated

assertions

Explore a

path

leading to

assertions

(symbolic

execution)

Fig. 3: Overview of our test generation framework

from the cache). If a memory block cannot be categorized

as AH, AM or PS, it is categorized as NC (not classified).

As an AH/PS categorized memory block can face only cold

cache misses, we conclude that AH/PS categorized memory

blocks can never be involved in a cache thrashing scenario.

Therefore, only AM or NC categorized memory blocks exhibit

potential sources of cache thrashing. If we employ abstract

interpretation based cache analysis in the example program of

Figure 2(a), we observe that memory blocks m, m5, m6 and

m7 are categorized as PS (note that m,m5 andm6 do not face

any cache conflict within the loop). On the contrary, memory

blocks m1, m2, m3 and m4 are categorized as NC (as m1
conflicts with m2 and m3 conflicts with m4 in the cache).

The key to our test generation approach is to create an

interface between static cache analysis and dynamic test

generation. Such an interface is developed via systematically

generating assertions. The set of assertions has an one-to-one

correspondence with the set of cache thrashing scenarios. The

violation of any assertion exposes a unique cache thrashing

scenario. Therefore, in a broader perspective, our perfor-

mance testing framework can be viewed as a reduction of

the cache performance problem to an equivalent functionality

testing problem. Figure 2(b) demonstrates the schematic of

the interface. The interface mainly consists of two parts: (i)

instrumented code to count cache conflicts, and (ii) set of

assertions to be checked. It is worthwhile to note that the

instrumented program (i.e. Figure 2(b)) may have a different

cache behaviour compared to the original program. This is due

to the presence of additional instrumented code in Figure 2(b).

However, the instrumented code (i.e. functions f1 and f2) as
well as the assertions (cf. Figure 2(b)) take input from memory

blocks in the original program (i.e.memory blocksm1,m2,m3
and m4 in Figure 2(a)). Therefore, violation of any assertion

captures a cache thrashing scenario in the original program

shown in Figure 2(a) (and not in the instrumented program

shown in Figure 2(b)).

Let us first consider the set of memory blocks {m1,m2}
in Figure 2(b). C m1 (C m2) captures the amount of cache

conflicts generated to memory block m1 (m2). Specifically,
for least recently used (LRU) cache replacement policy,

C m1 (C m2) captures the number of unique cache con-

flicts (i.e. number of unique memory blocks mapping to the

same cache set) between two consecutive accesses of memory

block m1 (m2). Therefore, if C m1 > 0 (recall that we

assumed a direct-mapped cache) before accessing memory

block m1, accessing m1 will result in a cache miss. The

instrumented code essentially manipulates the set of variables

{C m1, C m2, C m3, C m4} through some additional code

fragments. At this point, without going into the details of

instrumentation, we represent the instrumentation as functions

to show the specific variables they manipulate. As shown in

Figure 2(b), a function f1(C m1, C m2) only manipulates

C m1 and C m2 (and neither C m3 nor C m4). In general,

a cache miss does not necessarily capture a cache thrashing

scenario. For the set of memory blocks {m1,m2}, we infor-

mally say that a cache thrashing happens when both m1 and

m2 are evicted from the cache at least once. Therefore, the

cache thrashing scenario involving memory blocks m1 and

m2 is captured by the following formula:

Φ12 ≡ C m1 > 0 ∧C m2 > 0

The placed assertion checks the formula ¬Φ12 ≡ C m1 ≤
0 ∨ C m2 ≤ 0 during dynamic test generation process. As a

result, any violation of the assertion (formula ¬Φ12) captures

a cache thrashing scenario in a real execution. The cache

thrashing scenario involving memory blocks {m3,m4} can

be captured in a similar fashion using the formula Φ34 ≡
C m3 > 0 ∧ C m4 > 0. Therefore, the violation of ¬Φ34

during the dynamic test generation process will capture a real

cache thrashing scenario involving memory blocksm3 & m4.
Let us now investigate our dynamic test generation process.

The primary goal of the dynamic test generation module

is to stress the execution towards the set of instrumented

assertions. The idea of our dynamic test generation has been

inspired by recent advances in satisfiability modulo theory

(SMT) and constraint-based test generation [12]. Our test

generation module first executes the instrumented program

with a random input, records the set of violated assertions

(i.e. the set of real cache thrashing scenarios) and collects

the constraints along the executed path. We assume x and

y are inputs to the program. Figure 2(c) captures the ex-

ecution trace for an input x = 3, y = 0. Due to the

increment of both C m1 and C m2 (by the instrumented

code f1(C m1, C m2) and f2(C m1, C m2), respectively),
the assertion assert(C m1 ≤ 0 ∨C m2 ≤ 0) is violated (as

shown in Figure 2(c). Such an assertion violation captures the

cache thrashing scenario involving memory blocks m1 and

m2. To drive the execution towards other assertions, we first

collect the constraints along the current execution trace. For an

input x = 3, y = 0, such constraints can be expressed by the

formula x ≤ 3 ∧ x ≥ 1 ∧ y ≤ 10. To execute a different path,

one of the branch conditions (i.e. x ≤ 3, x ≥ 1 or y ≤ 10)
must be negated [12]. Our test generation employs strategies

to systematically negate the branches, so that the execution

may lead to maximum number of unchecked assertions.

To check maximum number of assertions, we consult the

control dependency graph (CDG) of a program. CDG captures

the set of control conditions that are necessary to execute a

certain statement. Figure 4 shows the CDG of Figure 2(b). The

3

ENTRY

B9

B8

B1(A1)

B7B7B6

B0 B3

A1 : assert (C_m1 ≤ 0 V C_m2 ≤ 0)

A2 : assert (C_m3 ≤ 0 V C_m4 ≤ 0)

UA : Unchecked Assertions

B2(A2) B4(A2) B5(A1)

UA = 2
B0

UA = 2
B3

UA = 4
B6

UA = 0
B7

Fig. 4: Control Dependence Graph, for Figure 2(a)

two assertion from the 2(b) as shown as literals A1 and A2 in

the CDG. The value against each control dependency nodes

denotes the maximum number of unchecked assertion (UA)
reachable from that node. In the example shown in Figure

2(b) three control conditions x ≤ 3, x ≥ 1 and y ≤ 10
correspond to blocks B0, B3 and B7 respectively. As can

be observed from Figure 4, negating the control condition at

B7 (i.e. y ≤ 10) will not lead to any unchecked assertions.

Therefore, we must negate the control conditions at B0 (i.e.

x ≤ 3) or B3 (i.e. x ≥ 1). In general, our method employs

a greedy strategy to pick a control condition, which can lead

to maximum number of unchecked assertions. Assume that

branch x ≤ 3 is chosen for negation and we obtain a test input

x = 4, y = 0 for the symbolic condition x > 3. Executing the

program for x = 4, y = 0 never violates any assertions. Note

that the formula x > 3 ∧ x < 1 must be satisfied to execute

both f1(C m3, C m4) and f2(C m3, C m4). However, the
formula x > 3 ∧ x < 1 is clearly unsatisfiable. Therefore,

x > 3 ∧ x < 1 captures an infeasible path in Figure 2(a)

and f1(C m3, C m4) and f2(C m3, C m4) cannot appear

in any execution trace together. As a result, the assertion

assert(C m3 ≤ 0 ∨ C m4 ≤ 0) is always validated.

In the end, for the example shown in Figure 2, our frame-

work finds exactly one cache thrashing scenario (that involves

memory blocks m1 and m2) and a test input capturing the

same thrashing scenario (i.e. x = 3 for a symbolic formula

x ≤ 3 ∧ x ≥ 1). Our framework guarantees to cover all

the assertions at the end of the test generation method. Note

that such a process is in general undecidable [12] due to the

inherent limitations imposed by constraint solvers. Therefore,

the test generation process may go on forever. However, our

test generation has the anytime property, meaning that the

test generation process can be terminated anytime if the time

budget is violated. After such a premature termination, the

computed test-suite exposes a subset of thrashing scenarios

that exist in the program. In fact, due to our directed search via

CDG, our experimental results suggest that we can find most

thrashing scenarios very early in the test generation process.

System and application model: In this work, we shall

assume the traditional configuration of WCET analysis. There-

fore, we consider only uninterrupted executions of a program

and the computed thrashing scenarios appear solely due to the

intra-task variant of cache conflicts. However, given a set of

preemption points, our technique can be extended to capture

thrashing scenarios that may appear only in the presence of

preemptions. Such an extension will need to instrument the

preempting tasks to compute the inter-task cache conflicts

and it will require to shift the execution across tasks during

test generation. Moreover, for the sake of simplicity, our

framework is shown for separated instruction and data caches.

To consider unified caches, the computation of cache conflicts

can be combined during instrumentation (i.e. the computation

of variables {C m1, . . . , C m4} in Figure 2).

III. TEST GENERATION METHODOLOGIES

In this section, we shall describe our test generation method-

ologies in detail. Broadly, our test generation methodology

contains two substeps: (i) systematically generating assertions

to expose cache thrashing behaviour and (ii) a dynamic test

generation to check the validity of the generated assertions.

We shall elaborate these two steps in the following sections.

For the sake of simplicity, we shall describe the core method-

ologies for instruction caches and we shall mention the minor

changes required in the instrumentation to handle data caches.

A. Generating assertions

1) Code Instrumentation: Figure 5 shows the instrumented

code for our example program in Figure 2. We assume

that memory blocks m1 and m2 conflict in a direct-mapped

cache. Therefore, after the static cache analysis, both m1
and m2 are categorized as unclassified (NC). Informally, the

instrumented code manipulates the cache conflict faced by a

particular memory block. Such an instrumentation depends

on the underlying cache replacement policy. For the sake

of illustration, we shall use least recently used (LRU) cache

replacement policy. However, such an instrumentation can

easily be changed for other cache replacement policies (e.g.

FIFO) in a similar fashion as in our previous work [9].

C_m1 = 0

�ag_m2 = 0

m3

m

m5

m6

m1

Y

Y

Instrumented code Instrumented code

Assertion

Assertion

Original code

cold_m1 == 0

cold_m1 = 1

C_m2++

YN

Y

N

N

N

�ag_m1 == 0

�ag_m1 = 1

cold_m2 == 0

cold_m2 = 1

�ag_m2 == 0

�ag_m2 = 1

C_m1++

C_m2 = 0

�ag_m1 = 0m4 m2

assert (C m1 ≤ 0 V C m2 ≤ 0)

x > 3

x ≤ 3

x ≥ 1

x < 1

assert (C m1 ≤ 0 V C m2 ≤ 0)

Fig. 5: Instrumented code with assertions

The heart of the instrumentation shown in Figure 5 lies

in manipulating the two variables C m1 and C m2. For

LRU cache replacement policy and a particular memory block

4

m, C m captures the number of unique cache conflicts

between two consecutive accesses of memory block m 1.

While counting such cache conflicts, we do not count the

conflicts generated merely due to cold misses. Let us consider

the instrumented code before memory block m1 (as shown

in Figure 5). Since memory block m1 creates conflicts to

only memory block m2, such cache conflicts are captured

by the increment of variable C m2. Variable flag m1 is

used to count only unique cache conflicts (i.e. the number of

unique memory blocks conflicting with memory block m1).
Besides, variable cold m1 is used to discard the cold cache

miss for accessing memory block m1. The instrumented code

introduced for memory block m2 is entirely symmetric to the

one introduced for block m1.
2) Formulation of assertions: The crucial step of the instru-

mentation is to systematically inserting assertions to expose

cache thrashing. Cache thrashing behaviour only happens

inside program loops. Therefore, for rest of the discussion,

we shall only consider memory blocks inside program loops.

Moreover, without loss of generality, we shall consider mem-

ory blocks mapped to a single cache set. For set-associative

caches, the process is identically applied for each cache set.

The formulation of an assertion depends on the definition of

cache thrashing. Therefore, we first formally define the notion

of cache thrashing used in this paper.

Definition 3.1: Consider a K-way set associative cache. A

set of memory blocksM := {M1,M2, . . . ,MK+1} is said to

have cache thrashing if and only if, for all i ∈ [1,K + 1],
access to Mi suffers at least one non-cold miss and all the

cache conflicts for this non-cold miss are generated by the set

of memory blocksM\ {Mi}.
In the preceding definition of cache thrashing, the number of

non-cold misses (say X) is a tunable parameter. In our work,

we assume X = 1. However, in the following, we show that

our technique can be generalized for different values of X .
The instrumented code in Figure 5 takes the accessed

memory blocks in the original program (i.e. the set of memory

blocks {m1,m2,m3,m4} in Figure 2(a)) as input. Therefore,

it is worthwhile to note that the instrumented code manipulates

cache conflicts in the original program (i.e. Figure 2(a)) and

not the instrumented program shown in Figure 5. Since the

validity of inserted assertions are based on this instrumented

code, any violation of an assertion essentially captures a cache

thrashing scenario in the original program (i.e. the program

shown in Figure 2(a)).

To describe the generation of assertions, we shall begin

with a few notations and definitions. Let us assume Ml =
{M1,M2, . . . ,MN} is the set of memory blocks accessed

inside some program loop. We define a thrashing set as

a subset of Ml that may be potentially involved in cache

thrashing. Formally, a thrashing set T Sl is defined as follows

T S l = {m | m ∈ Ml ∧ CHMC (m) 6= PS

∧CHMC (m) 6= AH } (1)

1For FIFO cache replacement policy, C m captures the number of unique
cache conflicts faced by m since it is last reloaded into the cache [9]

In Equation 1, CHMC captures the cache hit-miss classifi-

cation obtained via static cache analysis [18]. Note that AH

(all-hit) and PS (persistent) categorized memory blocks can

never be evicted from the cache (due to the inherent guarantee

provided by static analysis). Therefore, we do not include such

memory blocks as the potential cause of cache thrashing.

From a thrashing set, we define a number of thrashing

scenarios. Informally, a cache thrashing scenario contains

just enough memory blocks from a thrashing set to create a

potential cache thrashing. If we assume that the associativity

of the cache is K, the minimum number of memory blocks

to create a cache thrashing is K + 1. Therefore, a thrashing

scenario for a thrashing set T S l is defined as any K + 1
combination of the thrashing set T Sl. The set of all cache

thrashing scenarios Ωl can be defined as follows.

Ωl = { S ⊆ T S l | |S| = K + 1} (2)

Note that a thrashing set T S l has a total of
(

|T Sl|
K+1

)

different

cache thrashing scenarios.

Finally, we generate exactly one assertion for each cache

thrashing scenario. Let us assume one such cache thrashing

scenario Θ ∈ Ωl and its respective assertion AΘ. Informally,

the assertion AΘ captures the property that thrashing scenario

Θ never happens in any program execution. As a result, any

violation of the assertion AΘ during dynamic test generation

captures a realization of the thrashing scenario Θ. Formally,

thrashing scenario Θ is captured by the following property.

ΦΘ ≡
∧

m∈Θ

(Cm > K) (3)

In Equation 3, Cm captures the amount of unique cache con-

flicts faced by two consecutive accesses of memory block m.

Since the assertion checks the negation of thrashing scenario,

it can be formalized as follows.

AΘ ≡ assert(¬ΦΘ) (4)

The assertion AΘ is placed before each memory block in-

volved in the thrashing set Θ. For example, in Fig. 5, the

set {m1,m2} captures a thrashing scenario and the assertion

assert(C m1 ≤ 0∨C m2 ≤ 0) was placed before accessing

memory blocks m1 and m2.
The purpose of the preceding assertion (Eq. 4) is to validate

that at least one of the memory block from the thrashing set is

never evicted from the cache. Therefore, if all of the memory

blocks in a thrashing set are evicted at least once, an assertion

violation will be triggered and a cache performance issue

will be reported. The assertion AΘ is checked dynamically

before accessing each memory block involved in the thrashing

scenario Θ.

It is worthwhile to mention that our formalization to cap-

ture cache thrashing (i.e. Definition 3.1 and Equation 3) is

independent of cache replacement policy. Therefore, such

a formalization can be applied to a wide variety of cache

architectures. The effect of different cache architectures (e.g.

caches with different replacement policies) will be reflected

via the variable C m (cf. Section III-A1). Finally, we can also

5

generalize the notion of reporting a cache thrashing scenario

at runtime. Specifically, a cache thrashing scenario can be

reported for X number of violations of an assertion (and

thereby X number of evictions for each memory block in the

respective thrashing set) instead of only one violation. Such a

generalization also corresponds to the reconfiguration of the

number of non-cold misses, as described in Definition 3.1.

3) Handling data caches: For data caches, the memory

block classification is obtained using the scope-aware per-

sistent (SCP) analysis [13]. SCP analysis can be used to

classify data memory blocks as persistent or non-persistent.

Unlike the instruction cache analysis, determining the set of

data memory blocks accessed at a program point, can be

challenging. Existing address analysis techniques such as the

one used in [13] can be used to obtain the set of memory

blocks, which may be accessed at a given program point. Once

the SCP analysis has been performed on the set of memory

blocks generated by address analysis, the assertions can be

generated as described in preceding paragraphs.

for (i=0; i<10; i++)

{

 sum += Array_X[i]

 + Array_Y[i];

 //Array_X points to m1, m2

 //Array_Y points to m3, m4

 //m1, m3 are accessed for 0 <= i < 5

 //m2, m4 are accessed for 5 <= i < 10

}

for (i=0; i<10; i++)

{

 if(i >= 0 && i < 5)

 assert(C_m1 ≤ 0 V C_m3 ≤ 0)

 if(i >= 5 && i < 10)

 assert(C_m2 ≤ 0 V C_m4 ≤ 0)

 sum += Array_X[i]

 + Array_Y[i];

}

(a) Original Code (b) Instrumented Code

Fig. 6: Instrumentation scenarios for data caches

The basic structure for instrumentation is similar to what

was described for instruction caches. However, unlike an

instruction access, a data access may correspond to multiple

memory blocks. For example, in Figure 6, access to Array X

might result in fetching of memory block m1 or m2, depend-
ing upon the loop iteration. Likewise, access to Array Y might

result in fetching of memory block m3 or m4.

Assume that the address analysis has reported that the

memory blocks m1 and m3 are accessed for loop iterations

i ∈ [0..4] and memory blocks m2 and m4 are accessed for

loop iterations i ∈ [5..9]. Also assume that the only sets of

memory blocks which conflict in the cache are {m1,m3}
and {m2,m4}. Under these assumptions, memory block m1
and m3 can participate in a thrashing scenario, only during

loop iterations [0..4]. Therefore, the instrumented code for

m1 and m3 needs to be proceeded by conditional checks

on the iteration number (i >= 0 && i < 5). Conditional
checks for memory block m2 and m4 can be placed in a

similar fashion. Figure 6(b) shows the instrumented code for

the example program shown in Figure 6(a).

B. Dynamic test generation

Dynamic test generation tries to find violations of the

instrumented assertions (cf. Section III-A). Our dynamic test

generation process is inspired by recent advances in constraint

solving and concolic testing [12]. As an output of the dynamic

test generation process, we obtain a pair 〈Θi,Ψi〉 for each

cache thrashing scenario Θi. In the output pair, Ψi captures a

symbolic formula on the input variables, such that any input

satisfying the formula leads to the cache thrashing scenario

Θi. In our example (cf. Figure 2), one such output would be

〈{m1,m2}, x ≤ 3∧x ≥ 1〉. This implies that any input value

of x ∈ [1,3], would lead to a thrashing scenario, involving

memory blocks m1 and m2.

Algorithm 1: The primary goal of Algorithm 1 is to check

the validity of instrumented assertions (cf. Section III-A). It

takes the instrumented programPA and the set of instrumented

assertionsA as inputs and generates a set of test cases T . Each
element in T realizes a unique cache thrashing scenario. To

begin with, Algorithm 1 executes the instrumented program

PA with a random input I and collects the execution trace X.

The exploration of different assertions is performed by sys-

tematically manipulating the path condition of this execution

trace. Formally, path condition is defined as follows.

Definition 3.2: For a particular execution trace X, path

condition is a quantifier free first order logic formula that

captures exactly the set of inputs which drives the program

execution through the execution trace X.

For example, in Figure 2(c), the symbolic formula x ≤ 3 ∧
x ≥ 1 ∧ y ≤ 10 captures the path condition for the execution

trace on input values x = 3 and y = 0.

The variable unchecked represents the set of unexplored

partial path conditions in the instrumented program PA. Each

partial path condition ϕi is associated with a metric Fϕi
.

This metric measures the maximum number of non-violated

assertions reachable from ϕi. We employ a greedy strategy

based on the value of Fϕi
to continue exploration. More

precisely, we generate a test input τθ from an unexplored,

partial path condition ϕi that has the maximum value for Fϕi
.

Subsequently, we invoke the procedure ExecuteAndReport

with input τθ .

Procedure ExecuteAndReport executes the instrumented

program PA for an input τ to obtain the execution trace

X. For a particular execution, assume that ϕ ≡ ψ1 ∧ ψ2 ∧
. . .∧ ψk−1 ∧ψk captures the path condition for the execution

trace X. Further assume that {Aθ1 ,Aθ2 , . . . ,Aθr} is the set

of violated assertions and π is the shortest path-prefix in

the X which captures at least one violation of each asser-

tion in the set {Aθ1 ,Aθ2 , . . . ,Aθr}. Therefore, an assertion,

if violated beyond path-prefix π, must belong to the set

{Aθ1 ,Aθ2 , . . . ,Aθr}. If ϕ is the respective path condition,

say ϕ̂ be the prefix of the path condition corresponding to

path-prefix π. Note that ϕ � ϕ̂, however, ϕ̂ is a compact yet

lossless formula to manifest the set of thrashing scenarios (i.e.

the set of thrashing scenarios exposed by violations of the

set of assertions {Aθ1 ,Aθ2 , . . . ,Aθr}). Therefore, for each

6

Algorithm 1 Dynamic exploration of instrumented assertions

1: Input:

2: PA: instrumented program with assertions

3: A: set of instrumented assertions

4: Output:

5: T : a set of test cases, each of which realizes a unique

cache thrashing scenario

6: AllPathConditions = unchecked = T = empty

7: /*build the control dependency graph (CDG) of PA */
8: CDGPA

← BuildCDG(PA)

9: select a random input I
10: ExecuteAndReport(PA,A, I,CDGPA

)

11: while unchecked 6= empty ∧ A 6= NULL do

12: /*pick a partial path with maximum number
13: of reachable and non-violated assertions */

14: select 〈ϕ,Fϕ〉 ∈ unchecked with maximum Fϕ

15: unchecked := unchecked \ {〈ϕ,Fϕ〉}
16: let ϕ← ψ1 ∧ ψ2 ∧ . . . ∧ ψr−1 ∧ ψr

17: /* execute an unexplored path */
18: if ϕ is satisfiable then

19: τϕ ← some concrete inputs satisfying ϕ
20: ExecuteAndReport(PA, A, τϕ,CDGPA

)

21: end if

22: end while

23: procedure EXECUTEANDREPORT(PA,A,τ ,CDGPA
)

24: execute PA on input τ
25: let X be the execution trace on input τ
26: let ϕ ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψk be the path condition

27: let {Aθ1 ,Aθ2 , . . . ,Aθr} be the set of violated

28: assertions, on input τ
29: A = A \ {Aθ1 ,Aθ2 , . . . ,Aθr}
30: let π be the shortest path-prefix along the execution

31: trace X that captures at least one violation of each

32: assertion in the set {Aθ1 ,Aθ2 , . . . ,Aθr}
33: let ϕ̂ captures the partial path condition corresponding

34: to the path-prefix π
35: /* augment the test suite with witnesses for cache

36: thrashing scenarios */

37: T
⋃

= {〈θ1, ϕ̂〉, 〈θ2, ϕ̂〉, . . . , 〈θr, ϕ̂〉}
38: /*build all partial path conditions */

39: for i← 1, k do

40: let ϕi ← ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi

41: if ϕi /∈ AllPathConditions then

42: AllPathConditions
⋃

= ϕi

43: let bend be the control dependency edge in

44: CDGPA
w.r.t. the branch condition ¬ψi

45: /* compute the number of non-violated

46: assertions (∈ A) reachable from bend */

47: Fϕi
:= GuidanceFunction(bend)

48: if Fϕi
6= 0 then

49: unchecked
⋃

= {〈ϕi,Fϕi
〉}

50: end if

51: end if

52: end for

53: end procedure

thrashing scenario θi, we construct a test pair 〈ϕ̂, θi〉 and

add such test pairs to the existing test suite T . To avoid any

redundant computation, we manipulate ϕ̂ on-the-fly during the

execution.

To continue exploration, we must deviate from the present

path. Such a deviation is performed by negating a branch

conditions along the execution trace X. Assume that we pick

a partial path condition ϕi ≡ ψ1 ∧ψ2 ∧ . . .∧ψi−1 ∧¬ψi. Let

us also assume that bend is the control dependency edge in the

CDG (of the instrumented program) that captures the negated

branch condition ¬ψi. We rank each partial path condition

ϕi with a metric Fϕi
and add it to the set of unchecked

partial path conditions. Fϕi
captures the maximum number of

assertions in A that are reachable, if the program is executed

with a test input satisfying ϕi.

GuidanceFunction captures the computation of Fϕi
. For-

mally, Fϕi
is defined as follows.

Fϕi
= |{Aθ ∈ A | bend Aθ}| (5)

Where bend Aθ captures that the assertion Aθ is reachable

from the control dependency edge bend (i.e. the control de-

pendency edge corresponding to the negated branch condition

ψi). Therefore, Fϕi
accounts for all the assertions in A that are

reachable from bend. It is worthwhile to note that the definition

of Fϕi
(in Equation 5) can be changed very easily depending

on the criticality of different assertions. In Equation 5, we

have only considered the reachability of assertions, giving each

assertion equal priority. However, the definition Fϕi
can be

easily changed to incorporate other priorities (e.g. assertions in

an innermost loop can be given higher priorities than assertions

in an outermost loop).

Termination: Algorithm 1 terminates as soon as we ob-

tain a witness (i.e. test case) for each cache thrashing scenario

(captured by the conditionA 6= NULL in the outermost loop of

Algorithm 1). However, some thrashing scenarios might not be

manifested due to the presence of infeasible paths in a program

(e.g. the assertion assert(C m3 ≤ 0∨C m4 ≤ 0) in Figure

2(c)). In such cases, the test generation process may go on

forever in the presence of unbounded (e.g. input-dependent)

loop iterations and due to the inherent incompleteness of

any constraint solver. However, one appealing nature of our

test generation process is that it can be terminated anytime.

The resulting test-suite might be incomplete, but it can still

be used for investigating cache performance issues in the

program. Our experiments suggest that we can find most of

the cache performance stressing test inputs in very early phase

of Algorithm 1. This is primarily due to the directed search

strategy along the control dependency chain (via the CDG) to

reach the set of instrumented assertions.

C. Salient features of generated test suites

Our generated suite has several important properties. In the

following description, we shall formally capture the properties

of the generated test suite.

Property 3.1: At any point in time during the execution of

Algorithm 1, for any cache thrashing scenario Θi, if no path

7

witnessing Θi has been explored - no test case containing

Θi appears in the test-suite T computed so far. Otherwise, the

entry 〈Θi,Ψi〉 appears in the test-suite T where Ψi captures

the set of all inputs which witness Θi, and whose paths have

been explored already by Algorithm 1.

Property 3.2: If Algorithm 1 terminates, we can guarantee

to find all feasible cache thrashing scenarios in any unin-

terrupted execution, that is, all cache thrashing scenarios

witnessed by at least one program input. Each such feasible

cache thrashing scenario will appear as an entry 〈Θi,Ψi〉 in
the generated test suite T reported at the end of Algorithm

1. Any solution for the formula Ψi is a test input witnessing

cache thrashing scenario Θi.

IV. EVALUATION

A. Experimental Set-up

Figure 7 shows an outline of our implementation framework.

To generate cache hit-miss classifications (CHMC), we use

the abstract interpretation (AI) based cache analyses (using

[18] for instruction caches and using [13] for data caches)

implemented in Chronos [11]. Outcomes of AI-based cache

analyses are used by the instrumentation engine to compute

thrashing sets and to insert assertions at appropriate program

points (as explained in Section III-A). This instrumented

program is passed to the dynamic test generation process.

Dynamic test generation process is implemented on top of

LLVM compiler infrastructure [2]. The instrumented program

is compiled into LLVM bitcode format and its control flow

graph (CFG) is extracted from the LLVM bitcode. We also

implement a module inside LLVM to compute the control

dependency graph (CDG) of a given program. This CDG is

used to guide our test generation, as explained in Algorithm

1. To generate path conditions for different execution traces,

we use KLEE symbolic execution engine [1]. To solve and

manipulate path conditions along an execution trace, we use

the STP constraint solver [3].

We have performed all the experiments on a machine having

an Intel Core-i5 processor, with 4 GB RAM and running

Ubuntu 9.04 OS.

Test

Program

Instrumented

Test Program

Phase I Phase II

Thrashing

Scenarios

CHRONOS

INSTRUMENTATION

ENGINE

LLVM

STP

P’

KLEE

P

Fig. 7: Key phases in the framework

Subject Programs: Table I shows the subject programs,

used in our experiments. Nsichneu[4] is an automatically

generated code, which simulates an extended Petri Net. It

was taken from the Mälardalen WCET benchmarks suite.

It has a code size much larger than other programs used

in our experiments. Also it contains a large amount of if-

statements. Papabench[16] is an Unmanned Aerial Vehicle

(UAV) control application. In our experiments, we used the

auto-navigation utility from papabench. The auto-navigation

utility contains a lot of input dependent paths, therefore it

can potentially show different thrashing scenarios for different

symbolic input formulas. Jetbench[17] is a real-time, Jet

engine performance calculator. It uses Jet engine parameters

and thermodynamic equations from the NASA’s EngineSim

program to perform real-time thermodynamic calculations. We

use a single-threaded version of Jetbench for our experiments.

S. No Test Program Lines of Code

1 Nsichneu 4253
2 Papabench 1097
3 Jetbench 770

TABLE I: Subject Programs

B. Experimental Results

In following paragraphs, we shall describe some of the

experiments which were performed to measure the efficacy

of our framework. Also we shall discuss the applications of

our framework for answering some of the issues related to

design space exploration and performance optimization.

Efficacy of our framework, in exposing cache per-

formance issues: We performed experiments with the three

real-time programs listed in Table I. The results of which

are discussed subsequently. But first we shall describe a few

metrics which are used to present the experimental results.

Assertion Coverage : Our framework aims to find all thrash-

ing scenarios due to intra-task cache conflicts. However, our

test generation framework may not terminate (in general, this

problem is undecidable [12]). Therefore, we define a metric

named Assertion coverage which measures the percentage of

unique assertion checked, within a given amount of time.

Assertion Coverage =
unique assertion checked

unique assertion instrumented
× 100

A 100% assertion coverage implies that all unique assertions

have been checked at least once.

Thrashing Potential : It is not necessary that all the checked

assertion will be violated. However, the number of unique

assertions violated, tells us about the potential for cache

thrashing, for a program, on a given cache-configuration.

Therefore, we define Thrashing Potential as follows

Thrashing Potential =
unique assertion violated

unique assertion instrumented
× 100

Through our experiments we investigated the assertion cov-

erage and the thrashing potential for all the program listed in

Table I, for various cache-configurations. Some of the results

from our experiments are shown in Figure 8. The plots in

Figure 8 show the assertion coverage (and thrashing potential)

on the y-axis and the exploration time on the x-axis. Since our

framework looks for all possible thrashing scenarios due to

intra-task cache conflicts, it is possible that the test generation

will not terminate (refer to section III-B). Therefore, we tested

8

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

 Assertion Coverage (Cache 8KB)
 Thrashing Potential (Cache 8KB)

 Assertion Coverage (Cache 16KB)
 Thrashing Potential (Cache 16KB)

P
e

rc
e

n
ta

g
e

Time (seconds)

(a) nsichneu (Instruction Cache)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

 Assertion Coverage (Cache 2KB)
 Thrashing Potential (Cache 2KB)
 Assertion Coverage (Cache 4KB)
 Thrashing Potential (Cache 4KB)

P
e

rc
e

n
ta

g
e

Time (seconds)

(b) papabench (Instruction Cache)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

 Assertion Coverage (Cache 2KB)
 Thrashing Potential (Cache 2KB)
 Assertion Coverage (Cache 4KB)
 Thrashing Potential (Cache 4KB)

P
e

rc
e

n
ta

g
e

Time (seconds)

(c) jetbench (Instruction Cache)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

 Assertion Coverage (Cache 512B)
 Thrashing Potential (Cache 512B)
 Assertion Coverage (Cache 1KB)
 Thrashing Potential (Cache 1KB)

P
e

rc
e

n
ta

g
e

Time (seconds)

(d) nsichneu (Data Cache)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

 Assertion Coverage (Cache 512B)
 Thrashing Potential (Cache 512B)
 Assertion Coverage (Cache 1KB)
 Thrashing Potential (Cache 1KB)

P
e

rc
e

n
ta

g
e

Time (seconds)

(e) papabench (Data Cache)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

 Assertion Coverage (Cache 512B)
 Thrashing Potential (Cache 512B)
 Assertion Coverage (Cache 1KB)
 Thrashing Potential (Cache 1KB)

P
e

rc
e

n
ta

g
e

Time (seconds)

(f) jetbench (Data Cache)

Fig. 8: Assertion Coverage and Thrashing Potential for different cache configurations

the subject programs, with an exploration budget of 5 minutes.

We performed the experiments for instruction caches as well

as data caches. Overall, we observed an assertion coverage

ranging from 53% to 100% for different experimental set-

ups (within a exploration budget of 5 minutes). Essentially,

programs which had lesser number of input dependent paths

(such as nsichneu) were explored much faster than program

which had more number of input dependent paths (such as

papabench). We also observed that for most of the experiments

with instruction caches, only a small fraction of instrumented

assertion were actually violated.

The figures presented in the first row (Fig. 8 (a), (b) and

(c)) show the results, for instruction caches. On one hand, our

chosen cache sizes are sufficient to avoid capacity misses. On

the other hand, cache sizes are also small enough to generate

conflict misses. Since nsichneu has a large code within a loop,

we choose a relatively bigger cache for nsichneu, compared

to the other two subject programs. Figure 8(a) shows the

percentage coverage for nsichneu, on a 2-way, set-associative,

LRU, instruction cache. The results reported here are for cache

configuration of 8 KB and 16 KB. For both the configuration,

the framework achieved a 100% assertion coverage, in less

than 5 minutes. The thrashing potential for nsichneu, was

observed to be less than 31% for both the experiments. Note

that since the framework achieved a 100% assertion coverage

for nsichneu, therefore the recorded thrashing potential is

accurate. We performed experiments with papabench and

Jetbench on a 2 KB and 4 KB for 2-way, set-associative,

LRU cache. Neither of these experiments, resulted in a 100%

assertion coverage, within the exploration budget of 5 min-

utes. However, this doesn’t imply that the greedy exploration

strategy is inefficient. This observation is supported by the

fact that most of the explored assertions in Figure 8 were

discovered early in the exploration. Additionally, some of the

instrumented assertions may be present along infeasible paths

(such as x = 0∧ x = 1), therefore they might not be checked

throughout the exploration.

Figure 8 (d), (e) and (f) show the analysis results for data

caches. For all the experimental results reported in this para-

graph we used a direct-mapped, data caches of size of 1KB and

512B. We used small caches for this set of experiments, so as

to create sufficient number of thrashing scenarios. For nsichneu

and Jetbench we observed an assertion coverage of almost

100%. In fact, for nsichneu only one cache thrashing scenario

was reported for both the cache configurations, which was

covered (and violated) during exploration. Also, for Jetbench

(see Figure 8(f)) most of the checked assertions were violated

during exploration. However, for papabench (see Figure 8(e)),

we observed an assertion coverage of 80% and a thrashing

potential of less than 40%, for both the cache-configurations.

Applications of our framework for design space explo-

ration: The process of embedded system design can be quite

challenging due to sheer size of the design space that needs

to be explored. While choosing a design for an embedded

application, the designer has to consider various constraints

such as timing and energy consumption. For instance, while

choosing a cache-configuration, a designer can choose from

a large, highly-associative cache or smaller, less-associative

cache. A large, highly-associative cache might have lesser

number of cache-thrashing scenarios however it will consume

more power and possibly slower than the smaller cache. There-

fore, determining the ideal cache size for a given application

9

might be tricky. Our framework can provide a suitable way to

choose the appropriate cache configuration for an application.

 0

 100

 200

 300

 400

 500

2KB 1-W
ay

2KB 2-W
ay

4KB 2-W
ay

8KB 2-W
ay

8KB 4-W
ay

#
 T

h
ra

si
n

g
 S

ce
n

a
ri

o
s

U
n

co
v
e
re

d

Fig. 9: Number of cache thrashing scenarios discovered for

papabench, for various cache configurations

Essentially, our framework can be used to compare the

number of thrashing scenarios for different cache configura-

tions, for a given application. For example Figure 9 shows the

number of thrashing scenarios discovered for different cache

configurations, for papabench. It is worthwhile to note that our

framework pinpoints the real thrashing scenarios, witnessed

by a feasible execution. Existing techniques, which are purely

based on static analysis (e.g. [18], [13]) may include false

thrashing scenarios that never appear in any execution (cf.

Figure 8). As a result, we can choose a more appropriate

cache configuration using our framework, compared to the

techniques based purely on static analysis.

In Figure 9, it might be interesting to know that a 2KB, 1-

way (direct-mapped) cache has lesser number of cache thrash-

ing scenarios then a 2KB, 2-way set-associative cache. Also,

the experiments suggest that the number of cache thrashing

scenarios for a 8KB, 2-way set-associative cache and a 8KB,

4-way set-associative cache are the same. So for this program,

a 8KB, 2-way set-associative cache will be sufficient, to avoid

cache-thrashing.

Applications of our framework for performance opti-

mization: In this section, we shall discuss the application of

our framework for input sensitive optimization, specifically

for cache locking. The main intuition is explained via Figure

10(a). Assume a direct-mapped cache and memory blocksm1,
m2, m3 and m4 all map to the same cache set. Clearly, this

would result in a cache-thrashing scenario (for thrashing sets

{m1,m2} and {m3,m4}) and our test generation framework

computes the following test cases: 〈{m1,m2}, z ≤ 5〉 and
〈{m3,m4}, z > 5〉. In a way, therefore, our dynamic test

generation framework can also be viewed as partitioning the

input domain, where all inputs constituting a partition realizes

the same set of cache thrashing scenarios. In our example,

there are two such partitions - ∆1 and ∆2 (cf. Fig.10(b)).

Assume that we want to selectively lock memory blocks

so that such memory blocks are never evicted from the cache.

Traditional cache locking techniques, such as [15] can be used

for such purposes. The work in [15] requires a memory trace

(sequence of memory blocks) to determine the set of memory

blocks that should be locked in the cache. However, a program

might have different memory traces for different sets of inputs.

If we use a memory trace generated for an input I1 ∈ ∆1,

// input z
_Lock(m1)
while(iteration < 100){

 if(z ≤ 5) {

 // access m1

 // access m2

 } else {

 // access m3

 // access m4

}

// input z
if (z ≤ 5) _Lock (m1)
else _Lock (m3)

while(iteration < 100){

 if(z ≤ 5) {

 // access m1

 // access m2

 } else {

 // access m3

 // access m4

}

z > 5z ≤ 5

Partition ∆

Partition ∆

I
3

2

1

I
1

I
2

 (a) (b) (c)

}
}

Fig. 10: Illustration of conditional cache locking (a) Program

with unconditional cache locking (lock instructions are pre-

ceded by #) (b) Input partitions (c) Conditional cache locking

either m1 or m2 will be locked in the cache (as shown in Fig

10(a)). However, it can be observed that when the program is

executed for any input I2 ∈ ∆2, locking m1 or m2 (as shown

in 10(a)) will not improve the cache performance. This is due

to the fact that m3 and m4 will encounter cache thrashing.

Based on the discussion in the preceding paragraph, we

argue the potential of performance optimization (e.g. cache

locking) techniques that is sensitive to inputs. In particular,

for cache locking optimization in Figure 10, we could lock

m1 (or m2) for all inputs satisfying z ≤ 5 and lock m3
(or m4) for all inputs satisfying z > 5. Such a conditional

cache locking (as shown in Figure 10(c)), will improve the

program performance for both the input partitions ∆1 and ∆2

(cf. Figure 10(b)).

To validate our argument, we have studied the feasibility of

conditional cache locking technique on the subject program

nsichneu. For baseline cache locking optimization, we use

[15], that locks a set of memory blocks from a given memory

trace. We conduct several experiments for two arbitrary inputs

I1 and I2; where I1 is used to generate a memory trace based

on which we decide which memory blocks to lock in the

cache, using the technique of [15], and I2 is used to run

nsichneu after the cache locking optimization is performed

for the memory trace on input I1. We have made the following

crucial observations.

• If I1 and I2 belong to the same input partition pro-

duced by our framework, the performance improvement

from cache locking observed in nsichneu is significantly

greater than the situation where I1 and I2 belong to

different input partitions. These results seem to motivate

the use of conditional locking instructions.

• For the situation where I1 and I2 belong to the same

partition, we also observed the performance improvement

from locking varies across input partitions. On average,

we observed a variation from ∼ 10% to 20% in perfor-

mance improvement across different input partitions in

nsichneu. Note that inputs from different partitions have

different memory traces and so, they lead to different set

of locked memory blocks using [15].

The preceding observations motivate the need for condi-

tional cache locking, which can be studied at length in the

future. Specifically, our observations conclude that memory

10

blocks should be locked differently across different input

partitions computed by our framework.

V. RELATED WORK

Over the past two decades, a significant research effort has

been put forward for the performance validation of embedded

software. Such efforts include abstract interpretation (AI)

based method, such as [18], which was proposed to analyze

the cache behaviour of a program. Our previous work [9]

improves the precision of such AI-based cache analyses via

a gradual and controlled use of model checking. These works

[18], [9] analyze the cache behaviour of a program irrespective

of its inputs. On the contrary, our primary goal is to build

a connection between the set of inputs and anomalous cache

behaviours (e.g. cache thrashing). Our test generation method-

ology is inspired by the recent advances in constraint solving

and concolic testing [12], [7]. These works aim to detect

software functionality bugs. In contrast, we aim to detect

software performance problems due to memory subsystems.

Different techniques used for program profiling [5], [14]

also aim to find performance problems in a program. Such pro-

filing techniques work on full or compressed execution traces

to derive useful information about program performance. It is

assumed that the relevant inputs for obtaining an execution

trace are known a priori. Our approach is complementary to

these profiling techniques, as our aim is to systematically find

test inputs that lead to poor cache performance. Once such test

inputs are found, they can be fed back to a traditional profiler

for further analysis.

Recent advances in profiling [19], [10] have extended the

traditional profiling technique to compute a performance trend

of a program. Such a performance trend is captured by an

approximate cost function. The cost function relates program

inputs with the overall cost of the program. However, such

cost functions are approximations and they do not necessarily

capture the actual cost. Besides, these works do not introduce

any notion of test coverage. On the contrary, any cache

thrashing scenario reported by our framework is indeed a cache

thrashing scenario, witnessed by a concrete input. Besides,

our framework also reports the coverage of cache thrashing

scenarios via the set of dynamically checked assertions.

The work proposed in [6] automatically finds test inputs

for the worst-case computational complexity. Our work differs

from [6] on several aspects: first, our notion of performance

is based on the execution time rather than computational

complexity. Secondly, the primary goal of our work is to

compute test inputs for all possible anomalous cache behaviour

in a single program.

A recent work [8] uses constraint-based test generation [12],

[7] to partition the input domain of a program with respect to

cache performance. Once all the partitions are computed, some

manual interventions are required to locate the set of program

locations that may exhibit issues related to cache performance.

Besides, the work proposed in [8] computes a cache perfor-

mance range for each partition. The cache performance range

in [8] is computed via static invariant generation methods.

As a result, the computed cache-performance range might be

over-approximated, leading to false positives. Our approach,

on the contrary, directly relates a cache thrashing scenario with

the set of inputs (without any manual intervention). Moreover,

since we generate test inputs based on dynamic analysis, our

generated test-suite does not contain any false positives.

VI. CONCLUSION

In this paper, we have proposed a test generation framework

that stresses the cache performance of a program. The key

novelty in our work is a systematic combination of static cache

analysis and dynamic test generation via a set of instrumented

assertions. Violation of any such assertion exposes a unique

cache performance issue, specifically, a cache thrashing sce-

nario in the program. As an output, our framework reports

a test-suite where each test case in the test-suite points to a

unique cache thrashing scenario along with a set of program

inputs that leads to the same. Due to the use of dynamic

test generation, our generated test-suite does not contain any

spurious test cases. We have shown the application of our test

generation framework in design space exploration and in cache

performance optimization via cache locking.

ACKNOWLEDGEMENT

This work was partially supported by A*STAR Public Sec-

tor Funding Project Number 1121202007 - “Scalable Timing

Analysis Methods for Embedded Software”.

REFERENCES

[1] KLEE symbolic virtual machine. http://klee.llvm.org/.
[2] LLVM compiler infrastructure. http://llvm.org/.
[3] STP constraint solver. https://sites.google.com/site/stpfastprover/.
[4] WCET benchmarks. http://www.mrtc.mdh.se/projects/wcet/benchmarks.

html.
[5] T. Ball and J. R. Larus. Efficient path profiling. In MICRO, 1996.
[6] J. Burnim, S. Juvekar, and K. Sen. WISE: Automated test generation

for worst-case complexity. In ICSE, 2009.
[7] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[8] S. Chattopadhyay, L. K. Chong, and A. Roychoudhury. Program
performance spectrum. In LCTES, 2013.

[9] S. Chattopadhyay and A. Roychoudhury. Scalable and precise refine-
ment of cache timing analysis via path-sensitive verification. Real-Time
Systems, 2013.

[10] E. Coppa, C. Demetrescu, and I. Finocchi. Input-sensitive profiling. In
PLDI, 2012.

[11] X. Li et al. Chronos: A timing analyzer for embedded software.
Science of Computer Programming, 2007. http://www.comp.nus.edu.
sg/∼rpembed/chronos.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated
random testing. In PLDI, 2005.

[13] B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-aware data cache
analysis for WCET estimation. In RTAS, 2011.

[14] J. R. Larus. Whole program paths. In PLDI, 1999.
[15] Y. Liang and T. Mitra. Instruction cache locking using temporal reuse

profile. DAC, 2010.
[16] F. Nemer, H. Cassé, and P. Sainrat. Papabench: a free real-time

benchmark. WCET Workshop, 2006.
[17] M. Qadri, D. Matichard, and K. M. Maier. JetBench: an open source

real-time multiprocessor benchmark. ARCS, 2010.
[18] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET

prediction by separated cache and path analyses. Real-Time Systems,
18(2/3), 2000.

[19] D. Zaparanuks and M. Hauswirth. Algorithmic profiling. In PLDI, 2012.

11

