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ABSTRACT
Timing analysis of concurrent programs running on multi-
core platforms is currently an important problem. The key
to solving this problem is to accurately model the timing ef-
fects of shared resources in multi-cores, namely shared cache
and bus. In this paper, we provide an integrated timing anal-
ysis framework that captures timing effects of both shared
cache and shared bus. We also develop a cycle-accurate
simulation infra-structure to evaluate the precision of our
analysis. Experimental results from a large fragment of an
in-orbit spacecraft software show that our analysis produces
around 20% over-estimation over simulation results.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems

General Terms
Design, Performance

Keywords
Multi-core, WCET, Shared cache, Shared bus

1. INTRODUCTION
The increasing prominence of multi-core architectures has

brought about the need to re-examine methods for software
development and analysis. For real-time systems, the de-
ployment of multi-core architectures presents us with inno-
vative challenges. Clearly, even ensuring time-predictable
execution of software on a single processor core is a diffi-
cult problem. The literature on Worst-case Execution Time
(WCET) analysis addresses this issue. However, to ensure
the time-predictable execution of software on multi-core ar-
chitectures, we need to consider resource sharing in multi-
cores.

Resource sharing in multi-cores comes in many forms.
First of all, it is quite common for the processor cores to
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Figure 1: Multi-core cache memory hierarchy.

be connected by a common bus. Moreover, even though the
processors have their own private caches, current multi-core
architectures often support a shared last level cache (shared
across cores), as shown in Figure 1. Thus, any timing analy-
sis framework for programs running on multi-cores needs to
develop accurate timing models of the shared cache as well
as the shared bus. To the best of our knowledge, this paper
is the first work to develop a timing analysis framework that
combines the timing effects of shared cache as well as shared
bus.

Conceptually, a combined analysis of shared cache and
shared bus presents us with a challenging problem. To an-
alyze the timing effects of a shared cache, we first perform
separated cache analysis for the individual cores. Subse-
quently for each shared cache line, we find out the possible
conflicts from the other cores, and calculate the cache hit
miss classification accordingly. The key step here is to find
out the shared cache conflicts across cores, which depends
on the lifetimes of the tasks executing in the different cores
(and whether these lifetimes overlap). Once the shared cache
conflicts are determined, these are fed into the shared bus
analysis.

For the shared bus analysis, we consider static bus sched-
ule using a Time Division Multiple Access (TDMA) scheme.
The cores are assigned bus slots, and the bus slots are al-
located among the cores in a round-robin fashion. By ex-
ploiting the static bus schedule and the shared cache conflict
information, we can estimate the lifetimes of tasks on dif-
ferent cores. However, this creates opportunities for tighter
analysis as we can rule out some of the shared cache conflicts
by using the estimated task lifetimes. After ruling out cache
conflicts, we have to again revise our shared bus analysis to
get tighter task lifetimes. Thus, the interaction between the
shared cache and shared bus analysis occurs iteratively and



both analyses get tightened via a fixed-point computation.
Presenting such an integrated analysis framework to con-
sider the timing effects of shared cache and shared bus is
the main contribution of this paper.

In the preceding, we have presented the big picture view
of our contributions highlighting the conceptual novelties.
In addition our timing analysis framework also presents sev-
eral technical novelties that helps us develop a scalable and
efficient analyzer. In particular, our shared bus analysis is
compositional — each core is analyzed separately. This is
achieved by mapping the memory accesses in each core i
to specific bus slots which are allocated to core i. How-
ever, we cannot afford to map dynamic memory accesses to
bus slots, as it would amount to full-fledged loop unrolling
and path enumeration. Instead, we conservatively map the
static memory accesses to bus slots by considering the com-
putation time between two memory accesses and rounding
up this computation time to the nearest multiple of the bus
slot length. This presents us with a shared bus analysis
framework that is simple, efficient, as well as accurate as
evidenced by our experiments.

In terms of experimental validation, we present results
from independent non communicating tasks, as well as con-
current programs with communicating tasks. We compare
our estimation results with estimation results from shared
cache analysis (without bus modeling). More importantly,
we have also developed a cycle-accurate simulation infras-
tructure for concurrent programs running on multi-cores.
Our simulator is built on top of CMP-SIM [1], a simulator
for chip multiprocessor architectures built on Simplescalar
[2]. CMP-SIM allows for multi-processor architectures with
shared cache but has no provision for shared bus. In our
implementation, we have extended CMP-SIM with shared
bus modeling thereby developing a cycle-accurate simulator
for present day multi-core architectures. The experiments
indicate that our estimation results are close to the simu-
lation results — the over-estimation being around 20% for
a large fragment of the real-life DEBIE program, an in-situ
space debris monitoring program developed by Space Sys-
tems Finland Ltd [3].

2. SYSTEM AND APPLICATION MODEL
Our system architecture is representative of the current

generation of commercial multi-core platforms. Each core
on chip has one or more levels of private caches and the last
level of private caches from all the cores are connected to
a large shared cache through a shared bus. For example,
ARM Cortex-A9 MPCore [4] and Intel core 2 (code named
Penryn) [5] have only private L1 caches that are connected
via a bus to the shared L2 cache as shown in Figure 1 (Ar-
chitecture A). The advantage of a shared cache is that the
cache space can be dynamically and transparently allocated
to the different cores based on their memory requirement.
Next-generation multi-cores are likely to introduce more lev-
els of private caches before hitting the shared resources. For
example, Intel Xeon [6] has private L1 and L2 caches; the
L2 caches are connected to a large shared 16MB L3 cache
through a bus as shown in Figure 1 Architecture B.

In this paper, we will assume, without loss of generality,
the first architecture in Figure 1 (Architecture A) to develop
WCET analysis of shared resources in multi-core platforms.
Extending our work to multiple levels of private cache hier-
archy is simply a matter of employing the same propagation

principle that we employ from L1 to L2 cache.
We focus here only on the instruction memory. We assume

that the data memory references do not interfere with the
L1 and L2 instruction caches modeled by us (they could be
serviced from a separate data cache that we do not model).
We do not allow self-modifying code and hence do not need
to model cache coherence. For each program, all shared
library code used in it are copied into its private code section.
Hence, there is no code sharing among different programs
running in different cores. We consider Least Recently Used
(LRU) cache replacement policy for set-associative caches.
Also, we consider architectures without timing anomalies
caused by interactions between caches and other architecture
features. The L2 cache block size is assumed to be larger
than or equal to the L1 block size. This is usually the case in
real architectures to exploit higher spatial locality through
a second level cache. Finally, we are analyzing non-inclusive
multi-level caches [7].

The shared communication infrastructure in our architec-
ture is the bus. It is used for accessing the instructions
and data from the shared L2 cache (in case of L1 cache
miss) by the different cores. However, as we are not mod-
eling the data caches, we assume fully separated buses and
memories for both code and data. Therefore, we ignore bus
traffic arising from data memory accesses and this includes
interprocess communication through shared memory. We
assume TDMA-based static bus scheduling policy where a
fixed length bus slot is allocated to each core in a round-
robin fashion.

During WCET analysis, we assume all loop bounds are
known through user annotation or simulation. We also as-
sume all paths in a program are feasible and all loops in a
program are reducible (i.e., all loops have a single entry and
single exit).

We model the application as a set of task graphs. Each
task graph is a directed acyclic graph consisting of a number
of tasks. Let {T0, . . . , TN−1} be the set of N tasks corre-
sponding to all the task graphs. A directed edge between
two tasks Ti and Tj in a task graph denotes that task Tj

can start execution only after task Ti completes execution.
Our objective is to estimate the worst-case response time
(WCRT) of the overall application.

3. OVERVIEW
Our WCRT analysis framework in the presence of shared

cache and bus in multi-core platforms appears in Figure 3.
L1 cache analysis proceeds independently for each core. The
memory accesses that are guaranteed to be L1 cache hits are
eliminated from further consideration at this point. The re-
maining memory accesses (guaranteed / probable L1 misses)
can be transmitted via the bus and are considered for shared
cache and bus analysis.

Clearly, the bus analysis requires the time at which the
L1 cache misses appear on the bus. However, the bus access
time of an L1 cache miss is affected by the execution time
of the preceding memory accesses in the same core. This in
turn is determined by the shared L2 hit/miss categorization
of the preceding memory accesses. On the other hand, the
shared L2 cache conflict analysis determines the memory
blocks that may get evicted by memory blocks from other
core. Whether a memory block M1 belonging to task T1
can be evicted from the shared cache by a memory block
M2 from task T2 depends on whether the lifetime of the
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Figure 2: Example to show dependency between cache and bus analysis.
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Figure 3: Our analysis framework

two tasks can overlap or not. The task lifetime, in turn, is
determined by the shared bus analysis results.

This circular dependency between the bus and cache anal-
ysis requires us to develop an iterative analysis framework
as shown in Figure 3. In the first iteration, we perform
shared L2 cache analysis assuming that a task on one core
can conflict with all the tasks in other cores. Based on this
pessimistic L2 cache analysis results, we estimate the shared
bus access time and hence the WCET of the different tasks.
These numbers are fed to the WCRT analysis component
that estimates the worst-case response time of the complete
application by taking into account the dependencies among
the tasks. A by-product of the WCRT analysis framework is

the lifetime of each task. These lifetime estimates are used
to eliminate interference among tasks with disjoint lifetimes.
If the interference pattern has changed (i.e., we have man-
aged to eliminate some interferences), the shared L2 cache
analysis has to be repeated. We can formally prove that our
analysis monotonically reduces the task interferences across
iterations, and hence is guaranteed to terminate.

Illustrative Example. We now show the working of our
analysis using the example in Figure 2(a). We assume a 2-
core system where the task graph containing tasks T1 and
T2 are running on core 0 and task graph containing tasks T3
and T4 are running on core 1. For simplicity of exposition,
we shall assume in this example that best case and worst case
execution times of any task are same. T1.1, T2.1, . . . , T4.2
represent the memory blocks within the tasks. Each mem-
ory block is annotated with its computation cost. Only the
memory blocks marked in black are the ones with guaran-
teed or possible L1 cache miss as determined by per-core
L1 cache analysis. We perform an initial L2 cache anal-
ysis for each core individually that ignores conflicts from
other cores. This per-core L2 cache analysis determines all
the memory blocks (T2.2, T3.2, and T4.2) as guaranteed L2
cache hits. Let us also assume that L2 cache hit latency
is 10 cycles, whereas L2 cache miss latency is 20 cycles.
Further, the round-robin TDMA bus scheduler assigns a 50
cycle bus slot to each core and the first bus slot goes to
core 0. In this example, to demonstrate the dependency
between shared cache and bus analysis, we ignore any cold
cache misses. However, our analysis does not rely on that as-
sumption and it accurately models the additional cycles due
to cache misses if some memory blocks have to be loaded
into the cache for the very first time.

Now we proceed to shared L2 cache analysis. At this
point, we have no information about task lifetimes. So we
assume any task on core 0 can conflict with all the other
tasks on core 1 and vice versa. Memory block T2.2 and T3.2
map to the same L2 cache block and therefore they conflict



with each other. So we have to conservatively assume that
both of them will be L2 cache misses in the worst case,
whereas T4.2 remains as L2 cache hit because it does not
conflict with any memory block from core 0. Note that,
even though any task on core 0 can conflict with all the
other tasks on core 1 and vice versa, memory block T4.2
may not conflict with T2.2 since it maps to a different cache
block in shared L2 cache.

After shared L2 cache analysis, we proceed to shared bus
analysis. The result of the analysis can be visualized in Fig-
ure 2(b). In Figure 2, a memory transaction corresponding
to the L1 cache miss of memory block Px.y is denoted by
Mx.y. Notice that all L2 cache accesses (whether hit or
miss) are transmitted on the shared bus in our architecture.
An L2 cache access from core i has to wait for core i to
get access to the bus. The L1 cache miss M2.2 in core 0
occurs at time 100. From the bus schedule, we can observe
that the slot beginning at time 100 belongs to core 0. Thus
M2.2 does not encounter any additional waiting time to ac-
quire the shared bus and is completed by time 120. Thus,
T2 finishes at time 140. However, the L2 cache miss M3.2
in core 1 happens at time 20 and the bus slot from time
0 to time 50 is alloted to core 0. Hence, M3.2 encounters
an additional 30 cycles waiting time to acquire the bus and
eventually the memory transaction corresponding to M3.2
completes at time 70. This makes task T3 to finish at time
80. Similarly, the L2 cache hit M4.2 in core 1 occurs at time
100 and the bus slot from time 100 to time 150 is alloted to
core 0. Thus M4.2 encounters an additional 50 cycles wait-
ing time and eventually the task graph running on core 1 is
completed at time 170. Hence, the WCRT of the application
according to this schedule is 170 cycles.

However, as a by-product of the WCRT analysis, we note
that task T2 and T3 have disjoint lifetimes. So memory
blocks T2.2 and T3.2 cannot conflict with each other in the
shared L2 cache and they remain as L2 cache hits as de-
termined by per-core L2 cache analysis. As L2 cache hits
have shorter latency, the bus analysis needs to be re-done.
The revised schedule is shown in Figure 2(c). Task graph
running on core 0 finishes at time 130 because M2.2 is now
a L2 cache hit. Due to the earlier completion of M3.2 (be-
cause of L2 hit), L2 cache hit M4.2 occurs at time 90. Since
L2 cache hit latency is 10 cycles, M4.2 can be serviced in
the remaining bus slot belonging to core 1 (i.e., the bus slot
from time 90 to time 100) and therefore making T4 finish by
time 110. Hence, this new analysis results in much tighter
WCRT estimate as the second wait time for the bus in core
1 is now eliminated. The WCRT at this point changes to
130 cycles. This example illustrates how an iterative shared
cache and bus analysis can obtain tight WCRT estimates for
embedded real-time applications.

4. ANALYSIS FRAMEWORK

4.1 Background on cache analysis
Intra-core cache analysis: We use the abstract inter-
pretation based approach as described in [8] for analyzing
private instruction caches. Instructions are classified as all-
hit (AH), all-miss (AM), persistence (PS) or not-classified
(NC) after carrying out three analyses, namely must, may
and persistence analysis. If an instruction is categorized as
AH, it means that the instruction is always in cache when-
ever it is accessed. On the other hand, if an instruction is

categorized as AM, it means that the instruction is never
in the cache whenever it is accessed. Persistence analysis is
carried out for increasing analysis precision. An instruction
is persistent if it is never evicted from the cache. If an in-
struction cannot be categorized as one of AH, AM or PS, it
is categorized as NC. For details of the analysis, readers are
referred to [8].

Cache access classification (CAC): In multi-level cache
hierarchies, a specific cache level may not be accessed at all.
Thus access classification of a specified cache hierarchy must
also be known [7]. For a given memory access r, CAC (Cache
access classification) of a particular cache level L can be (i)
A : this means that the cache level L will always be accessed
(for cache level 1 this is always true), (ii) N : this means
that the cache level L will never be accessed, or (iii) U : this
means the access of the cache level L cannot be determined
statically for memory access r. For example, consider a two
level hierarchy with L1 and L2 instruction caches. It is clear
that AH categorized instructions in L1 cache are never ac-
cessed in the L2 cache. On the other hand, AM categorized
instructions in L1 cache are always accessed in the L2 cache.
For the other two cache hit-miss categorizations (namely PS
and NC), it is not clear whether the L2 instruction cache is
accessed or not. Thus all possibilities must be explored for
a safe solution. For further details readers are referred to
[7].

Shared L2 cache analysis: Intra-core cache analysis does
not consider interferences in the shared L2 cache across
cores. Thus the hit-miss classification of the instructions
in L2 cache may be underestimated and may lead to an un-
safe WCET estimation. A recent paper [9] deals with the
shared cache conflicts as follows: Suppose the abstract cache
state (which consists of a number of abstract cache sets for
set-associative caches) of L2 cache after the intra-core must
analysis contains instruction I in the abstract cache set S at
a certain program point p and hence classified as AH. Say
Ic is the set of instructions in programs running on all other
cores which can potentially map to the same abstract cache
set S in the shared L2 cache and the Cache access classifica-
tion (CAC) is always/unknown (A/U) for L2 cache access.
The cache conflict analysis changes the hit-miss classifica-
tion of instruction I in shared L2 cache at program point p
to not-classified (NC), if it was previously classified as AH
and the following holds:

N − age(m) ≤ |M(Ic)| (1)

where N is the associativity of the shared L2 cache, age(m)
is the age of memory block containing instruction I in the
abstract set of L2 cache at program point p and |M(Ic)| is
the number of memory blocks containing the set of instruc-
tions Ic. Details of the analysis appear in [9].

4.2 Bus-aware WCET analysis
We now present a bus-aware WCET analysis of programs.

Note that L1 cache misses are transmitted via the bus to
access the shared L2 cache (Fig. 1, Architecture A).

Classical WCET analysis can compute the WCET of a
program by taking into account only the number of worst
case cache misses. The exact time-stamp of the cache misses
(the time at which the cache misses occur) are not required
for WCET computation. In presence of a shared bus, a cache
miss encounters variable amount of delay due to the waiting
time elapsed to acquire the bus-slot for the corresponding
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Figure 4: (a) An example of loop analysis (b) Limited loop unrolling for loop iterations with low cost.

core. One naive approach is to always consider the maxi-
mum possible waiting time for each memory reference that
may potentially access the shared bus. In that case, effect of
shared bus in WCET analysis can be ignored at the cost of
obtaining highly over-estimated WCET value. Our analysis
effectively bounds the over-estimation in WCET analysis,
while keeping the analysis time-efficient.

Formally, the round-robin TDMA bus schedule is repre-
sented by the following recurrence relation:

CS
(i+1)
k = CS

(i)
k + B; CS

(0)
k = Ak (2)

where CS
(i)
k is the starting time of the bus schedule assigned

to k-th core in i-th round, B = J × sl, J being the total
number of cores, sl is the slot length assigned to each core
and Ak is the starting time of the very first slot in the bus
schedule assigned to k-th core.

At first we discuss the WCET computation of a single
loop (no nesting) and later we extend it to a full program.
Analysis of loop is depicted by an example in Figure 4(a).
The bus slot is 50 cycles. Let us also assume that L2 cache
hit latency is 10 cycles, whereas L2 cache miss latency is
20 cycles. Only the memory blocks marked in black denote
L1 cache misses and hence will be transmitted via the bus.
The loop starts at 0 time. Following this assumption, L1
cache miss M3 occurs at time 50. Since the next bus slot
for Core0 starts only at time 100, this L2 cache access is
delayed till time 100. Thus total time encountered for M3
access becomes 60 cycles — 50 cycles to wait for the bus
and 10 cycles to get the instruction from L2 cache. On the
other hand, L1 cache miss M5 starts at time 30, when the
bus is still available to Core0. As a result, M5 does not
suffer any delay to access the bus. Worst case starting time
of the loop sink node is at time 130. Once again, due to
the availability of the bus, L2 cache miss M7 can be served
immediately. Finally the computation of loop sink node ends
at time 190. Since we always assume a loop iteration starts
from the beginning of a bus slot of Core0, an alignment
cost of 10 cycles is added to the total cost of one iteration.
Assuming loop bound to be 5, overall WCET of the loop

becomes (5∗ (190+10)+100) = 1100 cycles (additional 100
cycles were added for aligning the first iteration of the loop,
since the time between the beginning of any two consecutive
bus slots allotted to the same core is 100 cycles). Note that,
an L1 cache miss, occurred earlier than the time predicted
in the worst-case, is served by an earlier bus slot (than the
bus slot predicted in the worst-case analysis). This accounts
for the safety of our method.

Formally, WCET computation of a loop is described in
Algorithm 1. startbi and finishbi keep track of the worst
case starting and finishing time of basic block bi respectively.
cost stores the worst case cost of basic block bi while bi is
being processed. finishbi is computed by adding the value
of cost to startbi (line 30). Header node of the loop always
starts from time 0 (line 5). Worst case starting time of any
basic block (other than the header node) is the maximum of
all of its predecessors’ finishing time (line 9). lbusbi is the be-
ginning time of the latest bus slot acquired by the core while
basic block bi is processed; this information is propagated
to all successor basic blocks (line 10). For an L1 cache miss,
function Wait computes the worst case additional delay for
accessing the shared bus (line 18).

Wait(Δ) =

⎧⎨
⎩

0, if (�Δ
B
� × B + sl − LAT ) >= Δ;

(�Δ
B
� + 1) × B − Δ, otherwise.

Here Δ is the difference between the current time and lbusbi .
sl is the bus slot length assigned to each core. LAT is equal
to the fixed L2 cache hit latency in case of a L2 cache hit
and main memory latency in case of a L2 cache miss. The
term �Δ

B
� represent the number of full bus schedules (whose

length is equal to B) expired in time Δ. Therefore, �Δ
B
�×B

represents the starting time of the latest bus slot assigned
to the core relative to lbusbi . Relative to lbusbi , end time of
this latest slot is at time �Δ

B
� × B + sl. On the other hand,

end time of the current L1 cache miss is Δ+LAT relative to
lbusbi . To complete the current L1 cache miss in the latest
bus slot, it must be the case that �Δ

B
�×B + sl ≥ Δ + LAT ,

which is precisely the first condition of Wait function. If the



Algorithm 1 WCET computation of a loop lp; B is the
interval between two consecutive bus slots assigned to a core

1. costiter := 0;
2. for (all blocks bi of loop lp in topological order) do
3. cost := 0;
4. if (bi is the header node of loop lp) then
5. startbi := 0; /* assume loop header node starts at

time 0 */
6. lbusbi := 0; /* assume first bus slot starts at time

0 */
7. else
8. find the predecessor pmax of bi having maximum

finish time (finishpmax);
9. startbi := finishpmax ;

10. lbusbi := lbuspmax ;
11. end if
12. inst := first instruction in basic block bi;
13. repeat
14. if (inst is an L1 cache hit) then
15. cost := cost + L1lat; /* L1lat : L1 cache hit la-

tency */
16. else
17. Δ := (startbi + cost) − lbusbi ;
18. if (Wait(Δ) > 0) then
19. lbusbi := startbi + cost + Wait(Δ);
20. end if
21. cost := cost + Wait(Δ) + LAT ;
22. end if
23. inst := next instruction in basic block bi;
24. until (all instructions in basic block bi finish)
25. if (bi is the sink node of loop lp) then
26. Δ := (startbi + cost) − lbusbi ;
27. cost := cost + AlignCost(Δ);
28. costiter := (startbi + cost);
29. end if
30. finishbi := startbi + cost; /* finish time of bi */
31. end for
32. return costiter × N + B;

L1 cache miss at current time cannot be served in the latest
bus slot, it is delayed till the next bus slot. Clearly, the
next bus slot starts at time (�Δ

B
�+1)×B relative to lbusbi .

Thus (�Δ
B
� + 1) × B − Δ precisely represents the waiting

time to acquire this next bus slot. In case a new bus slot is
acquired (the second case in Wait(Δ) function), the value of
lbusbi is updated (line 19). After computing the worst case
cost of one iteration of the loop, the additional cost to align
the next iteration to the starting of a bus slot is added to
the WCET (by the AlignCost function) (line 27). AlignCost
function is similar to the Wait function and is described as
follows.

AlignCost(Δ) =

⎧⎨
⎩

0, if (Δ mod B) = 0;

(�Δ
B
� + 1) × B − Δ, otherwise.

Thus, if Δ is already aligned with the beginning of a bus
slot alloted to the core, alignment cost is 0. Otherwise,
alignment cost is equal to shift the timeline to the begin-
ning of the nearest bus slot alloted to the core. By adding
AlignCost(Δ) we get costiter, the worst case cost of one loop
iteration. Since we do not know the exact starting time of
the loop, for the very first iteration, maximum alignment
cost needs to be added (which is equal to B). Hence, the
WCET of the loop is computed as costiter × N + B, where
N is the loop bound.

There is a special case when the worst case cost of one loop
iteration is much smaller than the bus slot length. In that

case, due to the alignment to the beginning of a bus slot after
one iteration, overestimation in WCET may increase signif-
icantly. We always partially unroll such loops so that worst
case cost of a single iteration of the unrolled loop exceeds
one single bus slot. This situation is illustrated in Figure
4(b). The loop is unrolled three times as L1 cache misses
(M2) from three consecutive iterations can be serviced in a
single bus slot.
Extension to full program So far, we have only discussed
the WCET computation of a single loop. To extend our
analysis to whole programs, we transform the program’s con-
trol flow graph by converting each innermost loop to a single
“basic block”. The cost of each innermost loop is given by the
pre-computed WCET. Using the innermost loop’s WCET,
we get the WCET of loops at the next level of nesting. In
this way, we can get WCETs of all the outermost loops in a
program. The program can now be viewed as a DAG with
all outermost loops converted to single basic blocks. Algo-
rithm 1 can again be used to compute the WCET of the
program with zero alignment cost. For programs containing
procedure calls, the extension is straightforward. For each
call instruction, the cost of the callee can be computed as
mentioned above and will be added to the total cost of the
corresponding basic block. Our analysis is context sensi-
tive, i.e., procedure calls at different call sites are analyzed
separately. In our actual implementation, the cache anal-
ysis module also handles different contexts of a loop ( i.e.,
Virtual Inlining and Virtual Unrolling (VIVU) approach [8])
and thus our shared bus analysis indeed can model different
contexts of a loop. However, for simplicity of discussion, we
describe only about the WCET analysis of a loop in a single
context.

4.3 WCRT Estimation
In order to compute the WCRT of a task graph, we need

to know the time interval of each task. The task ordering is
imposed by the partial ordering given in the correspond-
ing task graph. We use four variables EarliestReady(t),
LatestReady(t), EarliestFinish(t), and LatestFinish(t) to rep-
resent the execution time information of a task t. For any
task t, the earliest (latest) time when all of t’s predecessors
in the task graph have completed execution, is represented
by EarliestReady(t) (LatestReady(t)). Similarly, the earliest
(latest) time when task t finishes execution, is represented
by EarliestFinish(t) (LatestFinish(t)). Given a task t, its
execution interval is EarliestReady(t) to LatestFinish(t).

We consider a non-preemptive system. Let us assume,
WCET(t) and BCET(t) denote the Worst-case Execution
Time and Best-case Execution time of task t. For BCET
computation, all NC classified instructions in L1 cache are
considered to be L1 cache hit and all instructions that are
AM classified in L1 cache and NC classified in shared L2
cache are considered to be shared L2 cache hit. BCET of all
the tasks are computed after the shared L2 cache analysis.
A task t can be ready only after all its predecessors Pred(t)
in the task graph finish execution. So the following two
equations hold:

EarliestF inish(t) = EarliestReady(t) + BCET (t)

EarliestReady(t) = max
u∈Pred(t)

EarliestF inish(t)

For a task t without any predecessor EarliestReady(t)=0.
However, latest finish time of tasks is not only affected by its



predecessors but also by the set of tasks running on the same
core whose execution interval may overlap (called peers) [9].
Let us call the set of tasks overlapping with t, and running
on the same core by �t

peers. Since, our WCET analysis
assumes that the tasks are aligned to the beginning of a bus
slot, during LatestFinish time computation, this alignment
cost needs to be considered. In the worst case, all of the
peers of a task and the task itself may encounter maximum
alignment cost (equals B). Thus the LatestFinish time is
defined as follows:

LatestF inish(t) = LatestReady(t) + WCET (t)

+
∑

tc∈�t
peers

WCET (tc)

+ (|�t
peers| + 1) × B

Here |�t
peers| represents the number of peers of task t. This

approach keeps our framework highly modular since the
WCRT computation can be carried out given the WCET
and BCET values of each task t, and without knowing their
worst/best case starting time. Finally WCRT of an appli-
cation is defined as follows:

WCRT = maxt(LatestF inish(t))

− mint(EarliestReady(t))

that is, the duration from the earliest start time of any task
to the latest completion time of any task.

Our WCRT analysis framework is shown in Figure 3. Ini-
tially a task t′ cannot overlap (that is, interfere) with a task
t if and only if 1) task t′ depends on t and vice versa by
the partial order imposed from the task graph or 2) t and
t′ execute on the same core (by virtue of non-preemptive
execution). After the WCRT analysis, new interference in-
formation is generated if two independent tasks which ac-
counted for shared cache conflicts in the cache analysis are
found to have non-overlapping lifetimes, that is, their [Ear-
liestReady(t),LatestFinish(t)] intervals do not overlap. This
new interference information is again fed to the shared cache
conflict analysis module which may further tighten several
tasks’ WCET in presence of shared bus. This process con-
tinues until the interference among all the tasks stabilizes.
We state the following two theorems which guarantee the
termination of our WCRT analysis technique. The proofs
are omitted due to space constraints.

Theorem 4.1. For any task t, its EarliestReady(t) and
BCET do not change across different iterations of L2 cache
conflict and WCRT analysis.

Theorem 4.2. Task interferences monotonically decrease
(strictly decrease or remain the same) across different iter-
ations of our analysis framework (Figure 3).

5. EVALUATION

5.1 Experimental setup
We compile our benchmarks for SimpleScalar Portable in-

struction set (PISA)[2] – a MIPS like instruction set ar-
chitecture. The individual tasks are compiled into Sim-
pleScalar PISA compliant binaries, and their control flow
graphs (CFGs) are extracted as input to the analysis frame-
work. Each processor core has an in-order pipeline along
with an instruction cache.

In order to experimentally evaluate the accuracy of our
analysis results, we have built a cycle-accurate simulation in-
frastructure on top of the CMP-SIM simulator [1]. We have
extended CMP-SIM in three ways. First, we extend CMP-
SIM to handle PISA binaries. Secondly, CMP-SIM models
shared caches, but not shared bus across cores. We have
extended CMP-SIM with shared bus modeling to provide a
cycle-accurate simulator for present day multi-core architec-
tures; we instrumented each L1 cache miss in the simulation
to go through a round-robin TDMA based shared bus. Fi-
nally, the existing CMP-SIM simulator only allows simula-
tion of independent programs, each running on a different
core. We have extended CMP-SIM to simulate concurrent
applications represented as task graphs.

All experiments are performed on a 3 GHz Pentium 4
machine having 1 GB of RAM and running Ubuntu Linux
8.10 as the operating system.

5.2 Analysis of independent programs
First we analyze independent programs running on multi-

ple cores. Later we present results from analyzing the task
graph from a real-life space debris monitoring program.

We have performed experiments both for two-core and
four-core platforms with the following cache configuration:
L1 cache hit latency = 1 cycle, L2 cache hit latency = 6
cycles and memory latency = 30 cycles. Each private L1
cache is direct-mapped and has a size of 1 KB with block
size of 32 bytes. The shared L2 cache is 4-way associative
and has a size of 2 KB with block size of 64 bytes. The
shared bus connecting the different cores is TDMA based
and is accessed by all the cores in a round-robin fashion.
Each core has a bus slot length of 80 cycles.

For analyzing independent programs running on different
cores, we have chosen benchmarks from [10]. The set of
benchmarks is described in Table 1. We have benchmarks
with small/medium code size (e.g., matmult, fft) as well as
large code size (e.g., statemate, adpcm). Also, our chosen
set of benchmarks contain both single-path programs (e.g.,
matmult, jfdcint) and multiple-path programs (e.g., com-
press, statemate). We have chosen a long running program
statemate as a representative to run on a single core (to
increase the probability of interference in shared L2 instruc-
tion cache) and different combinations of other programs
are run on other cores. For all experiments on 2-cores, the
estimation results for program X (other than statemate)
correspond to running X in one core and statemate in the
other core. The reported results for statemate are the av-
erage of all the runs. For 4-core experiments we either run
(edn, adpcm, compress, statemate) on the 4 cores, or we
run (matmult, fir, jfdcint, statemate) on the 4 cores. The
reported results for statemate are the average of what we
get from running (edn, adpcm, compress, statemate) and
(matmult, fir, jfdcint, statemate).

Figure 5 demonstrates the precision of our analysis. The
overestimation ratio in Figure 5 is computed by dividing
the estimated WCET with the observed WCET. Observed
WCET of the program is computed through simulation by
running it on a few sample inputs and taking the maximum
of these running times. Our analysis results are marked by
“Our Approach” in Figure 5.

To compare the effect of shared bus analysis in WCET es-
timation, we have also shown the overestimation ratio for an
architecture without shared bus (shown by the bar “With-



Table 1: Description of Benchmarks used
Benchmark Description Bytes Lines of Code

matmult Matrix multiplication 3737 163
jfdcint Discrete-cosine transformation 16028 375
adpcm Adaptive pulse code modulation algorithm 26852 879

edn Implements the jpegdct algorithm together 10563 285
with other signal processing algorithms

fft Fast Fourier Transform 6244 219
fir Finite impulse response filter 11965 276

(signal processing algorithms)
compress Data compression program 13411 508
statemate Automatically generated code by the 52618 1276

STAtechart Real-time-Code generator STARC

out Bus” in Figure 5). Some of the cases show a decreased
overestimation ratio (e.g., statemate in 4-core) in presence
of shared bus. Note that observed WCET also increases in
presence of shared bus. Therefore, a decreased overestima-
tion ratio signifies that the overestimation is more due to the
presence of other micro-architectural entities (i.e., pipeline,
cache) than due to the shared bus.

Due to the difficulty of analyzing the shared bus, an ob-
vious solution is to always assume the worst case waiting
time for bus access for every memory reference that may po-
tentially access the shared bus. Overestimation introduced
from this approach is also depicted in Figure 5 as“Maximum
Bus Delay”. As shown, for reasonably large programs ( e.g.,
edn, fft, adpcm, statemate) the overestimation is excessive,
making this approach not useful in practice.

As shown in Figure 5, our analysis can produce tight
WCET estimates. The average overestimation from our ap-
proach is around 40%. For single path programs (e.g., mat-
mult, edn), the overestimation is within 35%.

Figure 6 presents the over-estimation ratio of benchmark
statemate in various analysis results (“Our approach”, “Max-
imum bus delay” as mentioned above) for different bus slot
lengths. Figure 6 shows that the precision of our analysis de-
pends on the bus slot length. However, the over-estimation
is much tighter than the analysis which uses maximum bus
delay for each bus transaction (“Maximum bus delay” ap-
proach). Figure 6 also shows clearly that our analysis is not
tied with a particular bus slot length.

We have also analyzed the sensitivity of our analysis fram-
ework with L1 cache size, L2 cache size and memory la-
tency. To analyze the sensitivity of one micro-architectural
parameter, we vary only that parameter and keep other
micro-architectural parameters’ value same as in Section 5.2.
Cache sizes are varied from 1 KB to 16KB and memory
latency is varied from 10 cycles to 50 cycles. The aver-
age over-estimation is 35%, 40% and 40% over different L1
cache sizes, over different L2 cache sizes and over different
memory latencies respectively (figures are not shown due to
space constraints). Hence, we conclude that the reasonable
over-estimation in our analysis is not tied to a particular
micro-architectural configuration.

5.3 Analysis of task graphs in DEBIE
To evaluate our WCRT framework we have analyzed a

large fragment of a real life DEBIE program [3], an in-situ
space debris monitoring program. The task graph for the
fragment of DEBIE program is given in Figure 7. We con-
sider a system with four cores. The number inside each task
of the task graph shows the mapping of the tasks to the
processor cores. Codesize of each task is given in Figure 7.
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Figure 5: Overestimation in WCET analysis

For the experiments with DEBIE, private L1 caches are
changed to 2-way associative, 2 KB caches and the shared
L2 cache is changed to a 4-way associative, 8 KB cache. The
reason for changing the above-mentioned parameters is the
relatively large code-sizes of the tasks in the DEBIE bench-
mark. Without a larger instruction cache, both simulation
and estimation encounter cache thrashing making it difficult
to evaluate the accuracy of our analysis. For this reason the
L2 cache size is increased to 8KB in these experiments. All
other parameters (bus slot, cache line size, cache hit latency,
cache miss latency) remain unchanged from the settings used
in Section 5.2.

The analysis results are shown in Table 2. The value
simbus denotes the observed WCRT (maximum execution
time obtained from cycle-accurate simulation on a few in-
puts in presence of shared cache and bus). The values
wcrtmax bus delay and wcrtours denote the WCRT estimates
taking the maximum bus delay for every bus access and
WCRT estimate from our analysis respectively — all in pres-
ence of shared cache and bus.

We observe that the overestimation coming through our
analysis is only 22.9% when compared to the simulation re-
sults (compare wcrtours with simbus). Our analysis is time-



 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

40 50 60 70 80

O
ve

re
st

im
at

io
n 

ra
tio

TDMA slot length for round robin schedule (in cycles)

Sensitivity w.r.t bus slot length (2-core)

Maximum bus delay Our approach

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

40 50 60 70 80

O
ve

re
st

im
at

io
n 

ra
tio

TDMA slot length for round robin schedule (in cycles)

Sensitivity w.r.t bus slot length (4-core)

Maximum bus delay Our approach

Figure 6: Sensitivity of WCET analysis with bus
slot length

main�tc
(1)

main�hm
(1)

main�tm
(1)

main�hit
(1)

main�aq
(1)

main�su
(1)

tc�test
(3)

hm�test
(4)

tm�test
(1)

hit�test
(2)

aq�test
(4)

su�test
(2)

Core Task�name Code�size
(bytes)

1 main�tc 240

1 main�hm 240

1 main�tm 240

1 main�hit 240

1 main�aq 240

1 main�su 240

Core Task�name Code�size
(bytes)

1 tm�test 56,960

2 hit�test 10,776

2 su�test 50,176

3 tc�test 45,368

4 hm�test 44,176

4 aq�test 44,128

Figure 7: DEBIE task graph and task sizes

efficient. The time to produce wcrtours is less than 1.5 min-
utes. This time includes the full analysis time – starting
from intra-core analysis to the end of our iterative and com-
bined shared cache and bus analysis.

6. EXTENSIONS AND FUTURE WORK
Other multi-processor architectures: Our analysis can
easily be adopted with minimal changes for other kind of
architectures featuring shared cache and shared bus. For
example, consider the multi-processor architecture shown in
Figure 8. In this type of architectures, a processor chip has
multiple cores (as shown by Core 0, . . ., Core N in Figure 8).
Each core in the processor has an on-chip L1 cache and all
cores share an on-chip L2 cache through a crossbar switch.
There might be multiple processor chips in the architecture
(as shown by Processor 0 and Processor 1) and they access
the off-chip system memory through an off-chip shared bus.
Intel’s dual-processor and dual core architecture [11] are sim-

simbus wcrtmax bus delay wcrtours

50432 192567 61997

Table 2: Results from DEBIE (×104 cycles)

ilar to the one shown in Figure 8 where each processor has
2 cores.

Shared�off�chip�Bus

Core�0Core 0Core�0

L1L1L1

….

Core�NCore NCore�N

L1�L1L1�

Shared�L2

Core�0Core 0Core�0

L1L1L1

….

Core�NCore NCore�N

L1�L1L1�

Shared�L2

Off�chip�
Memory

Crossbar Crossbar

Processor�0 Processor�1

Figure 8: A multi-processor architecture featuring
on-chip shared L2 cache

Our analysis framework can easily be tuned to work with
the above mentioned architectures. Each core can still be an-
alyzed separately to produce per-core analysis result. Later,
the interference between all the tasks running on the same
chip can be used in on-chip shared cache conflict analysis.
However, we observe that only shared L2 cache misses ap-
pear in the off-chip bus. Therefore, only shared L2 cache
misses encounter variable amount of latency. On the other
way, our bus analysis has to be employed only for shared L2
cache misses (which is a subset of L1 cache misses) instead
of all L1 cache misses.
Applications using shared library: In our current im-
plementation, all shared libraries are copied inside each task.
However, our analysis can easily be extended with shared li-
braries as follows: first, a single shared memory block in
L2 cache could be accessed by two independent tasks. In
this case, these two accesses are not conflicting and both
accesses are cache hits. However, our shared L2 cache con-
flict analysis will interpret these two accesses as conflicting
and in the worst-case both accesses to this shared mem-
ory block (in two different tasks) will be estimated as cache
misses. Our shared L2 cache conflict analysis can easily be
changed to incorporate this information. Second, in pres-
ence of shared libraries, initial cache state of a task may
contain some shared memory blocks left by its predecessor
tasks. This initial cache state can be estimated by taking
into account all possible dependencies imposed by the ap-
plication task graph.

7. RELATED WORK
For single core systems, analysis of cache behavior for

Worst-case Execution Time (WCET) has been well-studied.
These works study the cache behavior for uninterrupted
execution of a single program on a single processing ele-
ment. For single level private caches, one of the most widely



adopted methods is based on abstract interpretation [8]. In-
deed, the private cache analysis in our framework builds on
abstract interpretation. Extension of the timing analysis to
multi-level private caches appears in [7].

For multi-tasking systems, cache analysis estimates the
cache-related preemption delay (CRPD). CRPD quantifies
the impact of cache sharing on the execution time of tasks
in a single core with preemptive scheduling. CRPD analysis
computes cache access footprint of both the preempted and
preempting tasks (e.g., [12, 13]).

In multiprocessing systems, tasks in different cores may
execute in parallel while sharing memory space in the cache
hierarchy. Tools for estimating private cache access time
are presented, among others, in [14] and [15]. On modeling
shared caches in multi-core platforms, there have been very
few works so far [9, 16, 17]. The work in [9] is the first to con-
sider dependencies between tasks in a task graph for shared
L2 cache analysis. The overestimation of WCET analysis
proposed in [16] was reduced via compile-time identification
of single-usage blocks in [17].

In multi-processor, static timing analysis of bus-based co-
mmunication have been studied in earlier works (e.g., see
[18, 19]). However, these works analyze the bus behavior
without considering the impact of caches. The recent work
[20] analyzes bus behavior in the presence of private caches.
This work observes that the cache misses in the individual
cores leads to bus accesses, and depending on the bus sched-
ule the time to service a cache miss can exceed the cache miss
penalty. However, [20] does not consider shared caches, and
its timing interaction with bus accesses. Moreover, analy-
sis in [20] is time consuming due to the virtual unrolling of
loops. Another recent work [21] suggests providing hardware
support for predictable execution of concurrent programs on
multi-cores.

8. CONCLUSIONS
We have presented an integrated analysis framework that

considers the timing interactions between shared cache and
shared bus accesses. Ours is the first work to model the tim-
ing effects of both shared cache and shared bus in multi-core
platforms. Our analysis is efficient and avoids virtual loop
unrolling. Our analysis results are compared with cycle-
accurate simulation results to evaluate the precision of our
analysis. We have also shown that our analysis can be ap-
plied to similar multi-processor architectures and in the fu-
ture, we plan to extend our analysis to include pre-emptive
execution and shared libraries.
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