
Integrated Timing Analysis of Application and

Operating Systems Code

Lee Kee Chong Clément Ballabriga Van-Thuan Pham Sudipta Chattopadhyay Abhik Roychoudhury

National University of Singapore

{cleekee,clementb,thuanpv,sudiptac,abhik}@comp.nus.edu.sg

Abstract—Real-time embedded software often runs on a su-
pervisory operating system software layer on top of a modern
processor. Thus, to give timing guarantees on the execution time
and response time of such applications, one needs to consider
the timing effects of the operating system, such as system
calls and interrupts — over and above modeling the timing
effects of micro-architectural features such as pipeline and cache.
Previous works on Worst-case Execution Time (WCET) analysis
have focused on micro-architectural modeling while ignoring the
operating system’s timing effects. As a result, WCET analyzers
only estimate the maximum un-interrupted execution time of a
program. In this work, we present a framework for RTOS aware
WCET analysis - where the timing effects of system calls and
interrupts can be accounted for. The key observation behind our
analysis is to capture the timing effects of system calls and/or
interrupts, as well as their effect on the micro-architectural states,
compositionally via a damage function. This damage function is
then composed in a controlled fashion to result in a RTOS-aware,
micro-architecture-aware timing analysis of an application. We
show the use of our analysis to compute the worst-case response
time for a real-life robot controller software which runs several
tasks such as balancing and/or navigation on top of a real-time
operating system running on a modern processor.

I. INTRODUCTION

Real-time and embedded software contains several com-

ponents that need to function in the presence of timing

constraints imposed by the environment. The violation of such

time constraints may have serious consequences, particularly

for hard real-time systems. However, providing the necessary

timing guarantees are increasingly difficult due to the complex

implementation of such hard real-time embedded systems -

they involve pieces of application software mediated by an

operating system (which acts as the supervisory software), all

running on top of a modern processor. Thus, providing timing

guarantees involves timing analysis of application software in

presence of the operating system (taking into account system

calls and interrupts), and the underlying processor (taking into

account features like pipeline and cache). In this paper, we

provide a general solution to this problem, and demonstrate

an instantiation of the solution for a real-life robot controller.

We envision an application scenario that contains an au-

tonomous robot and the robot functions in a hazardous en-

vironment, such as an area with radiation leak. The robot

controller runs several tasks, including balancing a robot (such

that the robot does not fall on ground) and navigation to guide

a robot away from obstacles. In the case where time-critical

tasks such as balancing and navigation — do not respond

Fig. 1: Bally2 [1], a real life experimental self balancing robot

in which its controller is the base for our robotic controller

within an appropriate time, the robot will clearly malfunction

(such as falling on the ground) or worse still, the robot may

get damaged in a collision with a heavy obstacle.

The robot needs to navigate itself from a specified starting

point to a specified ending point, while avoiding all obstacles

coming on the way. Such a robot is supported on the ground

with two wheels and the robot must maintain balance while

navigating through rough terrain. The embedded controller in

the robot performs several calculations based on input from

different sensors and moves the wheels to keep the robot

upright and to avoid obstacles. To realize our application

scenario, we adapted some real life open source robotic ap-

plications written for EyeBot [4] (a microcontroller hardware

designed for robotic applications) to our chosen hardware

architecture and operating system.

Figure 1 shows a real life experimental robot in which its

controller forms the base for the robotic controller evaluated

in our work. Table I gives an outline of the time-critical tasks

in our application. Table I shows that it is absolutely important

to know the timing behavior of different tasks before such a

robot is deployed. For example, the task balance must finish

computation (or respond) within 1
50 seconds, once it receives

inputs from sensors. Therefore, our primary goal is to provide

a guarantee on such response time, meaning that our provided

response-time guarantee must be met in any scenario of the

operating robot. Such a guarantee on task response time can

be provided via worst case response time (WCRT) analysis.

Task Real-time constraints

balance Must consistently run at 50Hz to
continuously adjust an upright position.

navigation Must consistently run at 20Hz to
safely avoid obstacles.

remote Should finish processing within 100ms
to react quickly to remote command.

TABLE I: Real-time constraints of robot controller tasks

Computing the WCRT of an embedded robot controller

leads to several technical challenges. First and foremost, accu-

rate computation of WCRT requires the knowledge of worst

case execution time (WCET) of individual controller tasks.

WCET of a task captures an upper bound on the uninterrupted

execution time of the respective task. Since timing is extremely

sensitive to the underlying execution platform, WCET of a task

also depends heavily on the underlying platform. Therefore,

WCET computation usually involves a micro-architectural

modeling stage that analyzes the timing behavior of the

underlying micro-architecture. Our application runs on a real

hardware board, which is equipped with an ARM926EJ-S

processor core. Therefore, to compute WCETs of different

tasks, we develop analysis methodologies by modeling the

micro-architecture of ARM926EJ-S processor.

Besides, any robot controller task might receive an external

interrupt, which will eventually delay the response time of

the controller. The delay induced by an interrupt is not

solely limited to the execution time of the respective interrupt

service routine (ISR). This is due to the fact that the micro-

architectural states (e.g. content of a cache) get modified

after executing an ISR. Such micro-architectural state changes

may introduce additional delay in task response time. As an

example, if the interrupt service routine evicts some cache

blocks used by a controller task, the response time of the

controller task will be delayed due to additional cache misses.

We develop novel analysis methodologies which account for

such delay during WCRT computation, by considering the

micro-architecture used in our processor board.

However, we face the most significant challenge due to

the presence of a real-time operating system (RTOS) in our

application scenario. The RTOS provides several system-level

supports to the robot controller, such as scheduling multiple

tasks, kernel-mode operation via system calls and interrupt

handlers. Most of the existing works in WCET analysis

assume the absence of an operating system [11]. Therefore,

the computed WCET completely bypasses the timing effects

created due to interactions with an RTOS. A different stream

of works [7], [10] aim to compute the WCETs of RTOS-level

routines (e.g. system calls, interrupt handlers) in isolation (i.e.

without considering the timing effects of RTOS-level routines

on the application).

If an application uses RTOS-level routines, such interac-

tion with the kernel may significantly change the micro-

architectural state, such as modifying the content of caches.

If WCET analysis of an RTOS is performed in isolation (e.g.

using techniques proposed in [7], [10]), the application-level

WCET analysis will be unaware of the micro-architectural

state when the kernel returns control to the user mode. For a

sound WCET estimation, the application-level analysis has to

consider all possible micro-architectural states after a kernel-

mode operation finishes. This leads to a gross overestimation.

In a similar fashion, while performing the WCET analysis

of an RTOS-level routine in isolation (e.g. analyzing the

WCET of a system call using [7]), we have to consider

all possible micro-architectural states at the entry of the

RTOS-level routine. Due to this two-fold overestimation in

the underlying WCET analysis, we believe that an integrated

WCET analysis of RTOS and application code is crucial.

Such an integrated analysis should consider the application

context while invoking a kernel-mode operation and it should

also accurately model the effect of kernel-mode operations

on application code. Providing an integrated WCET analysis

framework which accounts the timing effects of both RTOS

and application code is the key contribution of our work.

Accounting the timing interaction between an application

and an RTOS is not straightforward. Any naive strategy, such

as the enumeration of all possible timing interactions will

quickly lead to an exponential number of micro-architectural

states, making the entire analysis infeasible in practice. To

maintain scalability of our analysis, we propose to use a com-

positional analysis framework. Such a compositional analysis

computes a comprehensive summary for each RTOS routine

called by the robot controller. The primary goal of such

summary is to capture the change in micro-architectural states,

that might happen due to the invocation of the respective

RTOS routine. For a particular execution platform, the timing

behavior summary of RTOS routines can be computed only

once and the computed summaries can be reused for analyzing

different applications. While analyzing our robot controller,

the computed summaries are used at call sites of RTOS

routines. We systematically combine the micro-architectural

state before the call site of RTOS routine and the summary of

the RTOS routine to obtain the micro-architectural state after

the call site. Finally, we show that our compositional analysis

framework is generic in nature. Specifically, our compositional

analysis framework can be applied in the following three

scenarios: (i) accounting for the effect of interrupts on system

call execution; (ii) accounting for the effect of interrupts on

application execution; and (iii) accounting for the combined

effect of system calls and interrupts on application execution.

As a result, we propose a generic, yet scalable analysis

framework which comprehensively models the RTOS-level

timing effects on application execution.

Contributions: In summary, we propose a generic WCRT

analysis framework to analyze the timing behaviour of a real-

life application scenario (an embedded robot controller) in the

presence of a realistic execution platform that exhibits complex

timing interactions involving an application, an RTOS and a

real hardware. We note that conventionally application level

WCET analysis methods have ignored the timing effects of

the RTOS - these works estimate the maximum uninterrupted

execution time of software. In this perspective, our work can

be seen as a step towards making WCET analysis methods

2

applicable to real-life situations since most modern embedded

devices (including smart-phones) employ an operating system

as supervisory software.

We have implemented our entire WCRT analysis frame-

work using Chronos [12], an open source, freely available

WCET analysis tool. Our robot controller uses µC/OS-II [2],

a real-time operating system (RTOS), freely available for non-

commercial usage. Our analysis models ARM926EJ-S proces-

sor architecture and we take measurements on real hardware

board. We have performed an extensive set of experiments to

share our experience in analyzing the time-critical components

of a real-life robot controller. By considering the timing effects

of the operating system on application in a compositional

manner, we are able to obtain a safe and reasonable bound

on the WCRT of our robot controller.

II. EXECUTION PLATFORM

A. Target processor

In our analysis, we choose an APF28-Dev board which

is designed by Armadeus systems. The board is equipped

with a Freescale iMX286 processor. This processor has an

ARM926EJ-S core running at 454MHz with 32KB data cache

and 16KB instruction cache at level 1. Both instruction and

data caches are 4-way set-associative, with a cache line size of

eight words. The processor supports two replacement policies

for caches which are random and first-in-first-out (FIFO). In

our analysis, we configure the hardware to use FIFO replace-

ment policy. The processor also has a memory management

unit (MMU). The MMU has a normal 2-way set-associative

TLB and a fully-associative lockdown TLB. In our analysis,

we lock all pages used for our application into the lockdown

TLB to ensure that no page fault will occur, as our analysis

tool is not modelling TLB.

ARM926EJ-S processor has a five-stage pipeline with in-

order issue, execution and completion. It supports speculative,

non-cacheable instruction fetches to increase performance.

However, in our experiments, speculative prefetch is disabled

in order to make measurements more deterministic. The pro-

cessor also implements static branch prediction which predicts

all branch instruction as not taken. If the branch is taken,

the penalty for the wrong prediction is 2 cycles. In our

static analysis we bound memory latency to 70 cycles, as we

observed a latency of between 60-70 cycles during read or

write to on board physical memory.

The processor has an interrupt controller that can manage

up to a total of 128 interrupt sources. All of these interrupt

sources can be configured to work as normal or fast interrupt

request. The interrupt controller supports nested interrupts and

we can enable (disable) nested interrupts by clearing (setting)

a single bit in interrupt control register. In our analysis and

measurements, nested interrupts are disabled.

B. µC/OS-II kernel

Our robot controller application runs on top of an open

source operating system called µC/OS-II. µC/OS-II is a rela-

tively small real-time kernel with 9,771 lines of C code and

it supports 79 system calls [10]. The kernel implements fully

preemptive scheduling policy based on fixed priority scheme.

µC/OS-II supports a maximum of 250 application tasks and

each task is assigned a unique priority. To support communica-

tion between tasks, the kernel implements semaphores, event

flags, message mailboxes and message queues.

The kernel has been ported to different architectures such

as 80x86, ARM, AVR. In our work, we port the kernel to

the Freescale iMX286 processor in the APF28-Dev board. We

use the official ARM port (version 2.86) provided by Micrium

and we add codes for specific board support package (BSP)

such as interrupt management, co-processor configuration and

input/output (I/O) functions.

We choose an RTOS over a general purpose operating

system for our analysis, as RTOS has several features that

meet requirements of real-time applications. RTOS is designed

to be consistent and deterministic regarding the scheduling of

tasks. RTOS allows priority-based execution of tasks and it

guarantees that a higher priority task will always be executed

ahead of a lower priority task except for a few well defined

scenarios (e.g. blocking due to shared resources). Moreover,

RTOS typically has low latency for interrupt handling and task

context switches. Therefore, an RTOS can respond to changes

in its executing environment (interactions between tasks and

handling external events) swiftly. As such, performing our

analysis on RTOS like µC/OS-II allows us to bound the timing

behaviour of real-time applications with less overestimation

and also requires less complexity in our analysis methods.

III. OVERVIEW AND GENERAL BACKGROUND

Why do we need an integrated analysis?: In this Section,

we shall argue the potential of an integrated analysis frame-

work. Let us consider the schematic shown in Figure 2(a).

Figure 2(a) shows a simple application code fragment that

invokes a system call. Specifically, the application executes for

ta1 time units before invoking the system call. mc1 captures

the micro-architectural state just before the system call was

invoked. After the system call returns control to the user

mode, the application finishes its execution without invoking

any other kernel-mode operation. Let us first consider the

scenario where WCET analysis of an RTOS was performed

in isolation (i.e. similar to [7], [10]). If the analysis of

RTOS was performed in isolation, we were unaware of the

micro-architectural state before the invocation of a kernel-

mode operation (i.e. mc1 in Figure 2(a)). As a result, the

analysis of a kernel-mode operation (e.g. system calls) has to

conservatively assume all possible micro-architectural states

using which the same operation could be invoked. Due to this

gross overestimation of possible micro-architectural states at

the entry of a kernel-mode operation, the set of possible micro-

architectural states at the exit of a kernel-mode operation is

usually overestimated. Figure 2(a) shows one such example,

where we get three possible micro-architectural states (i.e.

mc2 , mc3 and mc4). Note that the execution time highly

depends on the micro-architectural context. Therefore, we

assume that the application takes an additional time of tb1 , tb2

3

mc1

Application

System call

Application

ta1

ts1

mc2 mc3 mc4
WCET

architectural
context

micro

ts1

tb1

tb2

tb3

WCET = ta1+ts1+tb3

tb3

ts1

ta1

tb1

mc2

WCET

WCET = ta1+ts1+tb1

ts1

mc1

Infeasible
contexts

w.r.t. intial
context mc1

mc3 mc4

ta1

ts1

ta1

tb1

Real−time kernel

(ARM926EJ−S)

Hardware
ARM926EJ−S pipeline

interrupt handlerssystem calls

WCET analysis

Summary

(fixed priority preemptive scheduling)

WCRT analysis

CRPD analysis

Tasks in the robot

controller

FIFO cache

(µC/OS-II)

(a) (b) (c)

Fig. 2: (a) An example shows the overestimation when the RTOS-level analysis is performed in isolation, (b) our integrated

analysis framework eliminates such overestimation by performing a context-sensitive analysis, (c) the overall structure of our

OS-aware timing analysis framework

or tb3 (tb1 < tb2 < tb3), if the kernel returns control with

micro-architectural states mc2 , mc3 or mc4 ; respectively.

Since we are computing the WCET of the application, we

can observe that mc3 leads to the worst-case finish time of the

application. Therefore, using the analysis of RTOS in isolation,

WCET of the application can be estimated as ta1 + ts1 + tb3 ,

where ts1 captures the WCET of the system call.

It is worthwhile to note that in the preceding computation,

we completely ignore the calling context of the system call

at the application level (i.e. mc1 in Figure 2(a)). This leads

us to overestimate the possible exit states of the system call

(i.e. mc2 , mc3 and mc4). Our integrated analysis framework

takes into account this application context. Specifically, the

set of possible micro-architectural states exiting a system call

is computed via a micro-architectural summary of the system

call and the application calling context (i.e. mc1 in Figure

2(a)). On one hand, our analysis methodology maintains the

scalability of a compositional analysis by analyzing each

kernel-mode operation separately and computing a micro-

architectural summary for each kernel-mode operation. On the

other hand, our analysis also takes into account the application

context to accurately compute the effect of a kernel-mode

operation on the application code. Figure 2(b) summarizes our

analysis flow. It is possible that the micro-architectural state

mc1 may only lead to the micro-architectural state mc2 after

the system call. In such a case, the application will execute,

in the worst case, only for tb1 time units after the system

call. This leads to a more accurate WCET estimate using our

framework (i.e. ta1 + ts1 + tb1).

Analysis components: In the following, we shall briefly

outline our analysis framework. Figure 2(c) gives an overview

of the entire methodologies used in this paper. Our robot

controller contains a set of independent tasks. However, our

proposed methodology does not pose restrictions on task

dependencies and it can be extended by any WCRT anal-

ysis method that can handle task dependencies (e.g. in the

form of an application task graph). The application interacts

with the hardware via a real-time, multi-tasking kernel (as

shown in Figure 2(c)). Our test platform is equipped with

an ARM926EJ-S processor capable of supporting a full real-

time operating system (RTOS). We use µC/OS-II [2] real-time

kernel as the underlying RTOS. Our overall goal is to statically

bound the response time of an application running on our test

platform. As a result, our static analysis framework addresses

the key challenges that appear due to the presence of complex

timing interactions between an application, a real hardware

and an RTOS.

Background: WCET analysis of each task is composed

of three different phases: i) program flow analysis, ii) micro-

architectural modeling and iii) WCET calculation. Program

flow analysis derives useful information for WCET analysis,

such as infeasible program paths and loop bounds. Micro-

architectural modeling analyzes the timing behaviour of un-

derlying hardware components (e.g. caches, pipeline). As an

outcome of the micro-architectural modeling, we obtain the

WCET of each basic block in the program control flow graph

(CFG). Finally, a WCET calculation phase uses the outcome

of micro-architectural modeling (i.e. basic block level WCET)

and program flow analysis (i.e. infeasible paths, loop bounds)

to compute the WCET of the overall program. We primarily

use abstract interpretation (AI) for cache analysis and integer

linear programming (ILP) for WCET calculation. Infeasible

program paths and loop bounds are encoded as separate ILP

constraints into our framework. The solution of the formulated

ILP soundly over-approximates the WCET of each task.

WCET of a task captures an upper bound on the unin-

terrupted execution time. In the presence of multitasking,

however, task interferences affect the overall timing of the

application. Such task interferences could be generated due

to the preemption of a low priority task (by a high priority

task), servicing external interrupts and so on. Overall, there

are two major sources that affect the timing of individual tasks

in a multitasking environment. First, if a task T is preempted

by a high priority task or an interrupt service routine (ISR),

the timing of the high priority task or the ISR will directly

delay the finishing time of task T . Secondly, the interruption

(either by preemption or external interrupts) changes micro-

architectural contexts, such as modification of cache contents,

flushing pipeline and so on. Such micro-architectural changes

may lead to additional delay (e.g. due to additional cache

misses). Over the last few decades, WCET research commu-

nity have investigated the problem of bounding the number of

4

additional cache misses due to preemptions. Such additional

cache misses are widely known in literature as cache related

preemption delay (CRPD) [8]. Similarly, once a task resumes

after an interruption, additional delay need to be considered

during the analysis for flushing the pipeline. The schedulability

analysis uses results from WCET analysis, CRPD analysis and

any other micro-architectural delay due to an interruption (e.g.

flushing the pipeline) to derive an upper bound on the response

time of the overall application. Such an upper bound is known

as worst case response time (WCRT). We use a fixed-priority

preemptive scheduling policy to derive the overall WCRT of

an application.

IV. ANALYSIS METHODOLOGIES

In this section, we shall describe our analysis methodolo-

gies in detail. The critical part of our analysis method is

a compositional analysis framework as shown in Figure 3.

Each task, interrupt service routine (ISR) and system call is a

component for which we separately compute its WCET and the

summary of its changes to the underlying micro-architectural

states. The computed WCET and summary may in turn be

used in the analysis of other components. The benefit of

such a compositional analysis framework is two-fold. First,

the compositional analysis framework accounts for the timing

interaction of an application with RTOS in a generic fashion,

such as accounting the timing interactions with system calls,

interrupt handlers and the combined effect of system calls and

interrupt handlers. Secondly, due to the compositional nature

of our analysis framework, we can systematically control the

number of micro-architectural states and thus maintain the

scalability of the overall analysis. In the following, we shall

first introduce the WCRT calculation and subsequently, we

shall describe our compositional analysis framework as well

as its interactions with WCRT computation.

Fig. 3: Compositional WCRT analysis framework. Each rect-

angular box represents a component that is analyzed separately

A. WCRT computation

Our primary goal is to compute the worst case response time

(WCRT) of individual tasks in an application, and specifically

in our robot controller. WCRT of a task is defined as the worst

case bound on the time between the release and completion of

a task. This time bound is broadly composed of two factors:

(i) the worst case execution time (WCET) of the task, and

(ii) the cost due to interference. The interference of a task

can be caused either by higher priority tasks or by interrupts.

Our robot controller contains a set of periodic and sporadic

tasks. In our system, all interrupt arrivals are also periodic

or sporadic in nature. For a sporadic task or interrupt, we

consider that it always arrives at its minimum inter-arrival

time since we are only interested in the worst case scenario.

An interrupt will be serviced by its assigned interrupt service

routine (ISR) on arrival. For our computation, we treat all ISRs

as components with the highest possible priority (as an ISR

cannot be preempted by a task). For the rest of this section,

we shall use the term component to refer to either task or ISR

when they can be used interchangeably.

For a specific task i, its worst case response time WCRT i

is computed as shown in Equation 1 below (the equation

is derived from [15]). Note that since the computation of

WCRT i requires the value of WCRT k and component k

has higher priority than task i, WCRT computation has to be

performed from task with the highest priority to the lowest.

WCRT i = WCET i + Bi +

∑

j∈hp(i)

(

⌈

WCRT i

Pj

⌉

(WCET j +MODj,i + CTX j) +

∑

k∈hp(i)∧lp(j)

⌈

WCRT i

Pk

⌉

∗

⌈

WCRT k

Pj

⌉

MOD j,k

)

(1)

In Equation 1, WCETi captures the worst case execution

time of task i without interference. Bi is the maximum

blocking time of task i, or the maximum time a lower priority

task can block the execution of one invocation of task i. We

assign to Bi the maximum WCET value of all critical sections

(code sections in which preemptions are disabled) in tasks with

lower priority than task i. hp(i) contains the set of all higher

priority tasks and ISRs that may delay the execution time of

task i. On the other hand, lp(i) contains the set of all tasks

with lower priority than task i.
⌈

WCRT i

Pj

⌉

bounds the number

of possible preemptions by component j on task i. Pj is the

period (or minimum inter-arrival time) of component j. The

computation of MODj,i is crucial. MOD j,i accounts for the

additional delay inflicted by component j on task i due to the

modification of micro-architectural states (e.g. states of caches,

pipelines) after interference. CTX j refers specifically to task

context switch cost if component j is a task. If component j is

an ISR, it refers to the cost of accessing the kernel’s ISR entry

and exit function, as well as the delay in saving or restoring

CPU’s context before jumping to or from some ISR code. The

term (WCET j +MODj,i + CTX j) bounds the interference

cost by component j on task i for one preemption. We multiply

this term by the maximum possible number of preemptions for

all preempting components.

Apart from considering the MOD j,i cost inflicted by all

components that preempt task i, we also need to take into

5

account the modification of micro-architectural states inflicted

by component j to all tasks nested between component j

and task i when there are nested preemptions, as this may

indirectly add additional delay to the execution time of task i.

As shown in the second half of Equation 1, we sum together

the total MOD j,k costs inflicted by component j on all nested

tasks except for task i.
⌈

WCRTi

Pk

⌉

∗
⌈

WCRTk

Pj

⌉

bounds the

number of possible preemptions by component j on task k

during the execution of task i.

Equation 1 is essentially a fixed-point computation of

WCRTi, as the term WCRTi appears on both sides of the

equation. The computation in Equation 1 will be repeated until

the value of WCRTi reaches a fixed-point, or when it exceeds

the deadline for task i, in which case there is no point to

continue on as the task is not schedulable anymore.

B. Compositional analysis of application and RTOS code

The WCRT computation requires the WCET of individual

tasks. Traditional WCET analyses ignore timing effects related

to an RTOS. In the presence of an RTOS, different system-

level routines (e.g. system calls) affect the execution time of

an application. It is possible to perform WCET analysis of

an RTOS as a standalone application and obtain the WCET

of each system call [7], [10]. However, it is not sufficient

to compute the WCET of each system call in isolation and

integrate the computedWCETs into the WCET computation of

a task. This is due to the fact that the execution of system calls

may heavily modify the micro-architectural state and such

micro-architectural state changes must be taken into account

at each task for computing a safe WCET estimate.

In the presence of an RTOS, a straightforward approach to

compute the WCET of a task is to link the application and

RTOS code in a single binary. Traditional WCET analysis can

be carried out on this standalone binary. However, such an

approach has two primary disadvantages: (i) potentially huge

size of the executable and (ii) unavailability of RTOS source

code. Note that some analyses, such as computing loop bounds

and infeasible paths are difficult to perform without source-

level information, especially for complex system codes (e.g. an

RTOS). Therefore, we propose to analyze RTOS system calls

separately and compute a summary of each system call. Such

an approach enables partial WCET result reuse, improves the

scalability of overall WCET analysis and it can also leverage

the source-level infeasible path and loop bound information

of RTOS code. Our computed summaries for system calls are

sufficient for computing a safe WCET of each task.

We compute two results for each separately-analyzed system

call: (1) the WCET of the system call, and (2) a summary

of the effect of the system call execution on the micro-

architectural analysis. In our processor board, timing effects

at micro-architectural level arise from an in-order pipeline,

a static branch predictor and caches with FIFO replacement

policy. Since a static branch predictor is used, we add a fixed

penalty (2 cycles) for each taken branch in the WCET analysis.

As a result, we do not need to compute a summary of an

RTOS routine explicitly for branch predictors. Moreover, in

the analysis, we assumed an empty pipeline state at system call

and interrupt handler boundaries. In particular, we assume that

the pipeline is empty at (i) the beginning of each system call

and interrupt handler; and (ii) after the return of each system

call and interrupt handler. Besides, there might be additional

delay due to the dependency between application code and

RTOS routines. Such dependencies include situations where

the application passes data to RTOS routines and vice versa.

To take into account this additional delay into our analysis,

we add fixed delay for each invoked RTOS-level routine. The

fixed delay ensures that all the inputs to an RTOS routine are

available when it begins execution and all the outputs from

an RTOS routine are available when it finishes execution. It is

worthwhile to note that this delay is bounded by the memory

latency (i.e. cache miss latency).

However, we cannot consider the effect of caches similar to

pipeline and branch predictors. Invocation of an RTOS routine

may significantly affect the cache content of the application.

Due to the inherent performance gap between processor and

main memory, several cache misses in the application code

may significantly downgrade its performance. Therefore, static

analysis of caches is needed to classify a memory access as

a cache hit or a cache miss. In our experiments, we observed

that without employing any cache analysis, none of our robot

controller tasks could be guaranteed to meet their respective

deadlines. Therefore, we developed a compositional analysis

of instruction and data caches for deriving safe and tight

bounds on the application WCRT, while taking into account

system calls / interrupts.

In our summary computation, we primarily consider caches

and unless otherwise stated, a summary in the following dis-

cussion will capture the cache summary of an RTOS routine. In

particular, our compositional cache analysis is used to compute

cache summaries for system calls as well as interrupt handlers.

Such a compositional analysis also takes into account the effect

of interrupts happening inside system calls. Note that, even if

the time spent in interrupts is already accounted for in the

WCRT computation of the task (i.e. using Equation 1), we

need to take into account the delay caused by cache misses in

a system call due to interrupts.

To do this, we need (1) to bound the number of interrupts

occurring in a system call, and (2) to bound the number of

additional misses during the execution of the system call. To

bound the number of interrupts, we perform a fixed-point

computation in a similar fashion to Equation 1 and obtain Wi,

which is the execution time of the system call considering the

effect of interrupts. Assume that the period of an interrupt

is Pi, then the number of interrupts occurring during the

execution of the system call can be bounded by
⌈

Wi

Pi

⌉

. Once

we know the number of interrupts, additional misses occurring

in the system call (due to interrupts) can be computed exactly

in the same fashion as in a task (cf. section IV-C). Finally, the

total cache delay induced by interrupts on a system call can

be added to the system call WCET.

6

C. Cache related preemption delay

In the presence of caches, WCRT computation must take

into account the additional cache misses due to preemptions.

Such additional cache misses are caused by a preempting task

when it evicts cache blocks used by the preempted task. The

delay caused by these additional cache misses is known as

cache related preemption delay (CRPD). CRPD is traditionally

computed using a separate analysis and the outcome of CRPD

analysis is integrated into the WCRT computation.

In the following, we shall primarily outline our CRPD

analysis methodology for data caches. For instruction caches,

we use the CRPD analysis proposed in [5] in an exactly

same fashion. For a detailed description of CRPD analysis

for instruction caches, we request readers to refer to [5].

CRPD analysis for data caches: Recall that our underly-

ing processor (i.e. ARM926EJ-S) uses caches with FIFO re-

placement policy. In the presence of FIFO replacement policy,

CRPD analysis for data caches poses a challenge. As shown in

[5], CRPD in the presence of FIFO replacement policy cannot

be computed using a similar fixed-point computation as in

LRU replacement policy.

We have proposed a novel approach for analyzing CRPD.

Our approach leverages the similarity between the analysis

of system calls and preemptions. In both cases, we need to

consider the set of possible evictions of a memory block that

were not accounted during the analysis of the task in isolation.

However, unlike the analysis of a system call, we do not know

the exact program location where preemption will take place

(i.e. the arrival point of an interrupt).

Our CRPD analysis revolves around the persistence anal-

ysis for data caches. We use our prior work on data cache

persistence analysis [13] for this purpose. Our CRPD analysis

takes two inputs as follows.

• A set of preempting tasks {T1, . . . , Tn}.
• Maximum number of preemptions incurred by the pre-

empted task due to each preempting task. Let us assume

PC i captures the maximum number of preemptions due

to the preempting task Ti.

Our goal is to compute the additional cache miss penalty

incurred by the preempted task for all preemptions. In the

following, we shall describe the approach for a single cache

set. For set-associative caches, the following approach is

simply repeated for each cache set. We only describe the

general idea in the following. Details of the algorithm is

provided in Appendix.

The basic idea behind our CRPD analysis is as follows. Our

analysis first computes an upper bound on the number of ad-

ditional cache misses for each loop context. A loop context is

categorized by a sequence of loop iteration numbers. Formally,

a loop context C can be captured by a k-tuple 〈I1, I2, . . . , Ik〉,
where I1 represents the outermost loop iteration number and

Ik represents the innermost loop iteration number. Our CRPD

computation is primarily based on the following insight. For

each loop context C, an additional cache miss for a data

block should be taken into account only if the data block

might be accessed in loop context C and the data block

access is persistent in the absence of preemption. Note that

we do not need to consider the non-persistent data references

for CRPD analysis. This is because non-persistence already

captures the worst case. Therefore, for each loop context C,
the number of additional cache misses caused by preemptions

cannot exceed the number of persistent data references in C,
in the absence of preemptions. For loop context C, let us

assume that this upper bound is captured by mmcC . We also

observe that the number of inter-task cache conflicts by the set

of preempting tasks {T1, . . . , Tn} is bounded by the number
∑n

i=0 PC i ·DMGdata
i , where DMGdata

i captures the number

of unique data blocks accessed inside the preempting task Ti.

To compute the total number of additional cache misses

due to the set preempting tasks {T1, . . . , Tn}, our analysis

follows a greedy approach. We choose a loop context C that

may lead to the maximum number of additional cache misses

(i.e. mmcC), but requires the minimum number of inter-task

cache conflicts to evict out the set of persistent blocks in C.
We continue choosing loop contexts in such a fashion until

we reach the upper bound on the number of inter-task cache

conflicts (i.e.
∑n

i=0 PC i · DMGdata
i). The resulting number

of cache misses (i.e. the accumulation of mmcC values) is

predicted as the CRPD value. It is worthwhile to mention

that the greedy heuristic is conservative and the precision of

the computed CRPD can be improved using a more accu-

rate technique (such as integer linear programming) and by

compromising the analysis time. However, as our evaluation

shows, we can still maintain a reasonable overestimation ratio

with this conservative CRPD analysis.

D. Cache damage implementation

The effect of a system call, task preemption or ISR (referred

to as a component C) is summarized by a cache damage func-

tion, represented by DMGC . For each cache set s, DMGC(s)
captures the number of unique blocks inside C mapped to s.

This definition is used for both instruction and data cache

persistence. The type of the damage for data (instruction)

cache will be represented by DMGdata
C (s) (DMGinst

C (s)).
The data cache damage is used to handle preemptions and

system calls, but the instruction cache damage is used only

for system calls. This is because cache damage is used to

handle data CRPD, however for instruction cache we use a

traditional CRPD analysis [5]. We use persistence analysis for

both instruction and data caches. In the following, we shall

describe our instruction and data cache persistence analyses

using cache damage.

To describe the instruction and data cache analyses with

cache damage, we shall first introduce the concepts of tempo-

ral scope and younger set from our previous work.

Definition 4.1: (Younger set) Let B be a memory block

mapped to cache set s. The younger set of B, denoted as YSB ,

is the set of memory blocks that may have smaller relative ages

than B in cache set s, before the access to B.

Definition 4.2: (Temporal scope) The temporal scope TSB

of a memory block B indicates in which loop contexts B is

7

Fig. 4: Data cache damage example

accessed. It associates an integer interval [l, u] to each loop

L containing B. This integer interval captures the lower and

upper bounds on the iterations of L during which the accesses

to B can take place.

Cache damage for instruction persistence analysis: The

instruction cache persistence analysis determines the persis-

tence of each instruction block B by computing its respective

younger set (YSB). Let A be cache associativity. Block B

is persistent if |YSB | < A. To compute the damage for the

instruction persistence analysis, we must compute for each

set s, the maximum size of the younger set for any block.

With FIFO replacement policy, the damage of a component

can be computed simply by counting the number of blocks

in the component mapped to s. The damage of a component

C for the set s is represented as DMG inst
C (s). The cache

damage will need to be taken into account when performing

the persistence analysis of the main task. For each block

B, if any path from B to B goes through the component

C, then the block B is considered persistent if and only if

DMG inst
C (sB) + |YSB| < A (where sB represents the cache

set to which B is mapped).

Cache damage for data persistence analysis: For data

cache damage, we need to count the number of unique memory

block accesses inside component C. Since component C may

be analyzed in a context-sensitive way, loop bounds inside

C may depend on the calling context of C (e.g. arguments)

Therefore, depending on the calling context, some references

to memory blocks inside C could never be accessed. The

loop bounds inside C can be used together with the temporal

scopes of blocks, to determine if a specific block can be

accessed during a specific calling context. When performing

the persistence analysis of the main task, damage is accounted

similarly to the instruction cache as follows: for each block B,

if any path fromB to B goes throughC, block B is considered

persistent if and only if DMGdata
C (sB) + |YSB| < A (where

A is cache associativity).

An example: In the example shown in Figure 4, blocks

m1 , m2 , and m3 are mapped to the same cache set in a 2-way

associative cache. In the considered calling context, the loop

iterates at most 5 times. Only block m2 is accessed, because

the temporal scope of m3 indicates that m3 is accessed only

during iterations 6 to 10. Therefore, the damage is 1.
When analyzing the main task, we try to determine the

persistence status of m1 . The younger set is |YSm1| =
0, and since the path from m1 to another access of m1

passes through C, we need to check the condition |YSm1|+
damage < 2. The condition is true, thereforem1 is persistent.

Let us now assume a different calling context, causing the loop

to iterate 10 times. Then in the component both m2 and m3

will be accessed, the damage will be 2, and m1 will not be

persistent.

V. EVALUATION

In this section, we give a structural overview of our robot

control application along with experimental results obtained

from our evaluation. Based on the result, we proceed to verify

if our application meet its real-time constraints.

A. Robot controller overview

As mentioned in introduction, we adapted some open source

application codes written for EyeBot controller. Specifically,

the source code of Bally2 [1], an experimental real life self

balancing robot, is adapted as runnable tasks on µC/OS-II. To

realize our application scenario, we augmented Bally2 with an

obstacle detection program written for Eyebot. We also wrote

some additional codes, such as low level drivers, to port the

programs to our particular hardware board.

Our robot controller consists of 3 main tasks and 4 ISRs.

The function of each task or ISR is briefly described in

Table II. The size and code complexity of each task is given

in Table III. Both balance and navigation are peri-

odic tasks running at 50Hz and 20Hz respectively. remote

task is sporadic and blocked on a semaphore released by

infrared_isr.

tick_isr is an ISR servicing periodic interrupt due to

OS tick. gyro_isr, inclino_isr and infrared_isr

are ISRs servicing interrupts generated from gyroscope, incli-

nometer and infrared sensor respectively. These are sporadic

interrupts generated when there are new sensor readings. As

we are only interested in finding the WCRT of tasks, we

assume a worst case scenario where sporadic interrupts always

arrive at its minimum interarrival time. In the case of our ap-

plication, gyro_isr, inclino_isr and infrared_isr

all arrive at a rate of 1Khz.

Task/ISR Priority Description

balance 4 Calculation to keep balance using input

from gyroscope and inclinometer.

navigation 6 Auto navigate to destination while

avoiding obstacles.

remote 5 Receive remote command via infrared.

tick_isr - Periodic OS tick.

gyro_isr - Process interrupt from gyroscope.

inclino_isr - Process interrupt from inclinometer.

infrared_isr - Process interrupt from infrared sensor.

TABLE II: Tasks and ISRs in our system. Lower priority value

means higher priority. (µC/OS-II reserves 4 lowest priorities)

Task Number of Number of Number of Number of

instructions basic blocks loops system calls

balance 6914 1403 6 3

navigation 3899 496 11 7

remote 239 43 2 3

TABLE III: Code complexity of robot controller tasks

8

B. Issues and assumptions

One of the implementation issues for our robot controller

application is that µC/OS-II does not have out of the box

support for strictly periodic tasks. For a task to always run

at some interval, µC/OS-II only provides OSTimeDly system

call which delays execution of a task by a specified number of

ticks. The system call does not take into account the execution

time of the task and may result in a task running at irregular

periods. Instead of delaying a task by its period, we have to

delay it by the difference between its period and the execution

time of the current invocation of the task.

Currently, our analysis tool does not handle task with

dynamic priority. Thus, we do not allow µC/OS-II to change

task priority in runtime and we ensure that there is no scenario

in which priority inversion may happen.

C. WCET analysis result

We perform measurement on the execution time of each

task and ISR running on our APF28-Dev board. To measure

the execution time of a portion of code, the time before the

execution of the code portion is written to an unused memory

address on the board’s RAM. Likewise, we also store the time

at the end of the code portion. The stored values are read

through the board’s JTAG interface to minimize the effect of

measurement on actual execution. To ensure that we measure

the uninterrupted execution time of a task or ISR, we disable

all interrupts and prevent other tasks from running.

For each task and ISR, we compare the observed WCET

from our board with the estimated WCET from Chronos. The

result is presented in Table IV. We also compare the WCET

overestimation, which is defined as Estimated WCET
Observed WCET

, between

tasks and ISRs in Figure 5.

Task Observed WCET Estimated WCET Over-

(cycle) (cycle) estimation

balance 105120 380179 3.62

navigation 3871655 10803600 2.79

remote 17422 61124 3.51

tick_isr 3159 8056 2.55

gyro_isr 1438 3087 2.15

inclino_isr 1324 3291 2.49

infrared_isr 4256 20330 4.78

TABLE IV: WCET (in CPU cycles) of all tasks and ISRs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

balance

navigation

rem
ote

tick_isr

gyro_isr

inclino_isr

infrared_isr

W
C

E
T

 o
v
e
re

s
ti
m

a
ti
o
n

(e
s
ti
m

a
te

d
 /
 o

b
s
e
rv

e
d
)

Fig. 5: WCET overestimation of all tasks and ISRs

We observe overestimation values ranging from 2.15 to 4.78

for all tasks and ISRs. The average overestimation ratio is 3.12.

navigation task detects collision by processing captured

image to detect the edges of a colliding object and attempts

to navigate away from it. Thus, navigation task has many

loops referencing data exhibiting spatial locality pattern. The

data persistence analysis is effective in bounding the execution

time of loops exhibiting such pattern and this resulted in

navigation task having a relatively lower overestimation

than the other tasks despite being more complex.

balance task contains many floating point operations

although our ARM926EJ-S processor does not have a built-in

hardware floating point unit. Thus, we have to compile our

application with a software floating point library. Some of the

library functions being used contain loops with loop bounds

that are hard to derive. We have to put conservatively high loop

bounds to some of these loops, which may have contributed

to the high overestimation ratio of 3.62 for balance task.

infrared_isr has a high WCET overestimation despite

being a small interrupt handler code. infrared_isr de-

codes infrared pulses that come in bursts, and sends signal to

the robot controller once it receives sufficient pulses to decode

the information. However, our WCET analysis always assumes

the worst case timing scenario (i.e. sending signal to the robot

controller) whenever infrared_isr is executed.

D. WCRT analysis result and deadline verification

In Section III, we argue that using an integrated timing anal-

ysis approach can more accurately estimate the timing bound

of a real-time application running on top of an RTOS. We

aim to compare the result between (i) analyzing the RTOS in

isolation and (ii) using our integrated analysis. We compute the

WCRT of each task (with the fixed-point computation formula

in Equation 1) through both approaches and compare them

with the WCRT that we observe on the APF28-Dev board. For

approach (i), we flush both the instruction and data caches after

each context switch from OS to application. Note that flushing

the caches may not necessarily lead to worst-case micro-

architectural state changes, due to the possible presence of

timing anomaly. However, we will at least obtain an optimistic

WCRT overestimation using approach (i). The experimental

result is presented in Table V. WCRT overestimation of both

approaches is compared in Figure 6.

 0

 2

 4

 6

 8

 10

 12

balance navigation remote

W
C

R
T

 o
v
e
re

s
ti
m

a
ti
o
n

(e
s
ti
m

a
te

d
 /
 o

b
s
e
rv

e
d
)

Analyzing RTOS in isolation
Integrated analysis

Fig. 6: WCRT overestimation of all tasks

1) Comparison of both approaches: From Table V, we

observe that for all the robotic application tasks, our integrated

analysis (i.e. approach (ii)) has between 1.50 to 4.09 less

overestimation compared to approach (i). The higher overesti-

mation of approach (i) is mainly due to the overestimation

9

Task Deadline (ms) Observed Estimated WCRT of Over- Estimated WCRT of Over-

WCRT (ms) isolated analysis (ms) estimation integrated analysis (ms) estimation

balance 20 0.240 2.172 9.04 1.331 5.54

navigation 50 9.013 50.442 5.60 36.936 4.10

remote 100 0.245 2.480 10.13 1.478 6.04

TABLE V: WCRT (in milliseconds) of all tasks

of cache misses from context switching between OS and

application code. It is more apparent in smaller tasks (e.g.

balance, remote) due to a higher OS overhead ratio

compared to actual application execution time.

2) Integrated analysis result: For our integrated analysis,

the average WCRT overestimation ratio is 5.23. We attribute

the high overestimation ratio (compared to WCET analysis)

to the difficulty in observing the WCRT of tasks on the

hardware. As we cannot control the exact program points

in which task preemptions or interrupts occur, it is hard to

guide a task towards its worst case execution scenario while

taking measurement for observed WCRT. We rely on repeated

measurements and choose the maximum response time over a

large set of response time values. It is possible that the actual

WCRT is much higher than our observed WCRT.

3) Deadline verification: With our result, we can verify

whether our system meet the real-time constraints presented

in Table I. For balance and navigation tasks, since they

are required to always run at a specific frequency, each task

invocation is required to finish execution within its period. In

this case, its deadline is equivalent to its period. balance

task has a period of 20ms since the task is required to run at

50Hz. The computed WCRT for the task (refer to Table V) is

1.331ms, which is less than the task’s period. Thus balance

task meets its real-time constraint. Likewise, navigation

and remote tasks also meet their respective deadlines.

Note that all tasks in our application meet their deadlines

under any environmental conditions. Thus, we can conclude

that our robot controller can never fail to balance itself while

navigating rough terrain, and still be able to receive and

process remote commands without missing any signal.

E. Discussion

1) Effect of application on WCET of system calls: We

observed that WCET of many system calls are significantly

affected by the application due to these factors:

• Calling parameters Parameters passed to system call

from application may affect the control flow within the

system call. For example, OSTaskSuspend takes a

priority value as input argument, and suspends the task

with the associated priority value. If the task calling

OSTaskSuspend is the suspended task itself, then a

context switch will happen to switch execution to a pend-

ing task. Otherwise if the calling task is not the suspended

task, no context switch happens and the computed WCET

for OSTaskSuspend will be much smaller.

• Application dependent configuration Static system

configuration parameters which depends on the currently

running application (e.g. task stack size) may affect

the execution time of some system calls. For example,

OSTimeTick has a loop bounded by the number of tasks

in the application. Thus, WCET of OSTimeTick can be

refined if we have information about the number of tasks.

We have listed some system calls in µC/OS-II which have

application dependent WCET in Table VI. By considering the

user application when performing timing analysis on system

calls, we reduce the pessimism in the estimated WCET of

these system calls, which in turn reduce the overestima-

tion for WCET of each task. For example, when analyzing

OSTimeTick, given that there are 3 tasks in our robot

controller, we estimate the WCET to be 8027. If we ignore in-

formation from application level and just assume the maximum

possible number of tasks, the estimated WCET would instead

be 78056 (refer to Table VI), which is a gross overestimation.

System call Range of estimated WCET (cycle)

OSTaskSuspend 2660 – 5210

OSTaskResume 4189 – 4942

OSTimeTick 3946 – 78056

TABLE VI: System calls with WCET which can be refined to

a lower value with information on the application

2) Impact of pipeline flushes compared to cache evictions:

A real-time application running on top of an RTOS introduces

overhead due to supervisory code from the OS. This overhead

includes both the execution time of OS code and the impact

on hardware due to context switching between OS code and

application code. In this work, we mainly focus on the effect

on caches. This is because of the significant overhead due to

cache misses. In Table VII, we show the impact on hardware

pipeline and caches due to interruptions from system calls and

ISRs, as a fraction of the estimated WCRT of each application

task. The impact on hardware due to OS overhead is around

2–6% of the total estimated WCRT in our robotic application.

Task Estimated WCRT Pipeline cost Cache eviction cost

(cycle) (cycle) (cycle)

balance 604329 4200 25900

navigation 16769164 65660 410760

remote 671051 4480 33040

TABLE VII: Impact on pipeline and caches (in CPU cycles)

due to OS overhead

3) Applicability for other applications: Our analysis tool,

Chronos, takes in the following inputs to perform analysis:

• Binary of the embedded application

• Processor configuration (e.g. cache size and associativity)

• List of tasks and interrupts with their respective periods

and priorities

Given these inputs, our analysis techniques can be applied

to other embedded applications running on ARM9 family

processors. Chronos can also be extended to support other

similar architectures.

10

VI. RELATED WORK

Research on worst case execution time (WCET) analysis

of embedded software has been started two decades ago.

A comprehensive survey describing different techniques and

tools for WCET analysis has appeared in [11]. Existing WCET

analysis techniques assume a direct interaction between an

application and the underlying hardware. However, most real-

life embedded software are developed in the presence of

a supervisory software (e.g. an RTOS). Our work analyzes

the WCET of an embedded software in the presence of an

RTOS, which in turn interacts with the underlying hardware.

Therefore, our work extends state-of-the-art WCET analysis

via analyzing a realistic execution platform that consists of an

RTOS as well as a real hardware.

Several research activities [7], [10] have leveraged the

progress in WCET analysis to analyze the WCET of an

RTOS. A more comprehensive survey of such RTOS analysis

techniques can be found in [9]. However, works in [7], [10]

analyze RTOS as a standalone application, meaning that timing

interactions between an application and the RTOS are not

taken into account while computing the WCET. Existing work

[16] has discussed the potential unsound WCET computation

of an application without considering RTOS effect. However,

works in [7], [10] do not consider the micro-architectural

state changes in an application due to kernel mode operations.

Therefore, such works cannot be directly used to compute a

sound WCET of an application in the presence of an RTOS.

In contrast to the approaches proposed in [7], [10], we have

devised novel compositional methodologies that systematically

combine timing interactions between an application and an

RTOS to obtain a sound WCET of the application. Therefore,

our proposed framework has established a direction where the

technical problems discussed in [16] can be solved for a real-

life application on a realistic execution platform.

Research on compositional cache analysis has been per-

formed, among others, in [14], [6], [3]. However, such

compositional cache analyses have only targeted the reuse

of timing summary for commercial off-the-shelf components

(COTS), such as library codes. On the contrary, we propose a

generic compositional framework for cache analysis, where

the compositional strategy can be applied to handle any

system-level timing effect. Such system level timing effects

can be arbitrarily complex, such as individual timing effects

due to system calls and external interrupts, as well as their

complex combinations. Moreover, our compositional analysis

framework has been designed, implemented and evaluated on

a real hardware running an RTOS.

In summary, our work takes a first step forward to bridge the

gap between WCET research activities at application level and

RTOS level. To accomplish our goal, we leverage the concept

of compositional analysis and we have built a generic timing

analysis framework in the presence of supervisory software.

VII. CONCLUSION

We have proposed a general solution for analyzing real-time,

embedded application in the presence of a supervisory soft-

ware (e.g. operating system). Our proposed analysis method

models the micro-architecture of a real-life processor. Such

an analysis methodology enables us to verify that individual

tasks constituting the robot controller finish within the required

deadline and such a verified controller is thus perfectly safe

to use on the respective execution platform.

Apart from the technical novelties in our analysis - we

propose a generic compositional WCRT analysis framework

and we consider the effect of RTOS routines on the underlying

application via a reusable summary of micro-architectural

state changes, our work also involved very substantial system

building effort. These include porting an RTOS to run on

ARM926EJ-S architecture, construction of a real-time robot

controller application from open source code and writing of

low level drivers for our APF28-Dev board to support the

robotic controller. To the best of our knowledge, ours is the

first work in WCET analysis that considers an application in

the presence of an operating system. We also plan to make our

entire robot control infrastructure (including our ARM port of

µC/OS-II and the robot controller application) available to the

research community to spur more research which is based on

real-life implementations of real-time embedded systems.

ACKNOWLEDGEMENT

This work was partially supported by A*STAR Public Sec-

tor Funding Project Number 1121202007 - “Scalable Timing

Analysis Methods for Embedded Software”.

REFERENCES

[1] Ballybot balancing robots. http://robotics.ee.uwa.edu.au/eyebot/doc/
robots/ballybot.html.

[2] µc/os-II real-time kernel. http://micrium.com/rtos/ucosii/overview/.

[3] C. Ballabriga, H. Cassé, and P. Sainrat. An improved approach for
set-associative instruction cache partial analysis. In SAC, 2008.

[4] Thomas Braunl. Eyebot: a family of autonomous mobile robots. In
Neural Information Processing, 1999. Proceedings. ICONIP’99. 6th

International Conference on, volume 2, 1999.
[5] C. Burguière, J. Reineke, and S. Altmeyer. Cache-related preemption

delay computation for set-associative caches - pitfalls and solutions. In
WCET, 2009.

[6] A. Rakib et al. Component-wise instruction-cache behavior prediction.
In ATVA. 2004.

[7] B. Blackham et al. Timing analysis of a protected operating system
kernel. In RTSS, 2011.

[8] C.G. Lee et al. Analysis of cache-related preemption delay in fixed-
priority preemptive scheduling. IEEE Trans. Comput., 47(6), 1998.

[9] M. Lv et al. A survey of WCET analysis of real-time operating systems.
In ICESS, 2009.

[10] M. Lv et al. WCET analysis of the µc/os-II real-time kernel. In CSE

(2), 2009.

[11] R. Wilhelm et al. The worst-case execution-time problem - overview
of methods and survey of tools. ACM Trans. Embedded Comput. Syst.,
7(3), 2008.

[12] X. Li et al. Chronos: A timing analyzer for embedded software.
Science of Computer Programming, 2007. http://www.comp.nus.edu.
sg/∼rpembed/chronos.

[13] B. K. Huynh, L. Ju, and A. Roychoudhury. Scope-aware data cache
analysis for WCET estimation. In RTAS, 2011.

[14] K. Patil, K. Seth, and F. Mueller. Compositional static instruction cache
simulation. In ACM SIGPLAN Notices, volume 39, 2004.

[15] Jörn Schneider. Cache and pipeline sensitive fixed priority scheduling
for preemptive real-time systems. In RTSS, 2000.

[16] Jörn Schneider. Why you cant analyze RTOSs without considering
applications and vice versa. In WCET, 2002.

11

APPENDIX

A. CRPD Analysis for data caches

Algorithm 1 CRPD analysis for data caches with FIFO

replacement policy

1: Input:

2: T : the preempted task

3: {T1, . . . , Tn}: Set of preempting tasks

4: Say PC i captures the number of preemptions by task Ti

5: Say DMGdata
i is the ageing due to task Ti

6: L: The set of innermost loops in T

7: ctx(L): the list of contexts for loop L

8: set : the currently analyzed cache set

9: Output:

10: crpd(set): the CRPD of task T for set

11:

12: /*MDDP = Maximum Damage Due to Preemption */
13: MDDP ←

∑n

i=1 PC i · DMGdata
i (set)

14: /*Compute possible misses for each loop context */

15: let λ be an empty list of integer pairs

16: ctxlist ← {(c, L) | L ∈ L ∧ c ∈ ctx(L)}
17: for (c, L) ∈ ctxlist do

18: let B be the set of memory references within L or any

19: loop enclosing L

20: mmc ← |{b | b ∈ B ∧ |YS b| < A ∧ c ∈ TS b}|
21: mna ← min({x | b ∈ B∧x = A−|YS b|∧c ∈ TS b})
22: insert pair (mmc,mna) into λ

23: end for

24: /*Compute maximum total misses */

25: misscount ← 0
26: while (λ 6= ∅) ∧ (MDDP > 0) do
27: select (mmc,mna) from λ such that mmc

mna
is highest

28: remove (mmc,mna) from the list λ

29: u← min(MDDP ,mna)
30: misscount ← misscount + u× mmc

mna

31: MDDP ← MDDP − u

32: end while

33: crpd(set)← ⌈misscount⌉ ×misspenalty

Algorithm 1 describes the CRPD computation. It can be

briefly summarized as follows. Recall that the younger set (cf.

Definition 4.1) of a memory block b is captured by YS b and

the temporal scope (cf. Definition 4.2) of block b is captured

by TS b.

• We first computeMDDP , the upper bound on the number

of inter-task cache conflicts due to preemptions (line 13).

• For each loop iteration context c, mna captures the

minimum needed ageing for any additional misses to

occur. More precisely, if the amount of inter-task cache

conflicts is below mna, no additional cache miss can

occur in loop iteration context c. The variable mmc

captures an upper bound on the additional misses in loop

iteration context c. Specifically, mmc is the number of

data blocks that are accessed in context c and persistent

in the absence of preemption. It is worthwhile to note that

the additional misses in context c will always be bounded

by mmc, irrespective of the number of preemptions. This

is computed in lines 15-22.

• Our goal is to maximize the number of additional misses.

The general idea is to assign preemption-related ageing

in a greedy fashion. More precisely, we always pick a

loop context having the highest mmc
mna

ratio (i.e. caus-

ing the most additional misses, while needing the less

preemption-related ageing). This computation has been

performed in lines 25-31.

12

